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 Abstract – This work investigates what makes a robotic 
assembly process “learnable” for the explicit purpose of 
improving the performance of that process.  It has been 
observed that even stochastic search methods like Genetic 
Algorithms (GA) can benefit from advanced models of the 
assembly task.  Models built from the results of random 
samplings of a parameter space have been used previously to 
predict the performances of parameter sequences not yet 
evaluated, but the question of what properties of the models 
actually benefit the optimization remained.  A quantitative 
analysis algorithm is derived and tested on physical assemblies 
for validation.  Results are provided that illustrate the efficacy 
of the analysis algorithm for prediction-based performance 
enhancement when such models are used. 
 
Index Terms – Model building, parameter optimization, robotic 
assembly 

I  INTRODUCTION 

HIS paper concerns algorithms that enable a robot to 
improve its performance in mechanical-assembly tasks 

autonomously through exploration.  It has been shown in 
previous work on several automotive powertrain assembly 
tasks that a compliantly-controlled robot can tune its own 
assembly programs to achieve high levels of skill [1].  
Subsequent to this work, it was proposed that the 
construction of an internal model predicting task 
performance as a function of tunable parameters would 
enable faster learning.  In experiments, instances of success 
in this approach were found.  However, in some other cases, 
the internal model did not seem to express marked benefit.  
In the present work, we help to clarify why and when 
internal models can speed up autonomous learning of 
mechanical assembly.  

One expectation is that a high-quality model can benefit 
a robotic process by providing a reliable medium for offline 
optimization and simulation.  A low-quality model, 
however, has the potential to actually be worse than no 
model at all, because it may present to the system inaccurate 
information or even information that is contrary to the truth.  
Being able to distinguish between the two, however, 
becomes problematic without a third, more knowledgeable 
model for comparison.  Thus the problem manifests: what is 
the quality of the predictive model, and by what metric does 
one compare two different models? 

Clearly, the latter question may be addressed by 
running various parameter sequences through each model 
being compared and then evaluating the same parameters in 

the physical system.  Whichever model performs closer to 
the physical results must naturally be the better of the two.  
However, such an approach is naïve, and does little to 
quantitatively describe either the quality of how well either 
model actually captures the parameter-performance 
mapping or whether or not the system is even capable of 
being learned. 

Recent research [2] has shown that simple numerical 
models could effectively improve stochastic searches for 
robotic assembly parameter optimization by discarding 
those parameter sequences computationally deemed 
unlikely to result in improved assembly performances.  
There was little a priori indication, however, which of the 
simple models used would be of more assistance in 
improving the performance of the stochastic search, or even 
whether or not either would be of any assistance.  To that 
end, in this study we introduce a metric for determining the 
quality of a predictive virtual model.  Models created 
dynamically for predicting the performance of a robot 
running peg-in-hole assembly searches over a variety of 
parameter spaces are compared according to this metric, and 
then evaluated for validation. 

II  DEVELOPMENT OF INTERNAL MODELS 

 Mechanical assemblies can be parametrically described 
as sequences of search strategies.  These searches can be 
autonomously optimized for the minimization of time and 
contact force by being evaluated by a GA [3].  The search 
process, however, is wasteful since knowledge of evaluated 
sequences is lost upon the subsequent generation of testing.  
By building up a model that approximates the mappings of 
input parameters to their respective output performances, 
this knowledge can be preserved and used to guide the GA 
evolutionary process by evaluating potential child gene 
sequences and selectively pruning the population of any 
sequences deemed unlikely to produce good assembly 
results.. 
  There are a number of approaches for creating virtual 
models of physical assemblies.  Abstract models of task 
spaces have been created that describe assemblies in terms 
of the total entropies of the system [4], but focused 
primarily on parts acquisition, orientation and positioning 
rather than the actual process of putting components 
together.  Also developed are models based around the 
concept of “assembly features” to design and describe 
assembly sequences [5], manufacturing processes [6], and 
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assembly “intent” [7].  These approaches, however, are 
focused on operator-driven assembly planning and design, 
and, again, do not address the process of joining pieces. 

