
Variable Resolution Decomposition For Robotic Navigation Under a

POMDP Framework

Robert Kaplow

School of Computer Science

McGill University

Montreal, Quebec, Canada

Email: rkaplo@cs.mcgill.ca

Amin Atrash

School of Computer Science

McGill University

Montreal, Quebec, Canada

Email: aatras@cs.mcgill.ca

Joelle Pineau

School of Computer Science

McGill University

Montreal, Quebec, Canada

Email: jpineau@cs.mcgill.ca

Abstract— Partially Observable Markov Decision Processes
(POMDPs) offer a powerful mathematical framework for
making optimal action choices in noisy and/or uncertain en-
vironments, in particular, allowing us to merge localization
and decision-making for mobile robots. While advancements
in POMDP techniques have allowed the use of much larger
models, POMDPs for robot navigation are still limited by
large state space requirements for even small maps. In this
work, we propose a method to automatically generate a
POMDP representation of an environment. By using variable
resolution decomposition techniques, we can take advantage of
characteristics of the environment to minimize the number of
states required, while maintaining the level of detail required
to find a robust and efficient policy. This is accomplished by
automatically adjusting the level of detail required for planning
at a given region, with few states representing large open
areas, and many smaller states near objects. We validate this
algorithm in POMDP simulations, a robot simulator as well as
an autonomous robot.

I. INTRODUCTION

Autonomous mobile robots are increasingly ubiquitous

in society. Two of the major challenges in robotics are

localization and navigation. Localization is the process of

estimating the robot pose from sensor readings. While local-

ization algorithms are becoming increasingly sophisticated,

the task can still be challenging due to noise from sensors,

actuators and the environment. The robot navigation task

is to determine a path from one robot pose to another.

Navigation techniques often assume the pose of the robot

is known and do not take the localization uncertainty into

account. Such systems use heuristics to ignore the uncer-

tainty, such as simply assuming the robot is located at the

most likely pose [26], or using voting techniques [24]. Thus,

many robot navigation algorithms will disregard potentially

useful localization information. By taking such localization

uncertainty into account, a robot might take more useful

long-term actions. For example, in cases of high uncertainty,

the robot may choose to behave more pessimistically or

possibly choose to take information gathering actions. To

achieve this, one popular model is the Partially Observable

Markov Decision Process (POMDP).

POMDPs are probabilistic models for decision-making

in stochastic domains. In recent years, a number of more

efficient approximate algorithms have been developed to

solve POMDP problems [13], [16], [19], [22]. There has been

previous work on applying POMDPs for robot localization

and navigation [18], however, this work did not leverage

these recent POMDP solution methods. For these tasks, the

model is created by discretizing an environment map. Two

popular methods used for map discretization are topological

maps and metric maps [4]. For a POMDP model, the decision

to use either a topological or a metric map is crucial, since

the map decomposition will strongly affect the quality of the

solution and the required planning time. Topological maps

are high level abstractions of an environment, which allow

navigation with a compact model. Metric maps discretize the

environment spatially, using a set pattern such as a fixed grid.

The primary contribution of this paper is the application

of variable resolution decomposition techniques to automat-

ically produce a POMDP which can be solved to achieve

a robust solution to the robot navigation task. By using a

variable resolution decomposition, the spatial discretization

of a given map can be generated automatically, and this

will work with any sensor-built map. The variable resolution

algorithm presented here has the advantages of both topo-

logical maps and metric maps. It is able to take advantage

of the regular structure of indoor environments. This is

done by identifying open spaces and abstracting them into a

small number of states which represent large areas such as

rooms and corridors. Conversely, areas near objects or walls

get represented with a higher number of states. These are

typically areas which require more detailed plans. Overall,

this results in a smaller model with low resolution in large

empty spaces and high resolution in dense spaces. The

resulting POMDP model is superior for robot navigation.

The high resolution discretization gives the robot higher

precision near objects, giving the robot the ability to navigate

effectively. Additionally, the reduced state space size will cut

down the planning time dramatically, requiring the robot to

take less time to construct plans, or improved plans for a

fixed amount of planning time.

