
 
 

 
 

  

Abstract— This paper presents a new scan matching method for 
mobile robot localization. The proposed method is based on a spec-
tral technique, which finds consistent correspondences between two 
range scans without any initial alignment while considering how 
well their associated pairwise geometric relationships are satisfied. 
Based on the scan matching method, we also suggest a strategy for 
global localization in indoor environments, which is applicable to 
both grid maps and topological maps having metric information. The 
feasibility of the proposed methods is demonstrated by experimental 
results. 

I. INTRODUCTION 
In order to navigate safely and reliably, a mobile robot must 

be able to estimate its pose (position and rotation). One poss-
ible way to achieve this functionality is to use range scan 
matching, which is to estimate the relative pose between two 
successive locations by maximizing the overlap between an 
input scan and a reference scan obtained at each location. One 
of the major differences between the existing scan matching 
algorithms is the usage, or not, of an initial alignment (rotation 
and translation) between two scans. As described in [1], the 
scan matching methods can be classified into two types: se-
quential matching and global matching.  

The sequential scan matching compares two successive 
scans with an initial assumption of alignment between them, 
in which the initial value is typically obtained by dead reck-
oning in advance. In a manner of iterative search beginning at 
the initial alignment, it finds an optimal alignment so that the 
matching errors between two scans are minimized. When a 
bad initial alignment is given, however, the sequential scan 
matching might fail to align two scans because the initial 
value is able to lead the matching result to a local minimum. 
The iterative closest point (ICP) method [2], which is a pop-
ular algorithm for matching sets of points or free-form curves 
and surfaces, uses Euclidean distance to evaluate the matching 
error between two scans. The LM-ICP method [3] uses the 
Levenberg-Marquardt algorithm. The matching error is di-
rectly minimized using the sum of squares of nonlinear func-
tions. The iterative dual correspondence (IDC) method [4] 
solves the matching problem by searching the translation 
component and the rotation component separately. These 
methods are applicable to unstructured environments includ-
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ing arbitrary shapes such as free-form curves.  
On the other hand, the global scan matching does not re-

quire an initial alignment, but it needs to detect polygonal 
features such as corners, curves, or lines. Therefore, it is dif-
ficult to use the global scan matching in unstructured envi-
ronments where such features cannot be detected. The CCF 
method [5] matches two scans using the normalized cross 
correlation between angle histograms of the scans as well as x 
and y histograms. The Hough method [6] matches two scans 
with the lines extracted from the scans using the Hough 
transform. These methods are hard to be applicable in the case 
that the range scan contains a number of short line segments 
or curves. The curvature method [7] matches two scans using 
the adaptive curvature function which divides the scans into 
curve segments and line segments. This method needs the 
process for estimating the curvature function, and it is hard to 
provide a good result in the case that the scan includes many 
short arbitrary segments. The signature method [1] extracts 
Euclidean invariant signatures from the scan, and it uses a 
geometric hashing scheme to match two scans. This method, 
however, requires that the scan contains curved objects.  

The Monte Carlo localization method [8] has been most 
widely used to both local pose tracking and global locali-
zation approaches. When it is applied to global localization, 
the samples are uniformly spread over the whole map since 
the initial robot pose is not given. In order to obtain a re-
liable result of pose estimation, the robot should move 
around its environment until all the samples converge into 
a local area. However, such movement is frequently inef-
ficient and cumbersome. Furthermore, the Monte Carlo 
localization have some limitations in which it could fail to 
track the robot’s position if the number of samples is in-
sufficient, and its most applications are restricted to metric 
map such as grid map. 

In this paper we propose a new scan matching method 
called the spectral scan matching (SSM). The proposed me-
thod is a kind of global scan matching, and can be used in both 
polygonal and non-polygonal environments without an initial 
alignment. It is also applicable even if unknown dynamic 
objects exist or the scan data are partially corrupted because it 
uses the whole scan data instead of a few extracted features.  

