2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

An Optimization Approach to Rough Terrain Locomotion

Matt Zucker J. Andrew Bagnell

Christopher G. Atkeson

James Kuffner

The Robotics Institute, Carnegie Mellon University
{mzucker, dbagnell, cga, kuffner}@cs .cmu.edu

Abstract— We present a novel approach to legged locomotion
over rough terrain that is thoroughly rooted in optimization.
This approach relies on a hierarchy of fast, anytime algorithms
to plan a set of footholds, along with the dynamic body motions
required to execute them. Components within the planning
framework coordinate to exchange plans, cost-to-go estimates,
and “certificates” that ensure the output of an abstract high-
level planner can be realized by deeper layers of the hierarchy.
The burden of careful engineering of cost functions to achieve
desired performance is substantially mitigated by a simple
inverse optimal control technique. Robustness is achieved by
real-time re-planning of the full trajectory, augmented by
reflexes and feedback control. We demonstrate the successful
application of our approach in guiding the LittleDog quadruped
robot over a variety of rough terrains.

I. INTRODUCTION

Legged locomotion has been a key area of robotics re-
search since nearly the inception of the field [1]; however,
robots that can skillfully and deliberatively traverse rough
terrain have yet to be fielded outside of the laboratory.
Some outdoor robots are beginning to address this problem
by using inherent mechanical stability and/or well-tuned
feedback control to overcome small- to medium-sized obsta-
cles [2], [3]. Although both mechanism design and low-level
control are vitally important, ultimately what is needed is a
suite of algorithms for rough terrain locomotion, capable of
reasoning about not only the path the robot should take to
navigate through the world, but what actions the robot should
perform to realize the path safely.

The Robotics Institute is one of six institutions partici-
pating in the DARPA Learning Locomotion project, aimed
at producing algorithms for robust legged locomotion over
rough terrain. Participants develop software for the LittleDog
robot, designed and manufactured by Boston Dynamics, Inc.,
and the software is evaluated upon the speed with which the
robot can cross a set of standardized terrains.

The LittleDog robot is driven by geared motors, with two
degrees of freedom at each hip, and one at the knee. Aside
from onboard joint encoders and three-axis force sensors in
each foot, sensing is provided by a multi-camera motion
capture system that tracks the position and orientation of the
robot and the terrains. The robot is controlled wirelessly by
an offboard control computer, and the control software has
access to detailed 3D triangle mesh models of the terrain.

In this paper, we present our planning and control software
for LittleDog. Our software has been used successfully
throughout the final phase of Learning Locomotion in order
to traverse a broad range of terrains.

978-1-4244-5040-4/10/$26.00 ©2010 IEEE

Fig. 1. Boston Dynamics Inc. LittleDog quadruped robot, shown crossing
several types of rough terrain.

II. SYSTEM OVERVIEW

Our approach to system design is strongly motivated
the desire to build an optimal controller for rough terrain
locomotion. Due to the complexity of the task and the high
degree of actuation of the robot, fully optimizing over the
space of all possible robot motions is intractable; instead, we
decompose the problem into a pipeline of smaller optimiza-
tion tasks.

The components of the system are depicted in figure 2.
First, the system selects a sequence of footholds on the
terrain through the use of a footstep planner, which is
guided by a cost map learned from expert preferences. The
footstep plan is realized by generating full-body trajectories,
which are passed through an optimizer in order to maximize
clearance from obstacles and ensure smooth, dynamically
stable motion. The system operates in real-time, capable of
recovering and re-planning in the event of slips or accidental
collisions with the terrain.

The theme of nesting planners within planners in a hier-
archy of representations ranging from abstract to concrete
arises in multiple places throughout our framework. Our
footstep planner solves the task of navigation at an abstract
level relative to the full-body trajectory optimizer; however,
the footstep planner itself is informed by a heuristic that
models the robot as a yet simpler wheeled vehicle.