II. RELATED WORK

Having robust and accurate robot navigation algorithms is

a crucial element of a fully autonomous robotic system, and

has been a long term goal for robotics [8], [9]. One algorithm

of note is the D* [23] algorithm, which focuses on creating

optimal plans when the environment is only partially known.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 369

Related algorithms have become more refined to work in

more difficult environments [28]. However, in a real robotic

system, applying a classical navigation technique in isolation

is not enough, due to uncertainty in robot pose and noisy

motion dynamics. For robust navigation, localization must

be applied.

There are several classes of robot localization algorithms

in general use. One popular family of localization algorithms

uses Kalman filters [5], [6], which estimate the posterior

distribution of robot pose using Gaussians. Another popular

class of algorithms are particle filters [3], [27]. Particle filters,

or Monte Carlo Localization, represent the belief about the

robot’s pose through a set of weighted samples, or particles.

The particles are drawn from the posterior distribution of the

robot’s pose. Some advantages of particle filters are that the

shape of the posterior distribution has no restriction, they are

flexible in handling a variety of sensor characteristics, noise

and movement dynamics, and they are easy to implement.

POMDPs are an ideal model for representing environments

for robot navigation due to their ability to represent the noisy

motion dynamics and noisy sensors. POMDP navigation was

implemented on the Xavier robot [7], [17]. While this work

was able to successfully use the POMDP model to localize

the robot, heuristics were used to handle the navigation,

due to the size of the model. In this case, topological maps

were used, where the states represented rooms and sections

of corridors. Roy and Thrun [14] did not use a POMDP

directly, but approximated it by using an augmented state

space which explicitly represents positional uncertainty as an

extra dimension, and used this model to reduce uncertainty in

a navigation task. Theocharous et al. [25] used hierarchical

POMDPs for navigation in topological maps. In this work,

POMDPs are used to learn the environment dynamics. For

action selection, heuristics such as most likely state are used.

Tomatis et al. [11] used a hybrid hierarchical approach,

with a POMDP modelling the high level topological map,

with a lower level composed of local metric maps. In [21],

Spaan and Vlassis use a point-based POMDP solver for robot

planning in an environment with a large set of pre-specified

state locations. This work leveraged the newest POMDP

approximation techniques, however, it assumed a known state

space which might not scale well to large environments.

Variable resolution decomposition techniques for map

discretization have been long established. The Quadtree algo-

rithm [15] is a common technique for spatial representation

in robotics, and have been used in navigation algorithms [29].

A binary space partitioning (BSP) tree [4] is a hierarchical

structure that can be used for spatial representation. A cell in

a BSP is either a leaf, or is recursively subdivided via a line

parallel to the edges of the environment. Another approach

is the exact method [4], which splits the space into non-

overlapping regions via lines. Moore and Atkeson used an

idea similar to Quadtree for a reinforcement learning task

[1]. Zhou and Hansen [30] also used a variable resolution

state space to reduce the size of a POMDP. However, the

decomposition of this work is based on the value function

itself rather than characteristics of the environment.

III. BACKGROUND

A. Overview of POMDPs

The POMDP framework is a generalized model for

planning under uncertainty [20], and is the partially

observable analogue of the Markov Decision Process

(MDP) [2]. A POMDP can be represented as a tuple

(S,A,O, T,Ω, R, γ, b0), where S is a (finite) set of discrete

states, A is a (finite) set of actions, and O is a (finite) set

of observations, which provide incomplete or noisy state

information. The POMDP is further parameterized by:

T (s, a, s′) = P (st+1 = s′|st = s, at = a),

Ω(o, s′, a) = P (ot+1 = o|st+1 = s′, at = a),

where T (s, a, s′) is the transition model, which describes the

probability of transitioning to s′ when the agent is in state

s and undergoes action a, and Ω(o, s′, a) is the observation

model which describes the probability of receiving the ob-

servation o after taking action a and ending in state s′.
The function R(s, a) ∈ R is the reward for taking action

a in state s, γ ∈ [0, 1] is the discount factor, and b0 denotes

a distribution over start states.