We also suggest a global localization method which uses 
the framework of spectral scan matching. By taking the 
advantage of the spectral scan matching, it can avoid re-
quiring an initial pose or any added movements such as in 
the Monte Carlo localization. Basically, the proposed lo-
calization method works in a topological map of which all 
nodes have 360° laser range scans obtained at their posi-
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tions. In order to be applicable to a grid map, we extract the 
generalized Voronoi diagram (GVD) [9] from the grid 
map. 

The rest of this paper is organized as follows. Section 2 
proposes the spectral scan matching method, and a method to 
build a topological map from a grid map is described in Sec-
tion 3. Section 4 presents a strategy for global localization 
using SSM. Experimental verifications are shown in section 5 
and some concluding remarks are given in Section 6. 

II.  SPECTRAL SCAN MATCHING 
The spectral scan matching consists of two stages. First, a 

spectral technique [10] is used to find geometrically consistent 
correspondences by using pairwise geometric relationships 
between scan points. And second, a RANSAC-based least 
squares fitting method [11] is used to estimate the robot pose. 

A. Pairwise Geometric Relationships 
We suppose the robot starts at location Rref and acquires a scan 

Sref. The robot then moves to a new location Rnew and takes 
another scan Snew. Let Sref = {p1, …, pn} and Snew = {r1, …, rm} be 
the sets of scan points acquired in each given location. Let q = [tx, 
ty, θ]T be the relative location of Rnew with respect to Rref. Let Q be 
a set of correspondence pairs (i, i′), where i ∈ Sref and i′ ∈ Snew. 
Fig. 1 (a) shows the simple features used in our approach. At 
every scan point pi, the tangent direction ui is computed. We use 
the approximate estimate: 
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Fig. 1 (b) shows the pairwise geometric relationships between 
two scan points. For a pair of scan points (i, j), we compute their 
distance-angular relationship: 

( ) , ij i j ij i jd arccosθ= − = ⋅p p u u  (2)

where dij is the distance between them and θij is the angle between 
their tangent directions. We consider the same type of pairwise 
relationship for the pair of (i′, j′) which are matched with (i, j). We 
can then define a vector describing the geometric deformations 
between the scan points (i, j) and their matched points (i′, j′): 
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For every pair of possible correspondences a = (i, i′) and b = (j, j′), 
we define a pairwise potential Gab. This pairwise potential cap-
tures the degree to which the two correspondences are compatible 
geometrically, and it is represented in the form of a logistic re-
gression classifier [12]: 

( )
1

1 ( ( , ))ab T
ij

G
exp i j

=
′ ′+ −w g

 (4)

where gij(i′, j′) is the geometric deformation vector and w is a 
regression coefficient vector. 

 
(a)                                                (b) 

Fig. 1. (a) Simple features: scan point pi and its tangent direction ui. (b) Pairwise 
geometric relationships: distance-angular relationships (dij and θij) between two 
scan points pi and pj. 

B. Detection of Consistent Correspondences 
Our matching method is based on a spectral technique [10], 

which considers the matching problem as a quadratic assignment 
problem. It finds the set Q of correspondence pairs (i, i′) that 
maximizes the matching score: 

,
( ) ( ) ( , ) T

a b Q
E a b a b

∈

= =∑ x x G x Gx  (5)

where x is binary indicator vector with an element for each cor-
respondence pair a = (i, i′) such that x(a) = 1 if scan point i in Sref 
is matched with i′ in Snew (e.g. a ∈ Q) and 0 otherwise. Q is a 
subset of the set L of all tentative correspondences. G is an affin-
ity matrix which consists of pairwise potential: G(a, b) = Gab. It is 
built symmetrically with every pair of correspondences a, b ∈ L. 
The diagonal elements of the affinity matrix, Gaa, is set to 0, and 
off-diagonal elements are computed by (4). In addition, if the 
geometric deformation between (i, j) and (i′, j′) is too large or if 
they do not satisfy the mapping constraints (e.g. i = j and i′ ≠ j′), 
we set Gab = 0. The optimal solution for (5) is the assignment x* 
that maximizes the matching score E: 

x* = argmax(xTGx) (6)

According to the Rayleigh quotient theorem [13], we can ob-
tain x* by taking the eigenvector associated with the largest ei-
genvalue of G. The elements of x* will be in [0, 1] by Per-
ron-Frobenius theorem [14]. This is the relaxed and continuous 
vector, so we then binarize x* to find discrete assignments. The 
binarization is performed by repeating the following three steps: 

Step – 1: Find a* = argmaxa∈L(x*(a)). If x*(a*) = 0 stop the 
binarization. Otherwise set x (a*) = 1 and remove a* from L. 