Choosing the correct problem decomposition can be cru-
cial. Other participants in the Learning Locomotion project

3589

Robot and world state

Initial pose

Footstep Planner

Goal specification

Re-planning logic

Learned cost map
Dubins heuristic
Stance optimization

Sequence of footsteps
and “pose certificates”

Trajectory Generation

ZMP spline (all footsteps)
. Timing estimate (next 3 steps)
. ZMP trajectory (next step)

Feedback

Execution

Reflex
behaviors

Force
control

Report failures to
trigger replanning

Foot roll
correction

Leg
integrators

Single footstep full-body
trajectory & constraints

Trajectory Optimization

Report infeasible trajectory
to restart optimization

CHOMP

Single footstep full-body

trajectory & constraints

Swing leg trajectory (next step)
Fig. 2.

have chosen to plan a path for the robot’s trunk at the lowest
level [4]-[6]. After these systems make a hard commitment
to a particular body path, they choose footholds along the
path, and finally generate full-body trajectories to execute the
footsteps. We believe our software is capable of walking over
a wider range of terrains (particularly long gaps or chasms)
because the body path planner at the most abstract level of
our competitors’ software is too conservative relative to the
full range of possible footholds.

Where possible, we avoid hard commitments to decisions
at an abstract level that might lead to mistakes at a deeper
level of the hierarchy. We prefer instead to rate alternatives
with continuous cost functions, and to “lift up” the interme-
diate results of abstract planners into the full problem space
to minimize the need for backtracking through the pipeline.

The system presented here features only a subset of a
wide variety of techniques developed for this project at the
Robotics Institute. An upcoming paper will discuss the entire
CMU Learning Locomotion effort in greater detail [?].

III. FOOTSTEP PLANNING

Discrete search, characterized by algorithms such as A*, is
a powerful way to solve problems in motion planning; how-
ever, as the underlying dimension of the problem increases,
runtime increases exponentially. Unfortunately, legged robots
typically have many degrees of freedom (DOF). Footstep
planning mitigates the curse of dimensionality by combining
a low-dimensional discrete search over the space of possible
footstep locations with a policy or controller that coordinates

System block diagram. A hierarchy of planners and optimizers generates complex full-body locomotion behavior.

full-body motion in order to follow a particular footstep
path [7]. Because the space of possible footstep locations
is much smaller than the space of all full-body motions, the
search problem becomes far more tractable.

One major difficulty with this hierarchical approach is
the loose coupling between the footstep planner and the
underlying policy that executes footsteps. If the planner
is too conservative in estimating traversability, the system
will underperform; too aggressive, and execution will fail.
Our planning software features a novel “certificate” concept
which is aimed at ensuring agreement between the planner’s
traversability estimates and the capabilities of the underlying
footstep controller.

Other highlights of our footstep planning approach are a
terrain cost map learned from expert preferences, and an
efficient anytime planning scheme that allows real-time re-
planning.

A. Footstep cost and heuristic

Recall that the goal of discrete search algorithms such as
A* is to find the minimum-cost path from a particular start
state to a goal state. For the purposes of a footstep planner,
a state is the 2D (z,y) location for each foot; a goal state is
one that places the centroid of all the foot locations within a
predetermined radius of a specified goal point on the terrain.
Both states and actions are discretized, with a finite number
of possible actions defined relative to the current state.! In

I'We use a local search scheme similar to the one described in [8] to
improve output and avoid artifacts from discretizing actions.

3590

our framework, the cost of an action is determined by the
sum of two factors: terrain cost, which indicates the relative
traversability of the terrain under the footstep target, and pose
cost, which estimates the quality of the various full-body
poses that can be achieved in the low-dimensional state.