Under the POMDP framework, the agent has no direct

knowledge of the current state. Instead, it must rely on

observations for decision making. For the agent to make

correct decisions, it summarizes its history into a belief

state b, where b is a probability distribution over S which

represents the agent’s spatial belief:

bt = P (st|b0, a0, o1, ..., at−1, ot). (1)

The belief state is updated after every transition by Bayes’

rule:

bt(s
′) = ηΩ(o, s′, a)

∑

s∈S

T (s, a, s′)bt−1(s), (2)

where η is a normalizing factor.

The goal of a POMDP solver is to determine a policy, π,

which is a mapping from belief space to action space.

π : b → A. (3)

The policy attempts to maximize the value function,

defined as the sum of discounted future rewards.

V (b) = Eπ

[

∞
∑

t=0

γtRt

]

, (4)

where Rt is the reward received at timestep t, V (b) is the

value of the executing the policy starting at belief state, b,

Eπ is the expectation under policy π and γ ∈ [0, 1] is the

discount factor.

In this work, we will take advantage of some of the

recent advancements in POMDP solving, notably the work

in the point-based approximations [13], [16], [19], [22].

These methods can solve POMDPs an order of magnitude

faster than competing techniques, and are used in this work

due to the large POMDPs required to represent real-world

navigation domains.

370

B. Map Representations

For a robot to be able to efficiently navigate to a specific

goal location in an environment, it is required for the robot to

keep an internal representation of the environment, usually in

the form of a map. To create a POMDP model for navigation

tasks, a mapping from the environment map to the state space

is required. Two popular choices of state space selection for

navigating with POMDPs are metric maps and topological

maps.

Metric maps are map representations which decompose

the map spatially such as in a fixed grid. In each subcell

of the map representation, it will measure if there is an

obstacle or space, creating an occupancy grid. An important

advantage of metric maps is their generality. They make

no assumptions on what kind of environment the robot is

working with. Therefore the transformation from the map

to representation can be completely automatic. A further

advantage of a fixed grid metric map is that they can be made

to be very precise, since they require working with a fine

resolution for robust navigation. However, a disadvantage of

fixed grid metric maps is the steep model size requirements.

This disadvantage is amplified when we use the model

for POMDP planning, since the modern POMDP planning

algorithms are polynomial in |S|.
Another popular map representation employed frequently

for robot navigation are topological maps. A topological

map explicitly represents the environment’s connectivity

information, e.g. in the form of a graph. A typical topolog-

ical description of an indoor environment represents large

abstract areas, such as rooms, as single states. Corridors

are typically represented as a few states, which serve to

connect the rooms in the topological graph. An advantage of

using a topological map is that they provide much smaller

models than metric maps. Additionally, they provide a human

readable decomposition of the environment. However, using

a topological representation can result in very coarse maps,

which may not be suitable for very precise planning.

The Quadtree [15] algorithm creates a metric map dis-

cretization of an environment. Quadtree makes up for the

shortcomings of the fixed grid representation by giving

different resolutions for different areas in the map. The

algorithm recursively subdivides a region in four equally

sized quadrants until some stopping condition is reached. In

the case of robotic navigation, usually the stopping condition

is when a cell is fully occupied by an obstacle, or fully

empty space. This method can be used for environments

with varying levels of detail, for example, an environment

with many large empty rooms but with some very narrow

corridors.

IV. VARIABLE RESOLUTION DECOMPOSITION STATE

SPACE

Using POMDPs for robot navigation has been historically

difficult due to the high cost of finding a policy for a model

with a large state space [14]. The most common approach is

to use a fixed grid metric map representation, where each

grid cell is a separate state in the POMDP model. This

results in a very effective policy, since the belief state is

precise due to each state being physically small. However,

the resulting POMDP has a large state space. When |S| is

large, the POMDP is much more difficult to solve since

the point-based POMDP solution techniques require O(|S|2)
time. Therefore, we would like to construct a POMDP which

will result in a usable policy while minimizing the size of

the state space. To achieve this, we propose our variable

resolution decomposition algorithm (Algorithm 1).