Step – 2: Remove from L all potential correspondences which 
conflict with a* = (i, i′). These have the form of (i, *) or (*, i′). 

Step – 3: If L is empty, return the solution x. Otherwise go back 
to Step 1. 

C. Pose Estimation 
We now estimate the robot pose q = [tx, ty, θ]T with the 

RANSAC-based least squares estimation method [11] as follows: 

Step – 1: Randomly select two correspondence pairs (i, i′) and (j, 
j′) from Q. 

Step – 2: Compute tentative robot pose. We can obtain two 
equations with three unknowns: 
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tx = xi – xi′cosθ + yi′sinθ 
ty = yi – xi′sinθ – yi′cosθ (7)

where (xi, yi) and (xi′, yi′) are the positions of i and i′, respectively. 
With two correspondence pairs (i, i′) and (j, j′), we have 

Acosθ – Bsinθ = C 
Asinθ + Bcosθ = D 

(8)

where A = (xi′ – xj′), B = (yi′ – yj′), C = (xi – xj), D = (yi – yj). 
Solving (7) and (8), we obtain θ = arctan((AD – BC)/(AC + 
BD)) and substituting this into (7) gives a tentative pose. 

Step – 3: Check all the correspondence pairs in Q, which support 
this pose. We first compute relative positions of all i′ with respect 
to this pose: 

xi′′ = xi′cosθ – yi′sinθ + tx 
yi′′ = xi′sinθ + yi′cosθ + ty 

(9)

and then compute distances between (xi, yi) and (xi′′, yi′′). (i, i′) 
supports this pose if the distance is smaller than a threshold value. 

Step – 4: Repeat Step 1 through Step 3 K times. We then choose 
the pose that has the highest number of supports, and proceed 
with the least squares minimization for the inliers that support this 
pose and obtain a better estimate for the pose. 

III. BUILDING A TOPOLOGICAL MAP FROM A GRID MAP 
The proposed global localization method can be applied in 

a grid map. The key idea is to first build a topological map 
from a grid map. To build a topological map, we extract the 
generalized Voronoi diagram (GVD) [9] from the free space 
of a grid map and detect node positions on the GVD. In order 
to construct the GVD, we employ the brushfire algorithm [9, 
15] of which output is a discrete map where each pixel in the 
grid has a value equal to the distance to the closest point on 
the closest obstacle. A node on the GVD denotes the branch 
point at which three or more arcs meet (Fig. 5).  We call it by 
a branch node. 

Virtual range scans are then extracted at all node positions. 
Since the virtual range scans approximate real range scans of 
the robot, it is possible to use them in our localization method. 
We use a ray-casting (ray-tracing) operation to extract the 
virtual range scans.  

Table 1 depicts the algorithm for ray-casting operation. We 
denote the number of scan ray within a set of range beams Zq 
by K. In order to simulate the range beams in the global ref-
erence frame of the map m, we need to know in the global 
coordinate system where the coordinate system of robot is, 
where on the robot the range beam zk stems from, and where it 
points. Let q = [x, y, θ]T be the pose of robot in the global 
coordinate system. The pose of laser range finder fixed on the 
robot is defined relative to the coordinate system of robot, and 
it is denoted by [xsens, ysens, θsens]T. We set the pose of laser 
range finder with respect to the global coordinate system as 
[qx, qy, θq]T. θk denotes the angular orientation of k-th range 
beam relative to the coordinate system of laser range finder.  