Other methods of modeling are not so abstract.  
Simulators created prior to evaluative training for process 
learning [8] and parameter optimization [9] have been 
successfully employed for offline learning.  The inline 
generation of models has also been utilized to extrapolate 
information in order to dynamically generate 3D 
representations of the assembly components [10] while 
others extract more abstract physical characteristics of 
complex sensor reactions in effect within the system [11].  
In our previous work, models took the form of dynamically-
produced mappings that linked the assembly parameters 
with the resulting performances.  In the context of the 
remainder of this paper these are the models being analyzed. 
 For simplicity, we are utilizing standard feed-forward 
artificial neural networks (ANNs) with back propagation to 
generate our model of the system.  Training data consists of 
randomly-generated input parameters and their expected 
(averaged) resulting assembly performances when evaluated 
K times by a robot system.  In the grander scheme of this 
research, however, any model that attempts to explain the 
assembly problem for the purpose of predicting robot 
performance would be suitable.  The model, as it is applied 
to a GA, is utilized as a predictive filter in the sense that it 
selectively prunes the child gene population to a fractional 
subset consisting of the top sequences that it projects will 
perform better than the rest.  Ideally, with a proper model, a 
stochastic method could effectively have the same 
performance as a standard gradient descent when provided 
with competent guidance.  The actual formulations of the 
ANN and GA implementation are beyond the scope of this 
paper and are thus not covered here.  Their 
implementations, however, are discussed in detail in [2]. 

Having a perfect model eliminates the need for 
parameter evaluation, as everything can be computed in 
silico.  However, assuming one has only imperfect 
knowledge of the system necessitates the evaluation of the 
parameter sequences in order to test and compare the 
performance of the system.  In terms of robotic assembly no 
model will ever be perfect due to the noise inherent in the 
system.  Noise takes the form of position and orientation 
uncertainty, minute variations from one part to another, tool 
and robot wear, and friction.  Thus a model must be able to 
overcome this noise in order to be of substantive use. 

III  FORMULATION OF THE QUALITY HYPOTHESIS 

 With numerous possibilities for model implementation 
and design, the most effective aspect available for 
comparison is the set of outputs produced by the model for 
a set of input parameters.  When charted, the inputs create a 
multidimensional surface plot for each output.  It is 
hypothesized that the output surfaces of a good quality 
model will possess the following traits:  1) they capture the 
empirical evidence accurately, 2) they are not horizontal 
planes, and 3) they express low spatial frequency.  Certainly 

additional properties exist that can be compared, but 
currently only these three aspects are investigated. 

The first trait is, of course, absolutely mandatory 
because any model that cannot explain what has already 
been seen is of little use as a future performance predictor.  
Here we define the quality of the fit to the data by the RMS 
error, R, between the predicted output, o, and the actual  
average performance output, t, as computed by Equation 1 
for each of the M previously evaluated samples i. 
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 The RMS value computed in Equation 1 can be thought 
of as the model fit standard deviation.  In contrast we can 
define the standard deviation—or scatter—of the repeated 
trial results in terms of empirical data by Equation 2.  Here 
the values σi are computed as the standard deviations for the 
K trials performed for each of the M input parameter 
sequences. 
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 In the context of this study, we wish to utilize the 
metric of model comparison as a scoring function, with the 
performance of the “better” model thus having a higher 
score than the “worse” model.  Further, we wish to force the 
fitness metric to conform to the form of being a unit-less 
scalar value in the range [0, 1], with 1 being perfect fitness.  
As such, we define the surface fitness, d, as being the 
sigmoid computed based on the ratio of the model fit and 
trial scatter standard deviations by Equation 3. 

1 b Rd e   3 
 

 
Fig. 1.  Illustration of the model fit to the 1D empirical data with 
reference to the natural variance, b. 

 

 The empirical data, when plotted out, can be thought of 
as a surface with thickness b as shown in Fig. 1.  The 
quality of fit to the data can be equated to how well the 
model adheres to the center of this surface. 

The second requirement—that the model is not a 
horizontal plane—needs some clarification because, in high 
dimensions, “horizontal” is an ambiguous and largely 
unhelpful term.  Here, we define horizontal as being the 
property that there exist no adjustments of values in the 
parameter space that will result in a discernable 
performance difference in the evaluative process.  The 
quality that the model is not a horizontal plane stems from 
the desire to be able to use the model as a predictor for 
assembly performance improvement.  If adjusting 
parameters do not result in changes in performance, there is 
little benefit by addressing the model.  Doing so would 
likely exhibit a performance on par with an unassisted 
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random search, which would mean the resources expended 
to develop and reference the model were essentially wasted. 

This requirement does not preclude the possibility of 
flat planes in general, as transitions in any direction that 
result in improved performances are demonstrably 
optimizable through simple hill-climbing algorithms.  The 
range of outputs of the model is irrelevant for this value, 
however, as what is being tested is the binary state of 
whether or not the output surface plot is a horizontal plane 
(Fig. 2). 