To reduce planning times, A* and its variants use a heuris-
tic cost-to-go function h(s) that estimates the remaining cost
to get to the goal from a particular state s. If h(s) is strictly
less than the true cost-to-go, then the heuristic is said to be
admissible, and A* returns a path guaranteed to be optimal.
The running time of A* strongly depends upon the fidelity
of the heuristic—a heuristic that approximates the true cost-
to-go well should perform far better than an uninformed
heuristic. If optimality is not paramount, it may be desirable
to use an inadmissible heuristic known to more closely ap-
proximate the true cost-to-go than an alternative, admissible
heuristic. This approach can greatly reduce planning times
at the expense of incurring some degree of suboptimality,
bounded by the disagreement between h(s) and the true cost-
to-go [9].

A typical approach to building a heuristic function for a
footstep planner starts by collapsing the robot state down
to a 2D point such as the centroid of all foot locations, and
computing the Euclidean distance from that point to the goal.
Unfortunately, due to kinematic restrictions, LittleDog is not
particularly adept at moving sideways or turning in place
without taking many steps. Therefore, a heuristic based on
Euclidean distance severely underestimates the cost-to-go in
certain configurations (such as when the goal lies directly
off to the side of the robot).

Instead of collapsing the state to a 2D point, we convert it
to a position and orientation (x,y,) triple. We then model
the robot as a Dubins (forward-only) car with a fixed turning
radius [10]. To reach the goal along a minimum-distance
path, the car must first turn along an arc-shaped segment to
orient towards the goal, followed by a straight-line segment
to the goal. Using the Dubins heuristic prevents the planner
from uselessly allocating search nodes that require large
amounts of turning or side-stepping despite their relative
proximity to the goal.

B. Terrain cost

Terrain cost encodes the relative desirability of a particular
foothold, weighing the relative merits of features such as
slope, convexity/concavity, and bumpiness. It is easy to come
up with broad statements relating terrain shape to cost:
steep slopes are bad, dome-shaped features are bad because
feet may slip off, small indentations are good because they
physically register feet, large indentations are bad because
shins can get stuck in them, etc. However, as with many
planning and optimization problems, coming up with a
precise weighting of these features can be quite difficult
in practice—if bumps are worse than slopes, then by how
much? And how do both compare to chasms?

Instead of burdening the system designer with the task
of exactly specifying a cost function, the field of Inverse
Optimal Control (IOC) seeks to learn a cost function to

CMU - Learning Locomotion
! Maps | Prefs | Cost '

(] Fix heading @ Auto sample @ Lock terrains (Sample)

[:! Map terrainAE] :]

g li\
w
Map terrainAC
X v

158 3 79 ;Rmarimn 157 é X 194 (LY 36 ékorarinn 16

(Choose)

Choose

Foot | Map Pos

HL terrainAE (214,84)
FR terrainAE (246,56)
FR terrainAE (192,33)
HL terrainAE (232,81)
FL terrainAE (147,89)

Rot Map Pos Rot

terrainAE (150,33) m
terrainAE (229,81)
terrainAE (137,81)
terrainAE (247,71)
terrainAE (200,76)

cococoo
cocooo

7

Fig. 3. Tool for terrain cost learning. An expert expresses preferences over
pairs of terrain samples, and the system learns a cost function based on the
underlying ranking problem.

imitate the preferences or behavior of an expert. In previous
work, Maximum Margin Planning was used to solve the IOC
problem for a LittleDog footstep planner [11], [12]. Here, we
present a faster, simpler IOC formulation that is effective in
practice.

In our system, the terrain cost function emerges implicitly
from a set of preferences given by a knowledgeable expert.
The system presents the expert with a succession of pairs of
terrain samples. For each pair, the expert indicates whether
he prefers one sample over the other. Then, the system learns
a cost function that matches the preferences expressed by the
expert (see figure 3).

Our goal is to produce a utility function u(f) over terrain
features f such that if the expert prefers f+ over f~, then
the function makes the preferred feature appear better by a
margin m > 0:

u(f*)>u(f7)+m

This is exactly the support vector ranking problem [13]. Of
course, the constraint written in the above equation can not
always be met in the presence of noisy or inconsistent data;
hence, analogous to support vector machines in the case of
classification, we introduce slack variables that transform
the hard constraint into a soft one. We solve the underlying
ranking problem with an online subgradient method [14].

