
Human Motion Patterns from Single Camera Cues for Medical
Applications

Evan Ribnick, Vassilios Morellas, and Nikolaos Papanikolopoulos
{ribnick, morellas, npapas}@cs.umn.edu

University of Minnesota, Minneapolis, MN, USA

Abstract— Physical constraints that underly the formation
of periodic motions can be effectively used to accurately
reconstruct the periodic motion from even single camera views.
As shown in our earlier work, this reduces to a problem of
geometric inference. In this paper, we focus on periodic motions
exhibited by humans, which are generally not perfectly periodic,
and explore the suitability of the reconstruction techniques
in these scenarios. We examine the degree of periodicity of
human gait empirically, including the applicability of our
motion model. Importantly, we illustrate the usefulness of these
techniques by applying them to the task of clinical gait analysis.
A computational tool to analyze periodic human motion can
prove to be invaluable in medical applications either in terms of
assessing deviations from normal patterns or evaluating changes
resulting from therapy or other clinical procedures.

I. INTRODUCTION

Humans exhibit a variety of periodic motion patterns in
everyday activities and as such periodicity has been recog-
nized as an important cue when analyzing human motion.
There exists a dominant trend in the literature of methods
performing analysis of periodic motion in image coordinates.
This trend however prevents the use of these techniques in
tasks such as motion analysis, recognition, and classification,
since the appearance of a motion in image coordinates varies
greatly with the viewing angle.

A great deal of work related to periodic motion has
focussed on detection and analysis in image coordinates.
Several techniques use Fourier analysis of pixel-coordinate
movements to detect, segment, or classify motions [1]–
[7]. Recent work has shown the use of Fourier analysis
to segment and extract multiple periodic motions in video
sequences simultaneously [5]. Other types of image-based
analysis for detection, representation, and classification of
repetitive motions, including human gestures and facial ex-
pressions have been focused in the literature [8]–[10].

Some have recognized the important connection between
periodic motion and 3D inference. A method for estimating
the structure of an articulated body undergoing repetitive mo-
tion by considering snapshots separated by exactly one pe-
riod in time using geometric constraints is reported in [14]. In
another method, training data is used to learn Fourier-based
representations of periodic human motions which can be used
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to infer their structure in 3D [13]. More recently, work on
computing the 3D trajectory of periodic motions based on
their image-coordinate trajectories and geometric constraints
can be found in [11], [12]. Regarding the applicability of
the method appearing in [13] compared to the one in [12],
[13] is limited to the trajectories seen in training data and an
orthographic projection is assumed, indicating reconstruction
only for motions without a translational component.

Vision-based human motion analysis and the closely re-
lated task of activity classification have drawn a great deal of
interest from both a medical and a security and surveillance
perspective. There is a large body of research in this field.
The reader is referred to the survey papers [15]–[17], [19].
Research in this area can be generally divided into two
major categories: (i) those that perform analysis from a
single camera view (monocular systems), and (ii) those that
require multiple views (e.g., binocular and trinocular stereo).
Typically they either operate directly in image coordinates
[20], or learn mappings from image-coordinate appearances
to 3D state vectors [21]. These techniques are affected by
the viewing angle of the camera and one can only hope
to overcome this constraint by learning classifiers based on
motions viewed from many different angles.

Gait analysis in a clinical setting which is the main focus
of this paper, is another very important application domain.
The classical work in [22] gives a thorough characterization
of the gait of adult men, and clearly illustrates the connection
between a person’s gait and the presence/absence of physical
debilitations. Technology-assisted gait analysis for medical
diagnosis is rather sparse. Gait is a useful cue for diagnosis
of pathological disorders, specifically cerebral palsy and
poliomyelitis and attention deficit disorders [23]. Signals of
interest include motion patterns of lower extremities. Fourier
analysis is performed on the resulting signals, and self-
organizing maps are used to cluster the data. Data from
normal and pathological subjects are then well separated.
Similarly, [24] develops a system for diagnosing Parkinson’s
disease. The system analyzes static images of the walking
person wearing a conveniently colored track suit, and an
artificial neural network is trained in order to distinguish
between diseased and normal subjects based on several fea-
tures extracted from the images. Other works use commercial
motion capture systems to analyze gait [25]–[27] .

Many motions of interest, including walking and running,
are inherently repetitive in nature. Nonetheless, it is clear
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that human motion is quite complex and and does not follow
any rigid mathematical model. In order to effectively analyze
these types of movements, a more complete understanding
of the periodicity exhibited by natural human motion is
required. In light of these challenges, this paper aims to
examine the suitability of techniques which are predicated
on periodicity for real human motion, and illustrates their
usefulness by considering the application of clinical gait
analysis.

