
 
 

 

  

Abstract— The study of spatial memory and learning in rats 
has inspired the development of multiple computational models 
that have lead to novel robotics architectures. Evaluation of 
computational models and resulting robotic architecture is 
usually carried out at the behavioral level by evaluating 
experimental tasks similar to those performed with rats. While 
multiple metrics are defined to evaluate behavioral 
performance in rats, metrics for robot task evaluation are very 
limited mostly to success/failure and time to complete task. In 
this paper we present a set of metrics taken from rat spatial 
memory and learning evaluation to further analyze 
performance in robots. The proposed set of metrics, learning 
latency and ability to navigate minimal distance to goal, should 
offer the robotics community additional tools to assess 
performance and validity of models in biologically-inspired 
robotic architectures at the task performance level. We also 
provide a comparative evaluation using these metrics between 
similar spatial tasks performed by rat and robot in comparable 
environments. 

I. INTRODUCTION 
s argued by Webb [15], in addition to have robots 
modeled on animals by using the biology as a source of 
inspiration, robots can also serve as models of animals 

to test biological hypotheses. And although nature is much 
more complex than robotics, robots can offer an experimental 
platform to test hypotheses about animal behavior without the 
need of extended training required in animals that may 
involve weeks of training and testing just for a single task 
evaluation.  

In the past, studies of spatial memory and learning in rats, 
i.e. spatial cognition, have inspired various computational 
models and robotics systems, such as Redish and Touretzky 
[14], Guazzelli et al. [7], Arleo and Gerstner [1], Arleo et al. 
[2], Milford and Wyeth [10], and Barrera and Weitzenfeld 
[4]. In general, development of these models require: (a) 

 
Alejandra Barrera is with the Computer Engineering Department at the 

Instituto Tecnológico Autónomo de México (ITAM), Mexico City, 01000, 
México (e-mail: abarrera@itam.mx).  

Alfredo Weitzenfeld is with the Information Technology Department at 
University of South Florida Polytechnic, Lakeland, FL, 33180, USA 
(corresponding autor: tel 1-863-6677769; fax 1-863-6677752; e-mail: 
aweitzenfeld@poly.usf.edu). 

Alejandra Caceres is with the Plastic Neural Networks Laboratory, 
Neurobiology Institute, Universidad Nacional Autónoma de México 
(UNAM), Querétaro, 76230, México. 

Victor Ramirez-Amaya is with the Plastic Neural Networks Laboratory, 
Neurobiology Institute, Universidad Nacional Autónoma de México 
(UNAM), Querétaro, 76230, México (email: ramirez@inb.unam.mx). 

 

studying rat brain regions at different levels of granularity, 
e.g. behavioral and electrophysiological; (b) design of a 
computer-based model at the corresponding level of 
granularity; (c) testing of model initially by computer 
simulation and then by robot experimentation; and (d) 
evaluation of results obtained from robot experimentation 
against original rat studies. While various models of spatial 
cognition have been developed and tested in robots, most of 
these models do not “close the loop” in terms of a final 
evaluation against similar experiments in rats as described in 
(d). In this paper, we present metrics for such a comparative 
study between similar spatial memory and learning tasks 
performed in rats and robots. In prior papers, Barrera and 
Weitzenfeld [3][4] present a computational model and 
robotics architecture inspired on behavioral and 
electrophysiological studies of hippocampus and striatum 
brain regions in rats. Barrera and Weitzenfeld [3][4] also 
describe and contrast experimental results obtained from 
“normal” and “hippocampus-lesioned” models, and 
corresponding robotic experiments, inspired on classical rat 
spatial tasks including the T-maze and 8-arm radial maze as 
described by O’Keefe [12] and variations of the Water Maze 
by Morris [11]. In this paper we go beyond prior work by 
incorporating evaluation metrics taken from rat behavioral 
studies to further evaluate robot results under a new set of 
experimental tasks and evaluation environments. In general, 
these metrics go beyond “qualitative” measures to include 
“quantitative” aspects that include learning latency and 
ability to navigate minimal distances to the goal. For this 
purpose we use a specially designed cyclical maze having 
external landmarks and providing different possible paths 
between to reach the goal. 