We use as terrain features the coefficients obtained by a
local quadratic regression of the proposed foothold: that is,
the coefficients obtained by the least-squares fit of the surface
o) =) | 1 @@ | |4

Yy vy Y

for multiple window sizes at increasing radii from 1 cm
to 6 cm. We also include derived quantities such as the
eigenvalues of the second-order coefficient matrix, and the
magnitude of the first-order coefficient vector.

The utility function is defined to be a simple linear
combination of all features encoded by a weight vector w,

3591

with u(f) = w? f. It gets transformed into a cost function
¢(f) through exponentiation:

o(f) =eD

This ensures that cost is everywhere positive, and it also
changes the additive margin m into a multiplicative margin.
Since flat ground produces the zero feature vector, footsteps
on flat ground have unit cost.

Our system supports learning separate cost functions for
front and hind feet, and it also is capable of extracting fea-
tures in an oriented fashion, considering the overall heading
of the robot as it is computed for the Dubins heuristic.

The process of learning terrain cost is amenable to multiple
iterations. After learning a cost function and testing with
the robot, the expert can define additional preferences over
problem spots. Learning can then be re-run with the original
set of preferences, augmented by the new material. Our final
cost function was based on just over 200 preferences, the vast
majority of which were collected in the initial preference-
gathering session over the course of about 2-3 hours.

C. Pose cost and certificates

Terrain cost considers the shape of the terrain as it relates
to a single foot. Pose cost, however, considers the overall
effects of a full set of footstep locations. To ensure a stable
support polygon, the planner examines the triangle formed by
the three supporting feet for any given footstep. If the triangle
has an incircle of less than a preferred radius, the pose cost
is increased. This ensures that the robot has a sufficiently
large base of support whenever possible.

Computing the remainder of the pose cost consists of
searching for a “pose certificate”: a full specification of all
18 DOF of the LittleDog robot that leaves the feet at the
positions given by the target state, leaves the body’s center
of mass (CoM) above the support polygon, and that is free
of collisions with the terrain (except of course at the feet).
This is an attempt to ensure good agreement between the
footstep planner and footstep execution by preventing the
footstep planner from permitting footsteps that are known
to be impossible to execute in practice. The pose cost is
increased if the certificate puts the robot near kinematic
singularities or collisions. If no valid pose certificate can be
found, then pose cost becomes infinite, and the action under
consideration is disallowed.

It is not uncommon to use a hierarchical planning approach
(such as footstep planning) to approximate the solution to
a high-dimensional planning problem by running a high-
level, abstract planner in a lower dimension. To the best
of our knowledge, the pose certificate system is a novel
method to “lift up” the intermediate results of an abstract
planner into the full problem space while the abstract plan is
being constructed. Validating the work of the abstract planner
before it makes a hard commitment to a particular plan makes
the concrete realization of the output in terms of full-body
trajectories far more likely to be feasible.

- j -
\ BRI - .
|

Fig. 4. Signed distance field representation of a 2D polygonal obstacle.
Space is discretized into cells. Cells storing a negative distance are inside
the obstacle; cells with a positive distance are outside. Representing the 3D
terrain works in exactly the same manner.

D. Pose certificate search

Searching for a pose certificate is a local, gradient-based
method that accumulates a number of translational and angu-
lar displacements to the robot over successive iterations. The
process begins by placing the robot’s trunk in a heuristically
determined position and orientation, given the current foot
locations.

Denote the position of the robot’s trunk (determined as
the center point of all the hip joints) to be vector x, and
it’s orientation to be the rotation matrix . At the beginning
of each iteration, we initialize the translational displacement
Az and rotational displacement w to be zero. Next, inverse
kinematics (IK) are used to find the joint angles for each leg
to place the feet in the correct location.