Table 1. Algorithm for ray-casting (ray-tracing) operation 

1 Algorithm RAY-CASTING; 

2 { }0 , , K
q q qZ z z= K  

3 begin 

4 x sens sens

y sens sens

q sens

q x x cos y sin
q y x sin y cos

θ θ
θ θ

θ θ θ

= + −

= + +

= +

 

5 = 0kθ (k = 0)  

6 for k = 0 to K do 

7 0k
qz =  

8 while ( ), 0k k
q qm x y ≠  do 

9 k k
q qz z d= + Δ  

10 k k
x t tq q q

k k
y t tq q q

q cos sinx z cos
q sin cosy z sin

θ θ θ
θ θ θ

⎛ ⎞ ⎛ ⎞−⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

 

11 end while; 

12
+1 = +Δk kθ θ θ  

13 end for; 

14 end; 

For every k
qz  in Zq, the length of each range beam increases 

as Δd until it meets an occupied grid cell of the map m. We 
denote by ( , )k k

q qm x y  the occupied grid cell that is hit by the 

range beam k
qz . After k-th range beam obtains a measurement 

value, next range beam  1k
qz +  starts to detect an occupied grid 

cell and its angular orientation θk+1 is set by adding Δθ to θk. 

IV. GLOBAL LOCALIZATION USING SSM 
Global localization is to estimate robot pose in a previously 

learned map without knowing initial pose. It gives the robot 
abilities to deal with initialization and recovery from kid-
napping problem. 

Fig. 2 shows the flowchart of proposed global localization 
system. From a given grid map, the GVD of the free space is 
constructed. The branch nodes on the GVD are detected and 
the virtual range scans at all node positions are extracted.  
Pairwise geometric relationships are constructed for range 
scan of each node. When the robot performs global localiza-
tion, it obtains its pose relative to the coordinate system of the 
nearest node.  

The global localization process consists of two stages: 
coarse localization and fine localization. The coarse locali-
zation employs the spectral matching technique [10], and its 
results are given as the candidate nodes for the following fine 
localization. Each candidate node has the set of matched scan 
points with the range scan for localization. Using the 
RANSAC-based least squares estimation method [11], the 
fine localization determines the correct node among the can-
didate nodes and estimates robot pose with respect to the 
correct node.  
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Fig. 2. Flowchart of our global localization system.  

A. Coarse Localization 
In this stage, the degree of similarity between the range 

scan of each node and the query range scan for localization is 
evaluated by computing the spectral matching score in (5) 
with the optimal solution of (6). We assume that the similarity 
value is an indication of the relevance between the node and 
the query range scan. Thus, each node is ranked in accordance 
with the similarity value.  

The nodes whose similarity values rank in the top N are 
considered as the candidate nodes where the robot is expected 
to be located, and they will be taken as the input of the next 
stage. In this paper, we set N = 5. 

B. Fine Localization 
Localization at this stage is carried out based on the results 

of the coarse localization. Fine localization is realized with 
two steps. First, the robot poses relative to all candidate nodes 
are computed with the RANSAC-based least squares estima-
tion method. Second, the vicinity score is calculated for each 
candidate node. Finally, the candidate node that gets the 
largest vicinity score is determined as the correct node. 

Spatial continuity is an inherent nature of geographic 
phenomena. It is the propensity for nearby locations to pos-
sess similar attributes [16]. Thus, it is also clear that the closer 
the current location of the robot is to the location of the cor-
rect node, the greater the degree of similarity between the 
range scan for localization and that of the correct node. In this 
paper, the spatial continuity is quantitatively expressed as the 
vicinity score M which evaluates the similarity between the 
two range scans [10]: 

( )
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∑
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where M is the vicinity score between two range scans Snode 
and Srobot. (pi, ri) is a corresponding pair where pi ∈ Snode and 
ri ∈ Srobot. The function dist( ) computes the Euclidean dis-
tance between the scan points pi and ri. The parameter σd 
controls the sensitivity of the measure mi on deformation. The 
larger σd the more deformations between the two range scans 
we can adjust. In this paper, we set σd = 50 [mm]. The vicinity 
score M is always positive and increases as the deformation 
between corresponding pairs decreases.  

V.  EXPERIMENTAL RESULTS 
Our spectral scan matching and global localization me-

thods have been tested and implemented in this section. 

