
2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4048

Fig. 2: Example keyframes of the teabox object. The keyframes are saved during offline analysis and later utilized in the GPE.

to the real object, the system use the previous pose estimate

as a priori. Since it use an 1-D search along the normal

direction of sample points for the closest edge locations, it

rapidly calculate errors which must be minimized to solve

for the 6-DOF motion parameters. The motion parameters

are subsequently estimated between frames. Drummond and

Cipolla [3] solved a similar problem, but enhanced ro-

bustness by using the iterative re-weighted least squares

with a M-estimator. To perform hidden line removal, they

used a BSP (Binary Space Partition) tree. Marchand and

Chaumette [4] proposed an augmented reality framework,

which relies on points and lines, and that has been applied

to the visual servoing [5]. Comport et al. [6] compared and

evaluated the two different systems, but they concluded both

are fundamentally equivalent.

In keypoint-based methods, a sparse 3D metric model

is used. Like CAD models, the keypoint models are built

offline. With a set of images in each has a view of an

object from a slightly different viewpoint, the non-linear

optimization algorithm, such as Levenberg-Marquardt, return

a refined 3D model of keypoints. Since this model maintains

3D coordinates of each keypoint, the pose estimation is easily

performed by using the correspondence between the 3D

points of the model and the 2D keypoints in an input image.

Using this model, Gordon and Lowe [7] proposed an aug-

mented reality system that calculates pose with scale invari-

ant features [8]. Collet et al. [9] applied a similar method to

robot manipulation where they combined RANSAC [10] with

a clustering algorithm to locate multiple instances. Vacchetti

et al. [11] used standard corner features to match the current

image and the reference frames, so called keyframes. Unlike

the efforts using non-linear optimization, they obtained 3D

coordinates of 2D corner points by back-projecting them onto

the object CAD model.

Since the edge and the keypoint methods are comple-

mentary to each other, several have reported combined

approaches [12], [13]. Vacchetti et al. [14] incorporated the

edge-based method with their corner point-based method to

make the system more robust and jitter free. As part of

the edge-based tracking, they used multiple hypotheses to

handle erroneous edge correspondence, but it is equivalent

to the nearest hypothesis of RAPiD-like approaches. Rosten

and Drummond [15] similarly combined corner points with

lines, but they only used corner points to estimate motion

parameters between frames.

We also adopt a combined approach in which keypoint-

based matching and edge-based tracking are employed. As

depicted in Fig. 1, our system is composed of a Global

Pose Estimation (GPE) and a Local Pose Estimation (LPE).

Unlike [14] and [15] which use keypoints to estimate motion

between frames, we only use the keypoints for estimating

the initial pose in GPE. After estimating the initial pose an

edge-based tracking scheme is utilized in the LPE.

In the remainder of the paper, we first explain the GPE

in Section III. Section IV describes the LPE including the

salient edge selection from polygon mesh models and the

edge-based tracking formulation. Quantitative and qualitative

results using the system are presented in Section V.

III. GLOBAL POSE ESTIMATION USING KEYPOINTS

In this section, we present the Global Pose Estimation

(GPE) in which we use SURF keypoints [16] to match the

current image with keyframes. The model keyframe is a set

of images that contains a target object. The keyframes are

saved offline. To estimate pose, the 3D coordinate of each

keypoint is computed by back-projecting to the CAD model.

A. Keyframe Model Acquisition

To estimate an initial pose, our system requires keyframes,

which are reference images. Since the keyframes will be

compared with the input image, the keyframes should contain

appearance of the object similar to the one in the input image.

But it is practically impossible to maintain every image to

cover all possible appearances of the object due to variability

across illumination, scale, orientation and viewpoint. In a

real application, a smaller number of keyframes is preferred.

Ideally there would only be one keyframe per aspect for

the object. For the maximum coverage of a keyframe, a

keypoint descriptor that describes local appearance around

corner-like points is used. If the local descriptor is discrim-

inative then matching keypoints between two images can

be performed despite variations in orientation, scale, and

illumination. However, the local appearance is only semi-

invariant to viewpoint change. For robust pose initialization

we are required to maintain multiple keyframes to cover

multiple view aspects.

Capturing keyframes is performed offline. Since keyframes

will be used for pose estimation in which there is a need

for generation of 2D-3D correspondences, we need to know

the 3D coordinates of each keypoint. To calculate 3D co-

ordinates, we use 3D CAD models with the current pose

estimate. In this phase, the current pose is estimated by the

LPE as will be explained in Section IV. With a CAD model

and the current pose, we can compute the 3D coordinates

of each keypoint by back-projecting the 2D keypoint to

4049

!"#$%& '%%(

)*+)#,-.%%,

Fig. 3: Original and simplified CAD models. By using the salient edges selection, we can get a set of good model edges to track.

the corresponding facet of the CAD model. For fast facet

identification, we use ‘Facet-ID’ trick which encodes i-th

facet of the target object’s model in an unique color in order

to identify the membership of each 2D keypoints by looking

up the image buffer that OpenGL renders [11]. The 3D

coordinates of the keypoints are then saved into a file for

later use in keypoint matching.