Algorithm 1 Variable Resolution

if ∃ space in section of map and

∃ obstacle in section of map and

section of map is larger than minimum size then

Split section of map along longer half into section a

and section b

Variable Resolution(section a)

Variable Resolution(section b)

else

stop

end if

Algorithm 1 can be seen as a modified version of the

Quadtree algorithm. The input to this algorithm is the

occupancy grid of the environment map. At each step of

the recursion, it checks if the current section has both

space and obstacle by checking each cell of the section in

the occupancy grid. If the section has both, then it splits

into halves by cutting along the longer edge. Otherwise,

the section becomes a state in the resulting state space.

Termination can also occur if the section is smaller than

some minimum threshold size. If the minimum size threshold

is reached for a section, then the resulting state can be

considered to be occupied. This parameter can be used to

control the size of the state space based on the requirements

of the robot. In comparison to Quadtree, we cut only in half

to keep the resulting state space as small as possible. This

algorithm has a running time of O(N log(N)) where N is

the number of cells of size minimum size in the occupancy

grid of the environment map.

The goal of this technique is to reduce the size of the state

space while keeping the model effective for robot navigation.

This latter goal can be accomplished by decomposing the

map with the following two design aims: to group together

areas of the map where precise navigation is not critical,

and to discretize areas near objects where navigation needs

to be more precise with smaller resolution cells. These aims

both relate to the key idea of grouping large areas of space

and large areas of obstacle together. The outlined algorithm

accomplishes this by recursively splitting up the map, and

stopping when the current state is atomic (all space or

object). Using the output of this algorithm as the state space

for the POMDP model can greatly reduce the size of the

model. An example of this algorithm’s output can be seen

in Figure 1.

From this figure, we can see that the algorithm assigns

larger cells in larger spaces, where precision in navigation is

371

Fig. 1. A simple navigation task. We see the robot in the start location in
the bottom left, and the goal in the top left. We can also see the variable
cell decomposition output shown with the lines.

not as important, and assigns smaller cells in the corridors

and near objects, as intended. A critical assumption of this

technique is that all points within a single state have the

same optimal policy. While degenerate cases of single states

which require multiple actions can occur, these typically have

a weak effect on overall performance due to the ability of the

POMDP to recover from such mistakes. Since the algorithm

decomposes the map to axis-aligned rectangles, the algorithm

does best in rectilinear environments. However, we will see

the algorithm is still able to drastically reduce the size of the

state space in a variety of environments.

V. DESCRIPTION OF THE POMDP MODEL

While the state space of the POMDP is automatically com-

puted by the variable resolution decomposition algorithm, the

remaining parameters of the POMDP must now be defined.

A. Actions & Transition Model

For the POMDP, a set of high level actions must be

selected. For example, in robot navigation tasks this can be

defined as displacements in the four cardinal directions.

The actions and transitions are very robot dependent.

While these could be constructed through domain knowl-

edge, this is sometimes infeasible. An alternate method is the

use of sampling techniques to approximate these parameters.

We now describe the sampling method used in this paper. We

build the next state distribution for executing action a in state

s. First we initialize counts ∀sC(s) = 0. We randomly draw a

starting point p from within state s. We then apply the action

a translation on p, and then add a small amount of Gaussian

noise proportional to the length of a to the destination point

p′. This noise is added to make a simple approximation of the

noisy motion dynamics. Next, the straight line path between

p and p′ is verified to check that it does not pass through

any obstacle state. This is required so the agent does not

think an action can teleport the robot over an obstacle. If the

straight line path is possible, then we find the state s′ such

that p′ ∈ s′, and increment C(s′). This is done for many

sampled points p, and then C(s) is normalized to become

T (s, a, s′). A primary advantage of building the transition

model through sampling is that it makes no assumptions on

either the environment or the type of spatial decomposition

used.