 

 
Fig. 2.  1D model exhibiting horizontal plane behavior (A) versus 
a model demonstrating some benefit to adjusting parameters (B). 

 

  We can describe this as being the property that the 
potential improvement difference between the observed 
maximum and minimum projected outputs of the model 
(omax and omin respectively) must be significant in relation to 
the natural variations exhibited between physical trials of 
identical parameter sequences, as seen in Equation 4.   If the 
projected performance improvement between the modeled 
worst and best possible parameter sequences is dwarfed by 
the expected level of noise experienced simply by 
evaluating the parameter sequences, there is arguably little 
to be gained by modeling the system. 

max minu o o   4 
Once again, we wish to determine the benefit to be 

gained relative to the natural variance between trials given 
identical parameter sequences and assess this value in the 
range [0, 1].  This horizontal metric is thus computed by 
Equation 5. 

1 u bp e   5 

The third constraint, low spatial frequency, originates 
from the observation that gradient descent performs best 
when the surface function produces a smooth transition 
from a given coordinate to neighboring points as evaluated 
over large areas.  Surface plots with high spatial frequency 
provide little information in the way of nearsighted 
performance trends, and as such, parameter optimization is 
largely left to trial-and-error and random chance.  Gradient 
trends over large search spaces may never be discovered 
due to local optima that distract short-sighted search 
algorithms.  And, although high-dimensional mesas (that is, 
a range of “sweet spot” parameters for which highly optimal 
performances are guaranteed but around which successful 
assembly may be impossible) are feasibly learnable, they 
frequently cannot be discovered by trend searches. 

The smoothness error of the N-dimensional model 
surface, defined in Equation 6, computes the summed 
output error based on a multi-dimensional low-pass surface 
filter mask and the actual projected outputs across the 

model surface.  In short, it computes the running average 
point difference for all model outputs oi1,i2,…,iN

.  This value is 

distinct from the RMS error computed in Equation 1 in that 
only the model surface is investigated while the actual trial 
results are ignored.  Worth noting is that while the number 
of positional samples is accounted for in the equation by the 
value of a, the step size between neighboring points along 
the multi-dimensional surface is ultimately user-defined. 
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In the 1-dimensional case, for example, the equation for 
E would look like the following: 
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Continuing with the 1-D example, shown in Fig. 3 are 
two simulated surface models generated for spatial 
frequency testing.  The model surface of the top plot shows 
a higher spatial frequency relative to that of the bottom plot.  
Because of this, given a = 1, the low-pass filtered surface 
model does not fit the data as well as it does the lower plot.  
This is reflected in the smoothness errors EA = 0.812 and EB 
= 0.238. 
 

 
Fig. 3.  Sample 1D plots showing the difference between the actual 
and running average surfaces for high (top) and low (bottom) spatial 
frequency models. 

 

The frequency score value, f, is thus computed based on 
the ratio between the natural variance and the smoothness 
error as defined in Equation 7. 

1 b Ef e   7 

The three qualities of the model output surface are all 
effectively interrelated.  A model cannot express high 
spatial frequency on its surface and be a horizontal plane, 
for example.  Similarly, if the model accurately captures all 
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of the empirical data and is simultaneously a horizontal 
plane, it is apparent that no level of modeling will benefit 
the optimization process, as one would likely deduce that 
there is nothing that would result in a performance any 
better or worse than any other.  We define the quality 
metric, q [0.0, 1.0], as the product of the capture score, 
non-horizontal planar requirement, and spatial frequency 
score according to Equation 8. 

q dpf  8 
The nonlinear nature of q is necessary for this model 

quality assessment metric.  Though a linear sums method 
would also peak as the three values of d, p and f approach 
1.0, it would not permit any one term to have veto power 
(that is, to declare the model as being of low quality) over 
the other two.  For this reason, we require the numerical 
equivalent of the logical AND.  The value of q gives us not 
only a metric for qualifying a given model, but also 
provides a comparative means for assessing which of a 
number of models is more likely to produce better 
performance predictions.  For any two given models m1 and 
m2, m1 ≠ m2, the model m1 is considered to be the better of 
the two if, based on their respective quality metrics q1 and 
q2 for the same output unit (ex. assembly speed, applied 
force, etc.), the value q1 > q2. 