B. Matching keypoints

After obtaining keyframes offline, keypoint matching is

performed between an input frame and keyframes. A simple

strategy for the matching might use naı̈ve exhaustive search.

However, such a search has O(n2) complexity. Using an

approximate method the complexity can be reduced. As an

approximated search, we use the Best-Bin-First (BBF) algo-

rithm [17] which can be performed in O(n log n). While [18]

and [8] used a fixed number of nearest-neighbors, we set the

number of nearest-neighbors as the number of keyframe + 1.

We use the ratio test described by [8], and the ratio threshold

we used was 0.7. Once the putative correspondences has been

determined, they are further refined using RANSAC [10]. In

each RANSAC iteration, we estimate a homography matrix

and eliminate outliers from the homography matrix. Since

general objects have multiple faces or even curved surface,

using the homography matrix might not be an optimal

solution. It is here assumed that correspondences can be

approximated by a plane to plane transformation. In addition,

the size of objects is relatively small in images, so this

approximation does not limit the number of correspondences.

Another solution would be estimating a camera projection

matrix directly as part of the RANSAC as we know 3D

coordinates of each 2D keypoint, an option that may be

considered in future work. After removing outliers, we then

calculate the 6-DOF pose parameters by using standard least

square estimation. This pose estimate is provided to the LPE

as an initial value.

IV. LOCAL POSE ESTIMATION USING EDGES

In this section, we explain the Local Pose Estimation

(LPE) in which edges are utilized for object tracking.

A. Automatic Salient Model Edges Selection

!"#$%&'()* +,--&'()*

.
!.

"
.
"

.
!

Fig. 5: Determining salient edges. We use the face normal vectors
available in the model.

Since most of objects which exist in our daily environment

are manufactured, their CAD models might be available,

and such models provide helpful information for robotic

manipulation. Although there are various formats in CAD

models, most of them can be represented in a polygon

mesh. A polygon mesh is usually composed of vertices,

edges, faces, polygons and surfaces. In the LPE, we use

edge features in images coming from a monocular camera to

estimate the pose difference between two consecutive frames.

So we should determine which edges in the model of a

targeted object would be visible in images. Here we make an

assumption that sharp edges are more likely to be salient. To

identify sharp edges, we use the face normal vectors from the

model. As illustrated in Fig. 5, if the face normal vectors of

two adjacent faces are close to perpendicular, the edge shared

by the two faces is regarded a sharp edge. If two face normal

vectors are close to parallel, the edge is regarded a dull edge.

For the decision, we use a simple thresholding scheme with

the value of the inner product of two normal vectors. More

formally, we can define an indicator function with respect to

4050

4051

Fig. 6: Tracking results of the four targeted objects. From top to bottom, teabox, book, cup and car door. From left to right, t < 10, t =
100, t = 200, t = 300, t = 400 and t = 500 where t is the frame number. The very left images are results of the GPE.

where ei is the Euclidean distance from i-th sample point to

the nearest edge and N is the number of valid sample points

(i.e. sample points correspond to the nearest edge). Fig. 7

illustrates the error calculation, and ei is the length of the

i-th red arrow.

D. Update Pose with IRLS

After calculating the error vector e, the problem is reduced

to:

µ̂ = arg min
µ

N
∑

i=1

‖ei‖
2

= arg min
µ

N
∑

i=1

‖pi − Proj(PM

i ;Et exp(µ), K)‖2

where pi is the 2D image coordinates of the nearest edge

which is corresponding to the projected 2D point of the i-th

3D model coordinates PM

i
= (xM

i yM
i zM

i 1)T and N is

the number of valid sample points.

To calculate µ which minimizes the error e, a Jacobian

matrix J ∈ R
N×6 can be obtained by computing partial

derivatives at the current pose:

Jij =
∂ei

∂µj

= ni
T ∂

∂µj

(

ui

vi

)

= ni
T ∂

∂µj

(

Proj(PM

i ;Et exp(µ), K)
)

where ni is the unit normal vector of the i-th sample point.