B. Observations & Observation Model

As with the actions and transitions, the observation model

is very robot dependent. While any reasonable observation

model can be used, we present the model used in the

experiments below. We choose an observation space which

is an abstraction of information received from proximity

sensors. We parameterize Ω by the resulting state s′ only, and

not the action a which resulted in the agent ending in state s′,

i.e. ∀a∈AΩ(o, s′, a) = Ω(o, s′). The observation is based on

whether the adjacent states of s′ are obstacle states or open

space states. An edge of the state has a probability of being

considered “filled” based on the proportion of that wall that is

adjacent to obstacle states. This probability is perturbed with

noise. The resulting model has sixteen observations, based on

all possible combinations of the four walls being “filled” or

“open”, where the probability of a single observation is the

product of the probabilities of the four walls being in their

associated configuration. An advantage of this observation

model is that it has only a small discrete number of possible

observations, but it still provides observational information

which will help the robot localize. However, a disadvantage

of this model is that it uses only a very local measurement,

since only the immediate vicinity affects the observation.

It should be noted that this model is only used for policy

building, and is not necessarily used for the navigation. On

a real robot platform, the sensors are able to produce much

more detailed observations.

C. Rewards

As per typical models for navigation tasks, the robot

receives a fixed positive reward for reaching the designated

goal states, and no reward otherwise. This leads to a policy

which will get the agent to the goal as quickly as possible,

presuming we are using discounting.

VI. EXPERIMENTS

To validate our technique, a series of experiments were

conducted on a variety of domains. The purpose of these

experiments is to test the resulting quality of the produced

policy based off POMDPs generated using the variable

resolution techniques. Validation occurred in both simulation

as well as on a robot platform. The test machine for these

experiments was a dual core Xeon at 2.66Ghz with 4G of

RAM.

372

0 600 1200 1800 2400 3000
0

10

20

30

40

50

60

70

80

90

100

Planning Time (s)

T
a

s
k
 C

o
m

p
le

ti
ti
o

n
 (

%
)

Task Completion Rate vs. Planning Time

Fixed

Variable

Fig. 2. Measuring the required planning time to complete the simple
navigation task.

A. POMDP simulation

The goal of using the variable resolution state space

decomposition algorithm is to reduce the size of the state

space, and thereby reduce the required time for producing a

policy for a domain. A series of experiments were conducted

to evaluate the performance of the policy produced by the

variable resolution POMDP. At set time intervals, the policy

was evaluated by POMDP simulation. For comparison, the

same experiment was conducted on a fixed grid POMDP.

Figure 1 shows the original environment as well as the

resulting decomposition. The fixed grid decomposition is not

shown, but the size of the fixed grid cells is the size of the

smallest cells in Figure 1. The number of states in the fixed

and variable resolution POMDPs can be seen in Fig 4.

The dimensions of the fixed grid cell as well as the

minimum size parameter of Algorithm 1 is 10cm by 10cm.

The actions for this domain are specified as the four cardinal

directions, with two possible distances of 20cm and 80cm for

each, giving us eight total actions. The transition noise is a

Gaussian N(0, .4|distance|+.1). The discount factor γ was

set to .95.

A point-based approximate POMDP solver was used to

solve both the fixed and variable resolution POMDPs.

For these results, we ran traces through the POMDP

state space. Running the simulation for the fixed grid was

straightforward, however, it should be noted that running the

simulation for the variable resolution grid cells was a bit

more complicated. In the variable resolution POMDP the

state space grid cells are larger, so simply keeping track of

the agent’s actual state is not reliable enough. Instead, we

consider traces through the fixed grid cells’ state space, and

0 600 1200 1800 2400 3000
0

5

10

15

20

25

30

35

40

45

50

Planning Time (s)

A
v
e

ra
g

e
 N

u
m

b
e

r
O

f
S

te
p

s
 f

o
r

C
o

m
p

le
ti
o

n

Number Of Steps vs. Planning Time

Fixed

Variable

Fig. 3. Measuring the average number of steps to the goal in the simple
navigation task.

we maintain our belief over the fixed grid states. Maintaining

the actual state as a fixed grid cell provides a much more

realistic experiment. Then at each step, we convert our fixed

grid belief state into a variable resolution belief state. This

is done by accumulating the belief of all fixed cells within

a variable resolution cell as the belief for that variable

resolution cell. Then the solved (variable resolution) policy,

applied on the variable resolution belief state, is used to get

the next action.