In the rest of the paper we present related work (Section II), 
the spatial cognition (memory and learning) model developed 
by our group for task experimentation (Section III), animal 
experimentation results (Section IV), robot experimentation 
results (Section V), finishing with conclusions and a 
discussion (Section VII). 

II. RELATED WORK 
Taking inspiration in the rat hippocampus, several robotic 

navigation models have been proposed, as previously 
mentioned, such as Redish and Touretzky [14], Guazelli et al. 
[7], Arleo and Gerstner [1], Arleo et al. [2], and Milford and 
Wyeth [10][17]. In this section we contrast some salient 
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features between these models and ours (Barrera and 
Weitzenfeld) to be overviewed in the following section. Key 
aspects characterizing these models are: (i) spatial memory - 
how place locations are modeled, (ii) spatial learning - how 
place locations are learned, and (iii) scope of tasks 
experimented with the models. In the model by Redish and 
Touretzky [14], representation of places integrates both 
vestibular and visual information codified by local view cells. 
In our model, we consider spatial representations as holistic 
topological-metric maps. The study by Guazelli et al. [7] 
proposed the TAM-WG model providing both taxon and 
locale navigation systems, and spatial representation 
combining kinesthetic and visual information. We consider 
our model as an extension to Guazelli by including (a) a map 
exploitation process to enable goal-directed navigation in a 
mobile robot, (b) the ability to learn goal locations from 
multiple departure positions within mazes, (c) the ability to 
learn maps with two or more decision points, and (d) a map 
adaptation process that permits on-line representations of 
changes in the physical configuration of the environment 
perceived by the robot. The main components of the neural 
architecture proposed by Arleo and Gerstner [1]  and Arleo et 
al. [2] are similar to those found in our model: (a) the 
integration of allothetic (visual) information and idiothetic 
(path integration) signals at the level of the hippocampal 
representation, (b) the use of Hebbian learning to correlate 
these inputs,(c)  the mapping of place cell population activity 
into spatial locations, and (c) the application of reinforcement 
learning to support goal-oriented navigation. We include in 
our model the use of affordances information instead of 
population vector coding to map the ensemble dynamics of 
place cells into spatial locations. We also include an explicit 
construction of a topological map of places and their metric 
relations, while implementing an Actor-Critic reinforcement 
architecture that predicts, adapts and memorizes reward 
expectations during exploration, suggesting a mutual 
influence between the hippocampus and the striatum. The 
focus of our approach also differs from the one followed by 
Milford et al. [10] primarily concerned with the effectiveness 
of the hippocampus models in mobile robot applications that 
explore larger environments with natural cues. Instead, our 
interest has been in providing mobile robots with spatial 
cognition capabilities similar to those found in rodents in 
order to produce comparable behavioral results and 
eventually provide experimental neuroscience with valuable 
feedback. Nevertheless, our model coincides with Milford et 
al. in some aspects related to mapping and map adaptation. In 
contrast to our separation of place and orientation 
information, Milford incorporates the use of experiences in 
the topological map storing the activity within pose cells that 
codify physical localization and orientation, together with 
local view cells that encode visual information.  

III. A MODEL OF SPATIAL COGNITION 
The spatial memory and learning model developed as part 

of this work considers the following aspects: (i) interaction of 
different brain structures in rats, in particular hippocampus 
and striatum (work by Ramirez-Amaya et al. in detecting 
regions using immediate early gene Arc [13], to demonstrate 
skills associated with global and relative positioning in space, 
(ii) integration of traveled path, (iii) use of kinesthetic and 
visual cues during orientation, (iv) generation of 
topological-metric spatial representation of the environment, 
(iv) adaptation using Hebbian learning [8], (v) representation 
of animal internal motivational states based on hunger and 
thirst drives, and (vi) management of rewards implemented 
by reinforcement learning using an Actor-Critic architecture 
[5]. 

The model developed consists of a number of modules: 
motivation, learning, kinesthetic processing, landmark 
processing, affordances, place representation, and action 
selection modules as shown in Fig 1.  