If no valid IK solution can be found for some leg, Ax
and w are adjusted in order to translate and rotate the foot
towards the foot location given in the input state, a procedure
described as “reachability control” in [15].

Next, the 2D distance between the robot’s CoM and the
support triangle is evaluated. If the distance is below a
margin, a horizontal increment is added to Az which nudges
the body back into the triangle.

Finally, the minimum distance between the robot and the
terrain is computed. If it is less than a threshold, Az and
w are modified in order to move the point at which the
minimum distance is attained in the direction of increasing
distance. We represent the terrain as a signed distance field
(see figure 4), which allows for very fast distance queries,
and which also gives useful gradient information even when
the robot lies in collision with the terrain.

Finally, the displacements Az and w are applied to obtain
a new position and orientation z and R. The process is

3592

Fig. 5.

Visualization of ARA* search for footstep planning. Each state visited during planning consists of a set of four footstep locations. The set of all

states visited form a search tree. In the picture above, the 8-dimensional search tree is projected down to 2D so that the parent/child relationships between
individual footsteps are made visible. The tree shown here has over 700 states; not shown are the many states discarded during search because of collisions,

kinematic infeasability, or insufficiently large support triangles.

iterated until no displacements are necessary, or until a preset
number of iterations (25 in our system). Pose certificate
search is discussed in more detail in our upcoming paper [?].

E. Planning in real-time

One of the most important goals for our software is the
ability to plan in real-time. Although the Learning Loco-
motion evaluation trials allow up to 90 seconds of planning
time before the start of a trial, execution errors during a trial
(when the clock is running) require fast reaction. We set a
target of resuming walking within 2 seconds of detecting and
recovering from an execution error.

Both the state space and branching factor for our footstep
planner are quite large: in a typical scenario, each foot can be
placed anywhere on a 125 x 375 grid, yielding a state space
with over 10'® states, and branching factors are between
12 and 25 actions. With an admissible heuristic in such
an environment, 90 seconds is nowhere near enough time
to compute an optimal plan, let alone the 2 seconds we
allocate for re-planning after errors. Therefore, we chose
to implement our planner as an anytime planner using the
ARA* algorithm, which works by iteratively reducing the
inflation of the A* heuristic in order to produce plans which
are successively closer to optimal [16]. ARA* efficiently
re-uses vast amounts of computation between successive
searches, examining a minimal set of states each time the
heuristic inflation is lowered. Using ARA* allows us to make
good use of the full initial planning period to produce high-
quality plans, while still producing usable plans quickly after
an execution error.

Precomputation is also key to our fast planning perfor-
mance. At the start of a set of trials over a particular
terrain, our software computes the signed distance field
representation of the terrain, as well as the feature vectors
for evaluating terrain cost. Even though the pose certificate
computation may invoke as many as 25 full 3D collision
checks against the terrain, we can still evaluate tens of thou-
sands of candidate actions, typically 500-1,100 per second
on commodity hardware.

Terrain States Initial Ratio
Large rocks (Figs 1,3) 23,973 4.40s 1.67
Round rocks (Fig 3) 33,063 1.24s 2.48
Sloped rocks (Figs 1,5) 46,768 1.23s 1.35
Logs (Fig 1) 41,028 1.09s 1.42
Gap 28,232 1.88s 1.58

TABLE 1. Representative runs showing effect of varying terrain on footstep
planner performance. At the start of each trial, the anytime planner is run
for 45 seconds. Terrain indicates the terrain type States indicates the total
number of candidate states explored by ARA*, Initial is the time it takes
ARA* to return the first feasible plan from start to goal, and Ratio is the
amount of improvement in total cost between the initial and final plans.

IV. FOOTSTEP TRAJECTORY OPTIMIZATION

Once the footstep planner produces a sequence of footsteps
and pose certificates, it is passed along to a module which
generates a trajectory for each footstep. These trajectories
are optimized before being executed on the robot in order to
ensure they are smooth, dynamically stable, and collision-
free.