Because the POMDP solver has a randomized component,

multiple policies were generated for evaluation. For these

experiments, five policies were generated with 25 trials

per policy. If an execution took more than 100 steps to

complete, that trial was deemed a failure. The results from

the simulations can be seen in Figures 2 and 3.

Figure 2 shows completion rate vs. planning time, where

completion rate is the proportion of successful trials. We

see that both methods are able to achieve the same success

rate in the long term, since in this domain both methods

are successful. Hence, even though the variable resolution

algorithm loses precision with larger states this doesn’t seem

to hurt performance. We also see that it takes much less time

to have a reasonably good policy in the variable resolution

case. At roughly 600 seconds, the variable resolution policy

has a high rate of success in the task, while the fixed policy

agent is not able to complete the task at all until 2400

seconds.

Figure 3 shows the average number of steps vs planning

time. This measure is the average number of steps taken in

only the successful trials. We see that the average number

of steps to the goal does not vary as the planning time

373

increases. This means that even preliminary policies provide

near-optimal plans. Note that the number of steps to goal for

the fixed policy is only shown after 2400 seconds. This is

because the fixed grid POMDP policy was not able to find

the goal in any trial until 2400 seconds of planning time.

B. Environment Map Survey

In the previous section, we show that variable resolution

decomposition is able to reduce the required state space to

model the environment of a toy domain, but still provide a

practical policy. In this section we investigate the state space

reduction capabilities on a set of maps generated by robots

using sensor data. The maps freiburg, longwood, nsh level 3

and thickwean are available with the CARMEN software

package [10]. The results are shown in Figure 4.

Map Name #Fixed #Variable Reduction Factor

Simple 3990 316 12.627

McConnell 29638 2035 14.56

freiburg 19226 3429 5.607

longwood 82595 8743 9.447

nsh level 3 57003 5690 10.018

thickwean 14048 1488 9.441

Fig. 4. Comparing the number of grid cell for both a fixed grid
decomposition and a variable resolution cell decomposition. The reduction

factor is
#Fixed

#V ariable

Fig. 5. The variable resolution decomposition algorithm applied to the
freiburg map, released with the CARMEN.

These results show that the performance increase with this

method is highly map dependant, however all maps show

a sizable state space reduction. In a very wide open map

like the simple environment, the reduction factor is large.

On the other hand, in the freiburg (Figure 5) map, there

are many small obstacles throughout the map. This causes

the algorithm to produce many small grid cells next to the

obstacles. This fits with our design, since these are locations

where the robot requires extra precision (e.g. near walls,

doors). These results are encouraging, since even with a

state space reduction factor of five, the resulting POMDP

should experience a 25-fold reduction in planning time.

This reduction allows policies to be found for previously

intractable POMDPs.

C. Test on SmartWheeler Robotic Wheelchair

For further verification of the method, we tested the

algorithm on SmartWheeler [12] the robotic wheelchair,

shown in Figure 6.

Fig. 6. The SmartWheeler Robotic Wheelchair

SmartWheeler is an electric wheelchair fitted with an

onboard computer, motor actuators, SICK laser scanners

and a touchscreen. The long-term goal of the SmartWheeler

project is to increase the safety and autonomy of individuals

with severe mobility impairments by designing a robotic

wheelchair that can adapt to the user’s needs and the con-

straints of the environment. We use CARMEN [10], the

CMU Robot Navigation Toolkit, for basic robot control such

as motor control and obstacle avoidance. Actions selected by

the policy are passed to CARMEN, which translates them to

motor commands that are sent to the robot. We also utilize

the built-in obstacle avoidance of the CARMEN robot control

system, since the POMDP planner does not account for

dynamic obstacles. If the high level POMDP planner directs

the robot towards objects not in the pre-computed plan, then

CARMEN will navigate the robot around obstacles.

To take advantage of the SICK laser rangefinders, we use

the built-in CARMEN particle filter for updating the belief.

At each step, the new belief is computed by using the current

set of particles as follows:

b(s) = η
∑

p∈Ps

w(p) (5)

374

where Ps is the set of particles that fall within state s,

w(p) is the weight of a particle from the CARMEN particle

filter and η is a normalizing factor.