IV  EXPERIMENTAL RESULTS 

In order to validate the quality hypothesis, a physical 
trial configuration has been set up to test the projected 
benefits of utilizing dynamically-generated internal models 
for assembly.  Initial tests performed modeling for the 
purpose of assisting the assembly parameter optimization 
for a robot joining components of a transmission valve body 
from an automotive automatic engine. 
 

 
Fig. 4.  Transmission valve body (left) and spool insert (right) to 
be assembled by the robotic manipulator. 

 

The assembly largely consists of a single spiral search 
that performs a peg-in-hole insertion of a metal spool into a 
high-tolerance opening, as seen in Fig. 4.  When initiated, 
the spiral search (Fig. 5) behavior begins moving the tool 
from its current location.  Applying a constant downward 
force, the tool center point gradually moves outward along 
the XY lateral plane in a spiral pattern until the commanded 
spiral has been completed.  Once this occurs, the spiral 
search reinitiates from its current location.  This search 
behavior repeats until either a restart or termination 
condition has been met.  The search terminates either upon 
a timeout or on successfully meeting the needs for insertion 
completion.  In these trials, assembly success is determined 
by effectively reaching a specified insertion depth.  Upon 
termination, the motion of the robot halts and the controller 
triggers a request for the next gene in the sequence. 

 
Fig. 5.  Spiral search parameter description. 

 

Parameters from the spiral search that can be optimized 
include the downward applied force, the rotational search 
speed, spiral search radius, and the number of turns per 
spiral.  For this early research, we are concentrating only on 
the spiral speed, radius and number of turns, and are 
maintaining the downward force constant at 5 N.  In order 
to provide a visualization of the multidimensional input 
space, the search parameters were separated into three set 
pairs and plotted individually such that their relationship 
with one another can be illustrated.  The remaining, 
unevaluated parameter for each model had its value locked 
and was not modified.  Each of the three model 
environments (speed-vs-radius, speed-vs-turns, and radius-
vs-turns) were passed through the same model-building 
process (i.e. training an ANN on assembly trial data), the 
results of which are evaluated for predicted performance. 

Because the assembly was fixtured in place, prior to 
each trial nontrivial noise in the form of position uncertainty 
was simulated by adding a random, lateral offset in the 
range of 1mm on both the X and Y axes.  Each parameter 
sequence was evaluated numerous times, with each 
evaluation beginning with a new random offset.  The 
resulting performances of the iterations of each given 
parameter sequence were then averaged and associated with 
the parameter sequence. 
 Stochastic searches were performed using two different 
method:  unassisted searches, and model-enhanced assisted 
searches.  The unassisted stochastic search was configured 
as a GA exploration of the parameter space that used 
random perturbations of the parameter “gene” sequences to 
drive optimization.  Upon each successive generation, 10 
random child gene sequences were produced based on the 
principle of mutating the parent gene.  The best-performing 
child, as determined by empirical evaluation, was then 
selected to be the subsequent generation’s parent.  The 
assisted search was identical to the unassisted method, with 
the exception that 1,000 random child gene sequences were 
produced on each generation, and that the top 10 child 
genes projected to perform the best were then selected for 
evaluation and possible parental succession. 

Gene sequences were expressed as vectors of floating 
point numbers that describe the search parameters and 
termination conditions for evaluation.  These sequences are 
evaluated by being passed through an application that 
interpreted the genes and issued commands to an ABB IRB-
140, 6-DOF open-chain manipulator outfitted with an ATI 
Gamma force/torque sensor. 
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Initial data for the ANN was generated from 200 
random parameter samples for each model that were 
evaluated through the robot to produce empirical results.  In 
each model case, the ANN topology consisted of 20 input 
layer nodes (the length of a single search descriptor gene 
sequences from [2]), 10 hidden layer nodes, and a single 
output layer node.  With low dimensionality of hidden-layer 
neurons, the surface plots would be inherently smooth.  
Thus the d and p terms would be the most influential when 
determining the values of q.  In higher dimensions, 
however, the f term becomes more dominant.  The 
utilization of 10 hidden-layer neurons allows for the 
possibility of higher spatial frequencies while still 
effectively forcing an abstraction of the training data. 

The ANNs were then trained for 5,000 epochs.  The 
surface plots generated by the networks are illustrated in 
Figures 5-7.  In each plot, the inputs and outputs have been 
normalized to be in the range [-1.0, 1.0].  Here, the “score” 
value is a function of the assembly time with respect to a 
maximum allowed value.  If an assembly attempt exceeds 
this value, the robot considers the attempt a failure and 
aborts the search process. 