II. PERIODIC MOTION RECONSTRUCTION

In this section, we briefly review the basic formulation
and technique for reconstructing periodic motions in 3D. For
more detailed discussion, the reader is referred to [11], [12].

A. Definitions and Basic Equations

In this article, we define periodic motion as any move-
ment that is periodic in terms of its velocity (in 3D world
coordinates). In terms of the 3D position of the point, we
have:

p(t+ nT ) = p(t) + n∆pT
, (1)

where ∆pT
, (∆XT

,∆YT
,∆ZT

) is the displacement per
period of the point, which is constant over any period of
length T . For example, if the point being tracked is on the
foot of a walking person, then the stride length is equal to
‖∆pT

‖2.
Since samples are taken at discrete times determined by

the video frame rate, we represent times using discrete
indices of the form tik. This represents the time of the k-th
sample in the i-th period. We can then arrive at the following
expression for the position at time tik:Xi
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where the sample at time tik is expressed relative to t0k, the
k-th sample in the 0th-period.

When a periodic motion is projected into the image using
the pinhole camera model, we arrive at the pixel-coordinate
trajectory described by the following equation:(
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(3)
Note that we have placed the origin of the world coordinate
system at the camera center, with the Z-axis parallel to
the camera’s optical axis. The quantities fx, fy , cx, and cy
are intrinsic parameters of the camera representing the focal
length and image plane center in pixel units. Thus, we see
that it is possible to express the projection of any sample
projected into image coordinates, (uik, u

i
k), as a function of

the corresponding 3D sample at time t0k and the inter-period
displacement ∆pT

(3).

B. Minimizing the 3D Geometric Error

Rearranging the terms in (3), we can obtain expres-
sions for X0

k and Y 0
k in terms of estimates of Z0

k and
(∆XT

,∆YT
,∆ZT

):
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where “ ˆ ” denotes that a quantity is an estimate, and iX̂0
k

and iŶ 0
k are approximations of X0

k and Y 0
k based on the

estimates and the image-coordinate samples of period i. Such
equations can be formed for each sample k = 0, 1, ..., N −1
and each period i = 0, 1, ...,M − 1.

Ideally i1X̂0
k = i2X̂0

k and i1 Ŷ 0
k = i2 Ŷ 0

k for any sample k
and any pair of periods i1 and i2. Therefore, making use of
(4) and (5), we can obtain a pair of equations as follows:
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Two equations of the form (6) and (7) can be obtained
for every sample k, for every pair of periods i1 and i2. This

results in a total of 2N
(
M
2

)
, where M is the number of

periods, and N is the number of samples from each period.
If we stack all these equations together in matrix form, the
result is an over-constrained homogeneous linear system,
which can be solved by solving the following optimization:

minimize ‖AX‖2
subject to ‖X‖2 = 1, (8)

where A is the coefficient matrix, and:

X ,
(
Ẑ0

0 Ẑ0
1 Ẑ0

2 ... Ẑ0
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∆̂YT
∆̂ZT

)T
.

(9)
This optimization (8) can be performed efficiently using
Singular Value Decomposition (SVD), where A = UΣV T ,
and the minimizer X∗ is the last column of V [28].

C. Constant Period Estimation

The period of motion T must also be known in order
to perform reconstruction. It can be estimated using Fourier
analysis of the image-coordinate velocity signals, u̇(t) and
v̇(t). Specifically, different linear combinations of the signals
of the form:

vφ(t) =
(

cos(φ)
sin(φ)

)T (
u̇(t)
v̇(t)

)
, (10)

parameterized by the angle φ are computed. The Power
Spectral Density (PSD) of each signal is calculated and all
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Fig. 1. An example from the gait sequences used to analyze the periodicity
of real human motion.

the PSDs are superimposed with weights proportional to their
sparsity (as given by the `-0.5 norm). Finally, the period
of motion is taken as the inverse of the largest spectral
component in this weighted sum of PSDs.