In these experiments, we do not use the robot’s orientation

as part of its state space. However, the method extends

readily to incorporate the orientation, as does the planning

phase. In our implementation, we use the CARMEN particle

filter to estimate the orientation, and the noise from the

orientation is folded into the transition probabilities.

Experiments were conducted in the McConnell building

at McGill University, according to the map shown in Figure

7. Information concerning the state space can be seen in

Figure 4. The parameters in this domain are as in the POMDP

simulation experiments, with the size of the fixed grid cell

and the minimum size of the variable resolution algorithm

being 10cm by 10cm, action distances of 20cm and 80cm

and the transitional noise N(0, .4|distance| + .1).

A policy was found by running the point-based POMDP

solver on the model for two hours. It is worth noting that

the fixed grid decomposition for this map was unable to

be solved due to to memory constraints. Only the variable

resolution model was usable for this task on this platform.

Fig. 7. The McConnell Navigation Task. The dark circle is the goal state,
and we can see the square robot navigating through the environment.

Live robot experiments with the SmartWheeler robot show

the algorithm to be successful. In all start locations we tested,

the robot was able to correctly navigate to the goal location.

This validates many of the assumptions used when building

the POMDP model, for instance the abstracted observation

model and the sampled transition model. Additionally, this

shows the applicability of a mapping from the particles to

the POMDP belief state.

Furthermore, the sensors used on the SmartWheeler, such

as the laser rangefinger and the odometry are found on many

robots. Therefore, we expect this approach to work on a

variety of platforms.

VII. CONCLUSION

In this work, we present a variable resolution technique

for robot navigation using POMDPs. This technique reduces

the state space of the POMDP by automatically adjusting

the size of the states in the grid based on features of the

environment map. This allows us to gain the advantages of

topological maps, such as reduced complexity/state space,

while still maintaining the level of detail of fixed grid metric

maps. This method allows us to apply POMDP navigation

in domains which would otherwise have been infeasible. We

validated this algorithm in a series of experiments including

a POMDP-based simulation of a navigation environment, a

realistic robot simulator and an autonomous robot. These

experiments demonstrate the feasibility of the method in a

variety of complex navigation tasks.

The partitioning heuristic used in this method considers

only local information when considering the decomposition.

A more sophisticated partitioning mechanism could produce

improved policies with smaller state spaces. Another advan-

tage of using a more global partitioning scheme is that it

might better avoid the issue of states which require multiple

actions as previously discussed.

The transition and observation models used for the

POMDP model can be further refined. While the parameters

in the sampling algorithms presented here were capable of

providing good policies, better approximations to the motion

dynamics and of the proximity sensors parameters will only

improve the quality of the resulting policy. These models

could be improved through learning, this is the subject on

ongoing work.

While the results presented here are limited to wheeled

mobile robots, we expect the technique to be applicable

for robots with more degrees of freedom. These cases are

particularly subject to an explosion in the size of the state

space, when using fixed resolution, and thus stand to benefit

substantially from the methods presented in this paper.

ACKNOWLEDGEMENTS

This research was supported by the Natural Sciences and

Engineering Council of Canada and the Fonds Québécois de

la Recherche sur la Nature et les Technologies.

REFERENCES

[1] C. Atkeson A. Moore. The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state-spaces. Machine

Learning, 21, 1995.

[2] R. Bellman. Dynamic programming. 1957.

[3] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo
localization for mobile robots. In Artificial Intelligence, 1999.

[4] G. Dudek and M. Jenkin. Computational Principles of Mobile

Robotics. Cambridge University Press, April 2000.

[5] J. Gutmann and C. Schlegel. AMOS: Comparison of scan matching
approaches for self-localization in indoor environments, 1996.

[6] R. Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering, 82(Series
D):35–45, 1960.

375

[7] S. Koenig and R. Simmons. Passive distance learning for robot
navigation. In International Conference on Machine Learning, pages
266 – 274, 1996.

[8] J. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
1991.