A. Initial trajectory

To make sure that the motion of the robot is dynamically
stable, we initialize the trajectory for the body to follow a
path generated by a ZMP preview controller [17]. The zero
moment point (ZMP), equivalent to the center of pressure,
is the dynamic analogue to the center of mass (CoM) of
a stationary object. If the ZMP remains above the support
polygon at all times, the robot will support itself stably.
Based on a 2D table-cart model, the ZMP preview controller
takes as input a desired reference trajectory for the robot
zero moment point, and outputs a trajectory for the CoM that
matches the ZMP reference trajectory closely and minimizes
extraneous motion.

The first step in building footstep trajectories is to con-
struct a linear spline path for the ZMP to follow. The default
choice for the ZMP in each footstep is the body position
given by the corresponding pose certificate, because it is

3593

Fig. 6.

Optimizing a footstep over a barrier with CHOMP. Left: Initial trajectory has severe knee collisions. Center: After optimization, collisions have

been resolved by lifting the leg higher and tilting the body. Right: Execution on robot.

known to be stable, reachable, and collision-free.2 The linear
spline path is transformed into a time-referenced trajectory
by considering the estimated duration for each footstep.

LittleDog’s maximum walking speed is largely dictated
by the maximum 7.5 rad/s hip joint velocity and 14 rad/s
knee joint velocity. Therefore, footstep timing can be well
approximated by computing the maximum over all joints of
minimum time to move the joint from initial to final position.

Once the footstep durations for the next three footsteps are
estimated, the ZMP preview controller generates the body
trajectory for the next footstep to be execute. Multiple steps
of lookahead are required due to the preview controller’s
moving preview window. The CoM trajectory output by the
2D ZMP preview controller does not specify body height or
orientation, so we independently use splines connecting the
certificate poses to fill in this information.’

For the swing leg, a spline is constructed to move smoothly
from initial foot position, up to a heuristically determined
“liftoff™ position, over to a “dropoff” position, and down to
the footstep target, as shown at the left of figure 6. Once
the body and swing leg trajectories have been generated, the
supporting leg trajectories are determined by IK, and the
full initial trajectory is ready to be sent to the optimization
module. Note that although the trajectory satisfies the 2D
dynamic stability criteria, it may be infeasible in other
respects: there could be kinematic reachability issues, or
collisions against the terrain. Trajectory optimization is an
opportunity to correct these issues before the footstep is
executed.

B. Optimization

Trajectory optimization is accomplished via the Covariant
Hamiltonian Optimization and Motion Planning (CHOMP)
algorithm. The bulk of our trajectory optimization approach
is described in prior work [18]; here, we describe a few
additional details. CHOMP is a local search algorithm for
producing smooth, collision-free trajectories. It represents
trajectories as sequences of samples taken at regular time
intervals.

2In order to achieve faster walking speeds and minimize the displacement
of the trunk, we also test a “shortcut” ZMP position that reduces the overall
length of the spline. If the shortcut position results in terrain collisions or
other errors, the system falls back to the certificate pose using the restart
procedure described later in this section.

3 Accelerations due to vertical motion and rotation are assumed to be
negligible in terms of the ZMP stability criterion.

Previous systems for generating footstep trajectories have
primarily reasoned about collisions for the swing foot
alone [19]. For most footsteps, this is sufficient; however,
it can sometimes lead to situations where the shin or knee
of a supporting leg impacts the terrain as the body moves
forward. Considering full-body collisions with CHOMP goes
a long way to mitigate these situations.

Besides the smoothness and collision-free objective crite-
ria described in prior work, our software also attempts to
optimize stability and kinematic reachability. The stability
and reachability gradients are handled analogously to colli-
sion; after they are computed as described in section III-D,
they projected orthogonal to the current trajectory as in the
original CHOMP work.