 
Fig. 1. The modules of the spatial cognition model and their interaction. 
Glossary: LH – Lateral Hypothalamus; RC – Retrosplenial Cortex; EC – 
Entorhinal Cortex; VTA – Ventral Tegmental Area; VS – Ventral Striatum; 
NA – Nucleus Accumbens; PIFDL – Path Integration Feature Detector 
Layer; LFDL – Landmark Feature Detector Layer; LL – Landmarks Layer. 
Inputs/Outputs: r= primary reinforcement; sr= secondary reinforcement; r̂  = 
effective reinforcement; DR= dynamic remapping perceptual schema; WDR= 
connection weights between DR and PIFDL; LPS= landmark perceptual 
schema; APS= affordances perceptual schema; PI= kinesthetic information 
pattern; L= information pattern for one landmark; LP= landmarks 
information pattern; W1, Wn= connection weights between L1, Ln and LL; 
PC= place information pattern; EX= expectations of maximum reward and 
their corresponding directions (DX); DIR= next animat direction; ROT= 
animat rotation; DIS= next animat moving displacement. 

These modules capture some of the properties of the rat’s 
brain structures involved in spatial memory and learning. A 
detailed functional and mathematical depiction of each 
module is presented by Barrera and Weitzenfeld [4]. 

Motivation in the rat is related to its need to eat, i.e. its 
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hunger drive. The motivation module corresponds to the rat’s 
lateral hypothalamus that controls food seeking and food 
intake computing a hunger value and immediate reward (r) 
the animat (animal or robot) gets by the presence of 
navigational goals. 

Learning module represents dopaminergic neurons in the 
ventral tegmental area and ventral striatum processing reward 
information by use of an Actor-Critic architecture [5] where 
an Adaptive Critic (AC) estimates future reward values at any 
particular location (PC) in the environment. This module 
generates an effective reinforcement signal ( r̂ ) that supports 
the learning process. Actor-Critic architectures have been 
extensively used in modeling goal oriented behaviors in rats 
(e.g. Foster, Morris and Dayan [6]).  

Kinesthetic processing module obtains information from 
two internal rat body systems: (i) vestibular organs in the 
semicircular canals of the inner ear, and (ii) feedback from 
muscles controlling movement. This module represents the 
updated animat position in relation to its point of departure 
(anchor) by integrating past rotations and translations through 
a dynamic remapping perceptual schema (DR), generating as 
output specific kinesthetic information patterns (PI). 

Landmark processing module computes landmark-related 
spatial positioning, i.e. distance and relative orientation of 
each landmark to the animat. Spatial information about each 
landmark is encoded in a perceptual schema that produces 
and later responds to specific landmark patterns (LP) derived 
from the integration of all landmarks in the environment. 

Affordances represent possible turns the animat can 
execute at any given time coded by the affordances 
perceptual schema (APS). McNaughton et al. [9] have 
suggested that preceding the rat’s motion, nearly half of the 
cells in the Posterior Parietal Cortex (PPC) exhibit 
movement-related activity discriminating among basic modes 
of locomotion: left turns, right turns, and forward motion. 
Affordances determination is based on a local coordinate 
system that is relative to the animat’s head. 
 

 
Fig. 2. Place representation module of the model. PI= kinesthetic information 
pattern; LP= landmarks information pattern; w= connection weights; PC= 
place information pattern; AF= affordances perceptual schema; r̂ = effective 
reinforcement signal; EX= expectations of maximum reward and their 
corresponding directions (DX). 
 