We can split Proj() in Eq. 2 into two parts as follows:

(

ui

vi

)

=

(

fu 0 u0

0 fv v0

)





ũi

ṽi

1





(

ũi

ṽi

)

=





xC
i

zC
i

yC
i

zC
i





Their corresponding Jacobian matrices can be obtained:

JK =

(

∂ui

∂ũi

∂ui

∂ṽi
∂vi

∂ũi

∂vi

∂ṽi

)

=

(

fu 0
0 fv

)

JP =

(

∂ũi

∂xC
i

∂ũi

∂yC
i

∂ũi

∂zC
i

∂ṽi

∂xC
i

∂ṽi

∂yC
i

∂ṽi

∂zC
i

)

=





1
zC

i

0 −
xC

i

(zC
i

)2

0 1
zC

i

−
yC

i

(zC
i

)2





Since ∂
∂µj

(exp(µ)) = Gj at µ = 0 by Eq. 1, we can get:

∂PC

i

∂µj

=
∂

∂µj

(Et exp(µ)PM

i)

= EtGjP
M

i

Therefore the ith row and jth column element of the

Jacobian matrix J is:

Jij =
∂ei

∂µj

= ni
T JK

(

JP
0
0

)

EtGjP
M

i

We can solve the following equation to calculate the motion

velocities:

Jµ = e

4052

0 100 200 300 400 500 600 700 800 900 1000
−150

−100

−50

0
X Translation

Frame number

(m
m

)

0 100 200 300 400 500 600 700 800 900 1000
−150

−100

−50

0
Y Translation

Frame number

(m
m

)

0 100 200 300 400 500 600 700 800 900 1000
300

400

500

600
Z Translation

Frame number

(m
m

)

0 100 200 300 400 500 600 700 800 900 1000
−50

0

50

100
Roll Angle

Frame number

(d
e

g
re

e
)

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

20

30
Pitch Angle

Frame number

(d
e

g
re

e
)

0 100 200 300 400 500 600 700 800 900 1000
−60

−40

−20

0

20
Yaw Angle

Frame number

(d
e

g
re

e
)

Ground Truth

GPE

GPE+LPE

Fig. 8: 6-DOF pose plots of the book object in the general tracking test. While our approach (GPE+LPE) has convergence to ground
truth, the GPE only mode suffers from jitter and occasionally fails to estimate pose.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

Normalized Translational Residue: || ∆T ||

Frame number

(m
m

)

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

Normalized Rotational Residue: || ∆R ||

Frame number

(d
e

g
re

e
)

GPE

GPE+LPE

Fig. 9: Normalized residue plots of the book object in the general tracking test. The jitter and tracking failures result in a high residual.

Rather than using the usual pseudo-inverse of J , we solve

the above equation with Iterative Re-weight Least Square

(IRLS) and M-estimator:

µ̂ = (JT WJ)−1JT We

where W is a diagonal matrix determined by a M-estimator.

The i-th diagonal element in W is wi = 1
c+ei

where c is a

constant.

V. EXPERIMENTAL RESULTS

!

"

#

!

"

#

!

"

#

!"#

!$#

!%#

$
%

&

$
&

'

$
%

'

Fig. 10: Experimental setting and transformations between camera
{C}, object {O} and marker {M} frames. We used AR markers to
compute the ground truth pose.

In this section, we validate our visual recognition and

tracking algorithm with several experiments. To show the

generality of our system, we performed experiments with

4 objects: teabox, book, cup and car door. Note that these

objects have different complexity and characteristics. The

first three objects are especially interesting in for service

robotics while the last object is of interest for assembly

robots.

Our system is composed of a standard desktop computer

and a Point Grey Research’s Flea 1394 camera (640 × 480
resolution). The CAD models of teabox, book and cup were

generated by using BlenderTM which is an open source 3D

modeling tool. The car door model was provided by an

automobile company. We converted all of the models to the

OBJ format1 to be used in our C++ implementation.

For the GPE, we prepared keyframe images. As a smaller

number of keyframes is desirable, we captured only five

keyframes per object. Each keyframe has different appear-

ances of object as shown in Fig. 2.

A. General Tracking Test

The tracking results for the four objects are shown in

Fig. 6. The images in left-most column show estimated pose

from the GPE and the last of them depicts the pose estimated

by the LPE. Note that although the pose estimated by the

GPE is not perfect, the subsequent LPE corrects the error and

the pose estimates converge to the real pose. For quantitative

evaluation, we employed AR markers to gather ground truth

pose data. As shown in Fig. 10, we manually measured the

transformation MTO which is the description of the object

frame {O} relative to the marker frame {M}. So the ground

1OBJ format is developed by Wavefront Technologies and has been
widely accepted for 3D graphics. That format can be easily handled by
using the GLUT library.

4053

4054

4055