III. THE PERIODICITY OF REAL HUMAN MOTION

Theoretical results have shown that we can reconstruct
a periodic trajectory in 3D by using only its appearance
from a single camera-view. However, it is important to bear
in mind that the primary interest in this work is in the
analysis of human motion in video. Given this intended
application area, it is then natural to ask the following ques-
tion: How periodic is real human motion? Reconstruction
techniques associated with natural human motion may not
strictly adhere to any parametric motion model. We explore
this question in detail in the form of quantitative analysis
and provide some interesting results. The data analyzed in
these experiments consists of gait sequences collected using
a commercial motion-capture system. In each sequence, an
infra-red marker was placed on the subject’s foot (in this
case near the toe), and the motion-capture system returned
accurate 3D trajectories for this point of interest. The data set
contains 16 gait sequences from a single subject, with each
gait sequence comprised of approximately 3− 4 full strides.
An example of one image from this data set is shown in
Figure 1.

It is important to note that this data illustrates the case of a
cooperative subject. In real scenarios, data may be collected
in an unstructured way and may involve uncooperative or
even adversarial subjects (for example, video from a surveil-
lance camera) resulting in significant fluctuations. However,
even in such situations relatively constant periodicity is often
exhibited over short lengths of time.

A. Temporal Periodicity

We examine different ways to evaluate deviations from
periodicity. The first one is temporal periodicity, i.e., the
constancy of the temporal duration of each stride of the gait.
By manually demarcating the beginning of each stride in
every sequence we find that over a set of 16 gait sequences,
the mean period is 2.46sec and the standard deviation
is 0.11sec (4.6% of the mean). Additionally, the average
absolute change in period length between two successive
strides is 0.06sec. That is to say, the deviation in period
between two successive strides is on average 0.06sec.

B. Spatial Periodicity

Spatial periodicity is defined as the constancy of both
the stride length and direction. As before, we make use
of manual demarcations of individual strides. Over the set
of 16 sequences, we find that the mean stride length is
106.1cm, with a standard deviation of 7.53cm (7.1% of the
mean). The average absolute change in stride length between
two successive strides was found to be 2.69cm. In addition,
the average absolute change in stride direction between two
successive strides is 2.17o.

C. Inter-Period Prediction Error

According to our definition, periodic motion can be de-
scribed as p(t+T ) = p(t)+∆pT

. The displacement between
any two samples separated by exactly one period in time
is a constant factor ∆pT

, referred to as the inter-period
displacement. In this experiment, we examine the suitability
of the motion model, which we have used in the derivation
of our reconstruction techniques, to natural human motion.
For each sequence, ∆pT

is first estimated by computing the
mean displacement between each pair of samples separated
by one period in time. Then, the position of each sample
p(t + T ) is predicted as p̂(t + T ) = p(t) + ∆pT

, and the
error between the prediction p̂(t+T ) and the actual p(t+T )
is measured. This is a form of a composite measure, which
captures the overall periodicity of each gait sequence and
measures the applicability of our motion model. Over the set
of 16 gait sequences the average prediction error computed
is 9.63cm.

IV. APPLICATION: CLINICAL GAIT ANALYSIS

In the following set of experiments, we explore the
applicability of the proposed reconstruction techniques to
clinical gait analysis. Traditionally, gait analysis is performed
manually by an expert physician who simply observes the
gait of a patient in order to asses the degree of his/her
debilitation. This process is subjective and the results of a
manual analysis may vary from one physician to another for
the same patient. In light of the current state-of-the-practice,
it may be both possible and desirable to standardize this type
of gait analysis through the use of technology. This may
also make the results more accurate, precise, and repeatable.
One possibility is to use commercial motion capture systems
in order to collect accurate data about gait [25]. However,
such systems are composed of multiple infra-red cameras
(a minimum of six), are quite expensive, and require some
technical expertise to operate, rendering them impractical in
clinical settings. More recently, there have also been attempts
to introduce further automation into the diagnostic procedure
in the form of single-camera systems [23], [24].

Specifically, we explore the specific case of people whose
gaits have been affected by strokes, and we compare them
to the gaits of healthy people. In particular, we concern
ourselves here with patients who exhibit paretic gait, in
which one side of the body has been partially paralyzed by a
stroke. We will show that it is possible to distinguish between
the gaits of these patients and those of healthy individuals.
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Furthermore, our results indicate that it may be possible to
infer the degree of debilitation exhibited from only a small
number of points on the body.

A. Data Collection

The data used for these experiments consisted of gait
information from both healthy individuals and people who
have suffered strokes. In all cases, the points on the body
that were tracked included the subjects’ ankle and knee
joints – this is the only information that was used from each
subject. The data was collected from the natural gaits of these
subjects.

1) Healthy Gait: The set of healthy gait data consisted of
samples from 6 different people without any known medical
conditions affecting their movement. Several sequences were
filmed of each person, from both left- and right-side viewing
angles, using a standard resolution video camcorder. Small
colored markers were attached to the ankle and knee joints
over the subjects’ clothing, and they were tracked using color
classification. In total, there were 27 left-side and 32 right-
side track sequences of healthy gait.