One unresolved issue in CHOMP as presented to date is
the problem of allocating samples. It is difficult to determine
a priori how many samples it takes to represent a trajectory,
because the number of samples increases with the complexity
of the trajectory. We chose a somewhat heuristic solution
to the problem. For our LittleDog software, trajectories are
always sampled at a fixed rate (half the frequency of the
main control loop). The CHOMP algorithm proceeds until
the trajectory is valid, or for a predetermined number of
iterations. If, after CHOMP finishes, the trajectory is in
collision with the terrain, or if the leg joint velocity limits are
violated, the estimated duration of the footstep is increased,
the initial trajectory is re-generated and CHOMP is restarted
(up to a maximum number of restarts).

CHOMP is a gradient-based optimizer that extends nat-
urally to become a probabilistically complete planner by
using the Hamiltonian Monte Carlo procedure [18]. In this
work, we omit the stochastic Hamiltonian Monte Carlo step
because it is usually unnecessary in practice. Nevertheless,
despite certificates, there may exist no feasible trajectory to
execute the footstep, in which case the additional stochastic
search would become stuck for a long time in deep and broad
local minima. For all of these reasons, we believe further
refinement would be unnecessary for this application.

In the event that the final trajectory after optimization
is not feasible, one possible action to take would be to
throw an exception back to the footstep planner; however,
in our system we chose instead to optimistically execute
these known-infeasible trajectories. In the best case, they
will succeed; otherwise, hopefully the execution layer can

3594

recover and re-plan after execution errors.

V. EXECUTION

The footstep execution module maintains a trajectory
buffer that operates in first-in, first-out (FIFO) fashion. The
trajectory specifies not only the desired joint angles and
velocities over time, but also additional information such as
desired body position and orientation, corresponding veloci-
ties and accelerations, which feet should be supporting, and
estimated ground interaction forces. After the first footstep,
trajectory optimization occurs in parallel with execution.
As the current step is being executed, the next step gets
optimized and appended to the FIFO buffer.

The execution module corrects for errors at a variety of
levels. The servos onboard the LittleDog robot support per-
joint proportional-derivative (PD) control, as well as force
control, which we use to minimize shear forces and to help
soften foot impacts on touchdown.

Although commands to the robot are specified in terms
of joint angles and velocities, it is important to track the
desired trunk position and orientation in order to maintain
dynamic stability and to ensure that the robot hits the planned
footstep targets. Foot slip and gear backlash both contribute
to errors in body pose. To combat this, we run a slow-moving
integrator on each supporting leg similar to [15].

The integrator works as follows: Denote the desired po-
sition vector and rotation matrix of the body by x and
R, respectively, and denote the desired foot position for a
supporting leg in body-frame Cartesian coordinates by b.
Denote the foot’s desired position in the world frame by
f = Rb -+ z. Say the body is observed to be at position
with rotation R. We transform the desired world foot position
into the observed body frame b = R”(f — Z). The update
rule for the leg integrator A to compute the commanded joint
angles 6 is then given by

A — A—i—’y(b—B)
0 — IK(b+A)

where v is an integrator gain, and IK is the function that
solves for joint angles corresponding to given body-frame
coordinates. This control law acts to counter the body error
for each leg, shortening the leg if the body is too high, and
lengthening it if the body is too low.

Execution errors larger than a certain threshold trigger a
reflex module which attempts to restore the robot’s balance
and place all four feet firmly on the ground. The reflex
module can be triggered by body position or orientation
errors, foot position errors, or foot force errors. After re-
covery stabilizes the dog, the footstep planner is re-started,
and walking resumes soon after.

VI. FUTURE WORK

There remains much work to be done in order to produce
a system that could be deployed on an autonomous robot
“in the wild”. First and foremost, the software here depends
on the existence of a good map of the world; obtaining
such presents a substantial challenge outside of a laboratory

environment. The current work is solely focused on imitation
learning, with little adaptation online and none that general-
izes. Our ultimate goal is to produce a system that improves
its own performance over time, avoiding repeated mistakes
and exploiting plans that have worked well in past situations.