A. Spectral Scan Matching 
The spectral scan matching method has been evaluated on 

the accuracy of pose estimates and its robustness with respect 
to errors due to deformation noise and ratio of outliers to 
inliers. To compare our SSM method with existing scan 
matching techniques, we chose the widely known IDC me-
thod [4] and CCF method [5].  

The first experiment consisted of matching two scans ac-
quired in the same robot location, (tx, ty, θ) = (0, 0, 0). One scan 
was composed of 362 points. The two scans differ from each 
other due to the sensor noise and the presence of dynamic 
objects in the robot surrounding. Next, we disturbed the 
second scan with white Gaussian noise N(0, σ), and added nO 
outliers by swapping x-y coordinates of scan points that were 
randomly selected in the second scan. We set σ = 10 and nO = 
60. The second scan was then applied to a random pose up to 
±400[mm] in tx and ty, and up to ±30[°] in θ. The two scans 
which are misaligned with each other by a pose (tx = ty = 
400[mm], θ = 30[°]) are shown in Fig. 3 (a). The initial pose 
and misaligned pose are denoted by circles with arrows. The 
results of correcting the pose error and aligning the two scans 
with our method appear in Fig. 3 (b). We repeated the expe-
riment 500 times in this scenario. Table 2 depicts the mean 
and standard deviations of the pose errors from the SSM, IDC, 
and CCF methods. It can be seen that the pose errors from 
SSM are quite small compared with the other two methods. 
These statistical results indicate that the proposed method is 
robust and accurate. 

The second experiment evaluated the robustness of 
matching performance. The first scan used in the first expe-
riment was applied as the first scan in the second experiment. 
We obtained the second scan by disturbing the first scan with 
white Gaussian noise, and then rotating and translating ran-
domly, and next adding outliers in the same manner as the 
first experiment. Fig. 4 shows the performance curves of the  
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(a)                                                          (b) 

Fig. 3. Two scans used in the evaluation experiment of SSM. Red points for the 
first scan and blue points for the second scan with outliers. (a) Misaligned two 
scans before scan matching. (b) Aligned two scans after scan matching. 

 
(a)                                                          (b) 

Fig. 4. Performance curves for SSM method vs. IDC method. (a) 72 outliers, 
varying deformation noise. (b) Deformation noise σ = 5, varying ratio of outliers to 
inliers. 

Table 2. Mean (μ) and standard deviation (σ) of estimated pose errors with 
SSM, IDC, and CCF methods. 

 x error [mm] y error [mm] θ error [mm]
μ σ μ σ μ σ 

SSM  0.10 10.40 -0.30 7.09 0.02 0.10
IDC 2.90 207.16 -37.85 294.90 0.35 4.18
CCF -84.40 95.58 -102.00 104.78 -0.53 8.13

SSM method vs. the IDC method. Both algorithms ran over 
30 trials on the same problem scans for each parameter value 
on the x axis. The matching rates (correctly matched in-
liers/total inliers) were obtained by averaging the 30 tests. 
The proposed method proves to be more robust than the IDC 
method to deformation noises or the presence of outliers. This 
is because each correct correspondence can establish pairwise 
relationships with other correct correspondences even in the 
presence of pairwise relationships with incorrect correspon-
dences. 

B. Global Localization 
We evaluated the global localization strategy with the grid 

map of our laboratory at International Cooperation Building 
in KIST. The size of the test environment was about 17[m] x 
7[m]. From the grid map, we constructed the GVD using the 
brushfire algorithm and detected the branch nodes where 
three or more arcs meet (Fig. 5). The number of detected 
nodes was 66. The virtual range scans at the positions of all 
nodes were then extracted with the ray-casting operation.  

Two types of experiments were conducted. The first eva-
luated the proposed global localization method in detail. The 
second evaluated the accuracy of estimated robot poses. The 
experiments were performed in the manner of simulation, i.e.  

 
Fig. 5. GVD constructed from the grid map of our laboratory and the branch 
nodes extracted from it. The number of branch nodes is 66. 

 
(a)                                                         (b) 

Fig. 6. (a) Laser range scan for localization in a static situation. (b) Laser 
range scan extracted at node 20. 