Place representation module, as shown in Fig. 2, receives 
input from kinesthetic processing (PI), landmark processing 
(LP) and affordances (AF) modules in addition to its 
interaction with the learning module. The place 
representation module comprises a place cell layer (PCL) and 

a world graph layer (WGL). Place cell layer (PCL) represents 
the rat’s hippocampus. Overlapping place fields in the 
collection of neurons in PCL are associated with a physical 
area in the environment that is identified directionally by the 
ensemble place cell activity pattern (PC). Synaptic efficacy 
between layers is maintained by Hebbian learning producing 
groups of neurons in PCL that respond to specific place cell 
information patterns (PC) derived from kinesthetic and 
egocentric visual information sensed by the animat while 
being at certain location and orientation. Associations 
between overlapping place fields and physical areas are 
represented and stored by a world graph layer (WGL) in a 
topological map enabling navigation between locations in the 
environment. Nodes in WGL represent associations between 
kinesthetic and visual information patterns and place cell 
population activity, whereas transitions between nodes are 
associated with metric information derived from animat 
locomotion such as moving direction and displacement. 
Every node in the map (a location) connects to a maximum of 
eight Actor units (eight possible orientations). Every Actor 
connection is associated with a weight (representing the 
expectation of reward when orienting to a particular direction 
from the current location), and an eligibility trace (marking 
the connection eligible to be reinforced later in time). In this 
way, Actor units compete to select the next moving direction 
(DX) from the current location or node that allows the animat 
to get the greatest reward (EX). 

Action selection module computes motion direction (DIR), 
rotation (ROT) and displacement (DIS) by considering four 
signals corresponding to available affordances, a random 
rotation, rotations that have not been explored from the 
current location (curiosity), and the global expectation of 
maximum reward.  

  
Fig. 3. Top view of the cyclic maze employed in the experiment with rats 
(left) and robots (right). Both mazes include landmarks L1, L2, L3, L4, 
locations TD, D1, D2, D3, D4, and goal (HE in the robot maze). 

IV. ANIMAL EXPERIMENTATION RESULTS 
We carried out animal experimentation in the 

Neurobiology Institute at UNAM in Mexico. We used a 
group of three male rats to carry out the behavioral 
experiments using a 95 x 105 cm2 maze having six internal 
corridors as shown in Fig. 3 (left). The maze was placed in a 
room illuminated using a tenuous light, and surrounded by a 
white curtain with four different colored geometrical figures 
representing allocentric (external) cues or landmarks. In order 
to motivate the animals to learn the spatial task, the 
consumption of water was restricted during the previous 
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week of the experiment, and absolutely prohibited during the 
prior 24 hours. The tip of a water dispenser was placed at the 
goal location to provide sweet water to rats when reaching 
this location at the end of any training trial. The solution used 
as reward consisted of 5 gr of sucrose dissolved in 50 ml of 
water, whereas the water dispenser was filled with 400 µl of 
the solution before beginning each trial. During the 
behavioral experiment, rats pass through three procedures: 
(A) habituation, (B) training, and (C) testing. These are 
described below in more detail. 

A. Habituation Procedure 
The task begins with a habituation session (pre-training), 

where the animal is placed in the maze and allowed to explore 
it freely from location TD oriented “north” (looking towards 
L1) until reaching the water dispenser. Water is not provided 
during the habituation session. 

B. Training Procedure 
During training, the water dispenser provides sweet water 

as reward to rats. At the beginning of each training trial the rat 
is placed at location TD oriented “north”. Each trial consists 
on freely exploring the maze until reaching the goal location 
and drinking the sweet water. The rat is then removed from 
the maze and placed in a cage for 60 sec after which a new 
trial is performed. Each rat daily training session included 9 
trials, with each trial ending with the rat reaching the target 
for a total of 17 sessions. Latencies and routes followed by 
the animals in locating the water were registered by using a 
“SMART” system from San Diego Instruments. Fig. 4 shows 
routes followed by one of the rats during three training 
sessions, with sessions selected from beginning (Session 1), 
middle (Session 7), and end (Session 17) of the procedure. It 
is notorious how the learning latency of routes decreases as 
training evolves until the animal learns the shortest path to the 
goal.  

 
Fig. 4. Routes followed by one rat in locating the water (Goal) during three 
training sessions (1, 7 and 17) from a fixed departure location (TD). Lines 
inside each maze illustrate 9 different routes. The average latency of arrival to 
the target is shown below each maze. 

Fig. 5 shows the average length of path traveled by the rats 
during each training session normalized to the shortest path 
length possible in the maze from the fixed starting point TD 
to the goal location (i.e., the number of times that rats traveled 
the minimal distance possible to the goal). It is possible to 
observe how this number gets closer to 1.0 as rats learn the 
shortest path to the goal.  