[9] S. LaValle. Planning Algorithms. Cambridge University Press, 2006.
[10] M. Montemerlo, N. Roy, and S. Thrun. Perspectives on standariza-

tion in mobile robot programming: The Carnegie Mellon Navigation
(CARMEN) Toolkit. In International Conference on Robotics and

Systems, pages 2436–2441, 2003.
[11] I. Nourbakhsh N. Tomatis and R. Siegwart. Simultaneous Localization

and Map Building: A Global Topological Model with Local Metric
Maps. In Proceedings of the IEEE/ASME International Conference

on Advanced Intelligent Mechatronics, 2001.
[12] J. Pineau and et. al. Smartwheeler: A robotic wheelchair test-bed for

investigating new models of human-robot interaction. In AAAI Spring

Symposium on Multidisciplinary Collaboration for Socially Assistive

Robotics, pages 59–64, 2007.
[13] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An

anytime algorithm for POMDPs. In International Joint Conference on

Artificial Intelligence, pages 1025–1032, 2003.
[14] N. Roy and S. Thrun. Coastal navigation with mobile robots. In In

Proceedings of Conference on Neural Information Processing Systems

(NIPS), volume 12, 1999.
[15] H. Samet. Region representation: quadtrees from boundary codes.

Communications of the ACM, 23(3):163–170, 1980.
[16] G. Shani, R. Brafman, and S. Shimony. Forward search value iteration

for POMDPs. In Proceedings of the Sixteenth International Joint

Conference on Artificial Intelligence (IJCAI), 2007.
[17] R. Simmons, J.L. Fernandez, R. Goodwin, S. Koenig, and

J. O’Sullivan. Lessons learned from Xavier. IEEE Robotics &

Automation Magazine, 7(2):33–39, June 2000.
[18] R. Simmons and S. Koenig. Probabilistic robot navigation in partially

observable environments. In Proceedings of the International Joint

Conference on Artificial Intelligence, pages 1080–1087, 1995.
[19] T. Smith and R. Simmons. Heuristic search value iteration for

POMDPs. In Proc. Int. Conf. on Uncertainty in Artificial Intelligence

(UAI), 2004.

[20] E. Sondik. The Optimal Control of Partially Observable Markov

Decision Processes. PhD thesis, Stanford University, 1971.
[21] M. Spaan and N. Vlassis. A point-based POMDP algorithm for robot

planning. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 2399–2404, 2004.
[22] M. Spaan and N. Vlassis. Perseus: Randomized point-based value

iteration for POMDPs. In Journal of Artificial Intelligence Research,
pages 195–220, 2005.

[23] A. Stentz. Optimal and efficient path planning for partially-known
environments. In Proceedings of the IEEE International Conference

on Robotics and Automation, pages 3310–3317, 1994.
[24] K. Tanaka, T. Hasegawa, Z. Hongbin, E. Kondo, and N. Okada. Mobile

robot localization with an incomplete map in non-stationary environ-
ments. In Proceedings of the 2003 IEEE International Conference on

Robotics and Automation, volume 2, Sept. 2003.
[25] Georgios Theocharous, Khashayar Rohanimanesh, and Sridhar Ma-

hadevan. Learning hierarchical partially observable markov decision
process models for robot navigation. In Proceedings of the 2001 IEEE

International Conference on Robotics & Automation (ICRA), pages
511–516, 2001.

[26] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3D mapping. In
Proc. of the IEEE International Conference on Robotics & Automation

(ICRA), 2000.
[27] S Thrun, D. Fox, and W. Burgard F. Dellaert. Robust monte Carlo

localization for mobile robots. Artificial Intelligence, 128(1-2):99–141,
2000.

[28] A. Yahja, S. Singh, and A. Stentz. An Efficient On-line Path

Planner for Outdoor Mobile Robots Operating in Vast Environments,
33(1):129–143, August 2000.

[29] A. Zelinsky. A mobile robot exploration algorithm. Robotics and

Automation, IEEE Transactions on, 8(6):707–717, Dec 1992.
[30] R. Zhou and A. Hansen. An improved grid-based approximation

algorithm for POMDPs. In Proceedings of the Sixteenth International

Joint Conference on Artificial Intelligence (IJCAI), pages 707–716,
2001.

376