ACKNOWLEDGMENTS

This research was funded by the DARPA Learning Lo-
comotion project. The authors wish to thank Joel Chest-
nutt, Martin Stolle, Nathan Ratliff, Andrew Maas, Hanns
Tappeiner, Elliot Cuzzillo, and Alex Grubb for their valuable
contributions to the CMU Learning Locomotion effort.

REFERENCES

[1] M. Raibert, Legged robots that balance. MIT Press, 1986.

[2] U. Saranli, M. Buehler, and D. Koditschek, “RHex: A simple and
highly mobile hexapod robot,” The International Journal of Robotics
Research, vol. 20, no. 7, p. 616, 2001.

[3] M. Buehler, R. Playter, and M. Raibert, “Robots step outside,” in
Proc. International Symposium on Adaptive Motion in Animals and
Machines, 2005.

[4] J. Kolter and A. Ng, “Learning omnidirectional path following using
dimensionality reduction,” in Proc. Robots, Science and Systems, 2007.

[5] J. Kolter, M. Rodgers, and A. Ng, “A control architecture for
quadruped locomotion over rough terrain,” in Proc. IEEE Int’l Conf.
on Robotics and Automation, 2008, pp. 811-818.

[6] M. Kalakrishnan, J. Buchli, P. Pastor, and S. Schaal, “Learning loco-
motion over rough terrain using terrain templates,” in Proc. IEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems, 2009.

[7]1 J. Chestnutt, M. Lau, K. Cheung, J. Kuffner, J. Hodgins, and
T. Kanade, “Footstep Planning for the Honda ASIMO Humanoid,”
in Proc. IEEE Int’l Conf. on Robotics and Automation, May 2005.

[8] J. Chestnutt, “Navigation Planning for Legged Robots,” Ph.D. disser-
tation, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,
December 2007.

[9]1 J. Pearl, Heuristics: Intelligent Search Strategies for Computer Prob-
lem Solving. Addison-Wesley, 1984.

[10] L. E. Dubins., “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, 1957.

[11] N. Ratliff, D. Bradley, J. Bagnell, and J. Chestnutt, “Boosting Struc-
tured Prediction for Imitation Learning,” in Advances in Neural Infor-
mation Processing Systems 19, B. Scholkopf, J. Platt, and T. Hofmann,
Eds. Cambridge, MA: MIT Press, 2007.

[12] N. Ratliff, J. Bagnell, and S. Srinivasa, “Imitation Learning for Loco-
motion and Manipulation,” in /JEEE-RAS International Conference on
Humanoid Robots, December 2007.

[13] R. Herbrich, T. Graepel, and K. Obermayer, “Support vector learning
for ordinal regression,” Artificial Neural Networks, 1999. ICANN 99.
Ninth International Conference on (Conf. Publ. No. 470), vol. 1, 1999.

[14] J. Kivinen, A. Smola, and R. Williamson, “Online learning with
kernels,” IEEE Transactions on Signal Processing, vol. 52, no. 8, pp.
2165-2176, 2004.

[15] M. Stolle, “Finding and Transferring Policies Using Stored Behaviors,”
Ph.D. dissertation, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, May 2008.

[16] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” Advances in Neural Information
Processing Systems, vol. 16, 2004.

[17] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in /IEEE International Conference on
Robotics and Automation, 2003.

[18] N. Ratliff, M. Zucker, J. Bagnell, and S. Srinivasa, “CHOMP: Gradient
Optimization Techniques for Efficient Motion Planning,” in Proc.
IEEE Int’l Conf. on Robotics and Automation, May 2009.

[19] J. Kolter and A. Ng, “Task-Space Trajectories via Cubic Spline
Optimization,” in Proc. IEEE Int’l Conf. on Robotics and Automation,
2009.

3595