 
Fig. 5. Average performance during training in the task measured through the 
normalized route length to the goal location; i.e., the average number of times 
that rats traveled the minimal distance possible from the initial fixed location 
to the goal. Both graphs show the variability of the results.  

A. Testing Procedure 
In order to evaluate their ability to reach the target after 

having concluded the training procedure, rats were separately 
tested during 12 trials starting three times from four different 
locations in the maze, D1, D2, D3, and D4 (see Fig. 3 left). 
During each testing trial, the rat is placed at a corresponding 
initial location and orientation, and the trial consists on 
exploring the maze freely until reaching the goal location and 
drinking the sweet water. The rat is then removed from the 
maze. Fig 6 depicts latencies and routes followed by one of 
the animals in locating the water registered by using the 
SMART system, where it can be observed the rat not always 
follows an optimal performance following the shortest route. 

 
Fig. 6. Routes followed by one of the rats in locating the water (Goal) during 
tests departing from locations D1 to north, D2 to north, D3 to east, and D4 to 
south in the cyclic maze. Lines inside each maze illustrate three different 
routes. The average latency of arrival to the goal is shown below each maze. 

V. ROBOT EXPERIMENTATION RESULTS 
The rat cognitive model was designed and implemented 

using the Neural Simulation Language NSL system [16]. The 
computational model is used to control an AIBO robot 
(shown inside the maze in Fig. 3 (right)) in a 180 x 210 cm2 
maze having six internal corridors as shown in Fig. 3 (right). 
The maze is similar to that used with rats. The local AIBO 
camera takes as input three non-overlapping snapshots (left, 
forward, right) of the environment during each step. The 
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maze is surrounded by four colored cylinders representing 
allocentric cues or landmarks. During the experiment, 
similarly to rats, we used three robots passing through three 
phases: (A) habituation, (B) training, and (C) testing. These 
are described below in more detail. 

A. Habituation Procedure 
Similarly to rats, the experiment begins with an habituation 

procedure where the robot departs from location TD oriented 
“north” (looking towards L1). The robot explores the maze 
freely until reaching the goal location. After reaching the 
goal, the robot is removed from the maze. No reinforcement 
is provided to the robot while exploring the maze, thus it does 
not carry out any learning process of goal locations, and its 
actions are determined just by curiosity and randomness. As a 
result of the habituation procedure, the robot builds a 
cognitive map of the maze including nodes to represent the 
explored locations. 

B. Training Procedure 
After habituation, reinforcement is introduced into the 

model. The robot is placed at TD oriented north, and the 
training procedure begins from the cognitive map previously 
generated. The robot perceives the same visual and 
kinesthetic information sensed during habituation since the 
environmental configuration remains constant. The robot 
recognizes during training previously explored locations that 
were navigated in similar directions. When the robot visits 
unexplored locations or orientations, it adds new nodes and 
connections to the world graph map (see Fig 2). Additionally, 
when experimenting with different orientations at any given 
location, the robot merges possible redundant nodes by 
creating new ones and reconstructing links as necessary. In a 
typical training trial, the robot explores the maze from TD 
until finding the goal location. Exploration is interrupted if 
the robot spends more than 600 sec without reaching the goal. 
Depending on how exhaustively the robot explores the maze 
during habituation, its motor actions during training are more 
determined by the random factor and less determined by the 
curiosity factor since it recognizes all visited maze locations. 
Initially, while the robot’s reward expectations are not big 
enough to exceed the randomness, it will follow indirect 
routes to the goal (i.e., routes that involve visiting places 
more than once), or direct but not optimal routes. More direct 
routes are learned in time. 

Training phase consisted of one session of 20 trials per 
robot. As with rats, latencies and routes followed by robots to 
reach the goal were recorded. Fig. 7 illustrates routes 
registered by one of the robots during three training trials 
selected from beginning (Trial 1), middle (Trial 8), and end 
(Trial 20) of the procedure. It can be observed how the 
learning latency decreases until reaching the goal location by 
following the optimal path. 