 
Fig. 7. Indication of global localization result on the grid map. 

Table 3. Results of global localization performed with the scan in Fig. 6 (a). 
Candidate node 20 19 21 15 51

Spectral matching  score 9530.22 2964.30 2312.24 2261.81 1899.99
Vicinity score 771.46 589.35 596.19 507.48 297.01

xL [mm] 0.13 -93.56 -1327.98 -47.48 63.67
Local pose yL [mm] 76.13 -58.82 196.46 398.40 -1126.57

 θL [°] -169.96 -166.42 -172.11 7.09 -81.77
 xG [mm] -4499.87 -6093.56 -4427.98 -6047.48 -3036.33

Global pose yG [mm] 476.13 441.18 596.46 398.41 2373.43
θG [°] -169.96 -166.42 -172.11 7.09 -81.77

 |tx - xG| 0.13 1593.56 72.02 1547.48 1463.67
Error |ty - yG| 16.13 18.82 136.46 61.59 1913.43

 |θ - θG| 0.04 3.58 2.11 177.09 88.23

all laser range scan for localization tests were extracted at 
randomly selected positions on the grid map. Thus, we can 
know the ground truth values to compare with the results of 
localization tests. 

The first experiment consisted of performing global loca-
lization at a random location. On the grid map in Fig. 5, we 
selected a random position and extracted virtual range scan. 
Fig. 6 (a) shows the virtual range scan extracted at the test loca-
tion on the gird map. Since we chose the test position on the 
grid map, the ground truth pose was clearly known: (tx, ty, θ) = 
(-4500 [mm], 460[mm], -170[°]). 

We performed the proposed global localization method with 
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(a) 

 
(b) 

Fig. 8. (a) Localization results for different test locations in the grid map of 
our laboratory. (b) Error distribution for the localization results. 

the virtual range scan in Fig. 6 (a). Table 3 shows the results of 
global localization. The local pose indicates the relative pose to 
the reference frame of each node. It can be transformed with 
respect to one global coordinates system (e.g. reference frame of 
the grid map) since the reference frame of each node is defined 
relative to the global coordinate system. We denote the trans-
formed local pose as the global pose. 

According to the spectral matching score, nodes 20, 19, 21, 15, 
and 51 were selected as the candidate nodes. Among them, node 
20 obtained the largest spectral matching score as well as vicinity 
score. Furthermore, the error between the ground truth and the 
global pose defined through node 20 was the smallest. Therefore, 
node 20 was determined to be the correct node. Fig. 6 (b) shows 
the range scan of node 20. We can identify that the range scan for 
localization in Fig 6 (a) is very similar to the range scan of node 
20 in Fig. 6 (b). Fig. 7 depicts the result of global localization on 
the grid map. We can also clearly see that the range scan for 
localization is remarkably matched with the grid map. 

The second experiment focused on verifying the accuracy 
of the pose estimation in the grid map of our laboratory. For 
this experiment, a total of 500 different test positions were 
randomly chosen from the whole grid map. Unlike Monte 
Carlo localization [8], the robot did not need additional any 
motion behavior to localize. Fig. 8 (a) shows the global loca-
lization results for the test positions, indicating the robot’s 

estimated position and orientation relative to its environment. 
Fig. 8 (b) shows error distribution diagrams, in which the 
mean and median errors were less than (16.77[mm], 
17.91[mm], 1.19[°]) and (11.12[mm], 12.11[mm], 0.95[°]), 
respectively. As these figures demonstrate, the proposed lo-
calization algorithm gave a very satisfactory performance in 
experimental testing. 

VI. CONCLUSIONS 
In this paper, we proposed a new scan matching method 

which estimates robot pose without an initial alignment. This 
method finds consistent correspondences between two range 
scans, by considering how well their associated pairwise 
geometric relationships are satisfied. And on the basis of it, 
we suggested a global localization method that is applicable 
to both grid maps and topological maps having metric in-
formation. Our global localization method has a benefit such 
that it can estimate robot pose at current location without 
wandering motion.  The experimental results showed that the 
proposed methods could be accurate and effective approaches 
to mobile robot navigation. 
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