For these initial trials the value of ominΔ for the 
computation of the p term in Equation 3 was set to 0.  For 
the computation of the spatial frequency equation, f, the 
value of the a term was set to 1, and surface samples were 
taken at 0.1 unit intervals along each axis.  The computed 
surface properties are presented in Table 1, and the resulting 
model quality metrics are given in Table 2.  

 
Fig. 5.  Surface plot produced by the ANN based on the parameter 
samples randomly varying the spiral speed and radius search values. 

 
Fig. 6.  Surface produced by randomly varying the spiral speed and 
number of turns search values. 

 
Fig. 7.  Surface plot produced by randomly varying the spiral radius 
and number of turns search values. 

 

 b (s) u (s) R (s) E (s) 
Speed vs Radius 3.547 6.068 1.125 0.315 
Speed vs Turns 4.198 6.197 2.165 2.040 
Radius vs Turns 4.181 5.836 1.355 2.760 
Table 1.  The model surface properties with regard to assembly time 
for the three sample network surface topologies. 

 

 D p f q 
Speed vs Radius 0.957 0.819 1.000 0.784 
Speed vs Turns 0.856 0.771 0.872 0.575 
Radius vs Turns 0.954 0.752 0.780 0.560 
Table 2.  The model quality properties of the three sample network 
surface topologies. 

 

Based on the results of applying our quality metric to 
the three models, one would suspect that the model 
performance of the search speed versus the search radius 
would out-perform the other two models.  One might further 
expect that the benefit of the speed-versus-turns and radius-
versus-turns models would be negligible in terms of 
improvement over their respective unassisted parameter 
searches given their low scores for q. 

To test these results, both the assisted and unassisted 
GA implementations were evaluated five times each for 
eight generations of training.  After each generation (10 
trials per generation), the best-performing child’s assembly 
time was selected to be indicative of the implementation as 
a whole for that generation.  The assembly times for the 
best-performing child at each generation marker were then 
averaged, and plotted in Figures 8-10.  The error bars in the 
graphs represent a single standard deviation in performance 
above and below the average. 
 

Speed Vs. Radius

4

6

8

10

10 20 30 40 50 60 70 80

Trials

A
s

s
e

m
b

ly
 T

im
e

 (
s

) Unassisted Average

Assisted Average

 
Fig. 8.  Average performances of the unassisted and assisted GA 
implementations for optimizing the search speed and spiral radius 
parameters. 
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Fig. 9.  Average performances of optimizing the search speed and 
number of turns parameters. 
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Fig 10.  Average performances of optimizing the spiral radius and 
number of turns parameters. 

 

As predicted by the performance metric, use of the 
speed-vs-radius model demonstrates improvement over the 
unassisted stochastic search.  In contrast, the speed-vs-turns 
and radius-vs-turns exhibited highly variable performance 
without any real indication that their applications to 
stochastic searches perform any better than their respective 
unassisted Genetic Algorithms implementations. 

V  DISCUSSION 

 Knowing in advance whether or not a model can be of 
benefit to an optimization process, or even whether that 
model is capable of capturing and explaining the 
performance of the system, is valuable.  This paper outlined 
an approach for quantitatively evaluating a model based on 
its multi-dimensional surface plots.  The ultimate goal of 
this research was to develop a comprehensive strategy to 
assess both the efficacy and benefit potential of virtual 
models of robotic assemblies. 
 Additional development of this assessment metric is 
likely to aid process engineers in the determination of which 
model strategies to adopt for different assembly problems, 
whether or not the application of an internal model is even 
warranted, and potentially the extent and form of the 
allocation of resources to modeling and optimization.  
Future work will attempt to automate the model analysis 
process, effectively allowing for dynamic mode switching 
and progress recognition. 

An interesting additional observation to be made is that 
the unassisted Genetic Algorithms implementations for the 
speed-vs-turns and radius-vs-turns model tests exhibited 
little improvement over time.  It is envisioned that, with 
additional tuning, this metric will provide a means of 
determining whether a process is learnably optimizable—
that is, if an intelligent algorithm can detect and take 
advantage of trends in the mapping of parameters to 
performance—or if optimization must be completed by 
trial-and-error approach, or even if the process can be 

optimized at all.  One proposed embodiment would 
determine a trust metric for the predictive models that could 
be adjusted before the models are even utilized. 
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