 
Fig. 7. Routes followed by one of the robots in locating the goal during three 
training trials from a fixed departure location (TD) being oriented north in the 
cyclic maze. Illustrated trials were taken from beginning (Trial 1), middle 
(Trial 8), and end (Trial 20) of the learning process. The line inside each maze 
represents the route followed by the robot. The small arrow placed at location 
TD indicates the robot orientation. The average latency of arrival to the target 
in those three training trials is shown below each maze. 

Fig. 8 shows the average number of times robots traveled 
the minimal distance possible from the initial fixed location 
TD to the goal during each training trial. As in the case of rats, 
it is possible to observe how this number gets closer to 1 as 
robots learn the shortest path to the goal. 

 
Fig. 8. Average performance during training in the task measured through the 
normalized route length to the goal location; i.e., the average number of times 
that robots traveled the minimal distance possible from the initial fixed 
location to the goal.  

 
Fig. 9. Routes followed by one of the three robots while locating the goal 
during tests departing from locations D1 to north, D2 to north, D3 to east, and 
D4 to south, within the cyclic maze. Lines inside each maze illustrate routes 
recorded from three trials. When the robot followed the same route in those 
three trails, the corresponding maze shows only one line.  The average 
latency of arrival to the goal location in three trials per departure point is 
shown below each maze. 

C. Testing Procedure 
In order to evaluate robots’ ability to reach the goal, we 

tested robot trajectories during 12 trials with robots liberated 
three times from the same initial locations and orientations as 
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used to test rats. During tests, latencies and routes followed 
by robots to reach the target were recorded, as shown by Fig. 
9 for one of the robots. Each robot exploits the cognitive map 
built during habituation and adapted during training to reach 
the target successfully. During some of the testing trials, 
robots still modified their spatial maps by adding new nodes 
to represent unexplored locations and/or merging existent 
nodes. 

Fig. 10 illustrates a graphical comparison between the 
average performance of rats and robots during tests departing 
from locations D1, D2, D3 and D4 in the maze, showing the 
number of times the rats/robots navigated the minimal 
distance possible to the goal location (i.e., the normalized 
length of the traveled path). 

 
Fig. 10. Average performance of rats and robots during tests in terms of the 
number of times the subject navigated the minimal distance possible to the 
goal location. 

VI. DISCUSSION AND CONCLUSIONS 
The aim of the work presented in this paper is to introduce 

a set of metrics to evaluate task performance in spatial 
memory and learning that is common to both rat and robot 
experimentation. By having such metrics, not only roboticists 
will be able to better compare results against those obtained 
from animal experimentation, but also offer robotic 
architectures to researchers in neurobiology and 
neuroethology as an alternative platform to study, analyze 
and predict animal behavior. As part of this work we 
developed a computational model and robotic architecture of 
spatial memory and learning in rats that keeps a close 
relationship with hippocampus and striatum regions in the rat 
brain. By use of comparative experimental studies of spatial 
memory and learning in rats and robots, we demonstrated the 
behavioral performance match between robots and rats 
during the execution of a cyclical maze task by following a 
habituation, training and testing procedure where learning 
latency and normalized length of paths to reach the goal were 
contrasted. During these experiments, both rats and robots 
reached successfully the learning criterion during training, 
and were able during tests to find the target regardless of the 
departure location. Rats did not always show an optimal 
performance following the shortest route, and this behavior 
was also exhibited by robots during some tests. In both 
systems, efficient performance depends on how exhaustively 
they explore the environment during training visiting all 

possible direct routes from the fixed departure location to the 
goal. Behavioral differences between rats and robots include: 
(i) robots learned faster than rats; (ii) robots reported less 
non-optimal trials during tests; and (iii) robots traveled less 
number of times the minimal distance to the goal during any 
testing trial than rats did. Exploring what contributes to this 
enhanced performance in robots may yield insights as to how 
learning can be improved in rats. Additional studies with rats 
will also enhance the robot models. In the future, we plan to 
extend this work with more complex tasks to evaluate that 
include adaptation to internal changes in the maze such as 
closing of existing corridors or opening of new ones. 
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