2) Paretic Gait: Samples of debilitated gait came from 8
different individuals exhibiting partial paralysis, consisting
of 3 who are left-side and 5 who are right-side paretic.
Due to constraints of anonymity, data was collected using a
commercial motion capture system, which provides accurate
3D trajectories of infra-red markers attached to the subject’s
body. Since many of the sample trajectories consisted of just
over 1 full stride of gait, longer sequences were synthesized
by concatenating 3 periods of motion from the raw data.
Then, 2 virtual camera positions and orientations were cho-
sen (such that the left and right legs, respectively, could be
seen), and the 3D trajectories were projected into the image
coordinates of these virtual cameras. This comprised the data
which we used as input for these experiments. Note, that this
is similar to the tracking approach taken in related work such
as [13], except that here we use the more realistic perspective
projection instead of the orthographic assumption. As before,
only tracks of the subjects’ ankle and knee joints were used.
In total, there were 7 tracks of left-side paretic gait, and 13
of right-side paretic gait.

B. Trajectory Reconstruction

Given the image-coordinate tracks described in the pre-
vious section, the constant period of motion was estimated
using the technique described earlier. Since the period of
motion is a property of the body as a whole, only the
estimate from the ankle joint of each sequence was used.
Next, each image-coordinate trajectory was resampled, so
that the period of each sequence became 100 samples/stride.
This was a design choice, which serves to make all subse-
quent analysis invariant to both walking speed and camera
frame rate. These resampled image-coordinate trajectories
were then reconstructed using the 3D geometric error cost
function. Reconstruction was performed using the constant
period formulation, since the gaits collected here maintained
perfect periodicity relatively reliably. Each sequence in these

gait samples consisted of tracks from two rigidly-connected
body points (i.e., ankle and knee), each reconstructed knee-
joint trajectory was scaled relative to the corresponding
reconstructed ankle trajectory in order to enforce the rigidity
constraint. Computation of the scale factors are omitted from
this article due to space constraints.

C. Gait Distance Computations

To carry out high-level analysis, we must first compute
the distances between all pairs of reconstructed ankle/knee
sequences in a consistent fashion. Recall that, in each se-
quence, we have already rescaled the reconstructed knee
trajectories with respect to those of the ankles in order to
enforce the rigid body constraints. However, before inter-
sequence distances can be computed, we must appropriately
scale each entire ankle/knee pair (in 3D) in a way that enables
us to compute scale-invariant distances. This is accomplished
by choosing one period of one ankle trajectory as a reference
period. Then, for each sequence, every one-period segment
of ankle trajectory is scaled, rotated, and translated so that it
is best-aligned with the reference period. For the one-period
segment that most closely matches the reference period, the
scale-factor computed for that alignment is then used as
the overall scaling of that sequence. Once each sequence
has been appropriately scaled, we can compute the distance
between each pair of reconstructed ankle/knee trajectories
(i.e., the inter-sequence distances). Distances are computed
using the Orthogonal Procrustes Distance, which calculates
the translation and rotation that minimizes the MSE between
the two sets of points, including both the ankle and knee
reconstructions.

D. Sequence Classification

In this particular experiment we begin to examine our
ability to classify between healthy and paretic gait using
the distances computed above. Here we consider each an-
kle/knee gait sequence independently, ignoring (for now) our
knowledge of which subject it was generated by. All healthy
sequences are used, but only the paretic-side gait of the stroke
victims are included in this experiment. A simple nearest-
neighbor classification is used, in which a test sequence
is assigned the label of its nearest-neighbor in the training
data. We choose 10-fold cross-validation in order to test the
classification performance. Note that our goal here is not to
develop a sophisticated new classification scheme, but only
to explore the informativeness of these reconstructions as
a proof-of-concept pilot study. The classification results are
summarized in Figure 2(a). Note that overall classification
accuracy is close to 95% for individual gait sequences.
Additionally, the mean and standard deviations of the inter-
and intra-class distances were computed. These results are
summarized in Figure 2(b). As can be seen, the healthy and
paretic gait classes are relatively tightly clustered, since the
mean of the inter-class distances is much larger than the
means of the intra-class distances. This explains our ability
to classify accurately, and further supports the assertion that
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Healthy Gait 96.6%
Paretic Gait 90.0%
Total 94.9%

(a)

Distance mean std
Intra-class: Healthy Gait 0.56 0.23
Intra-class: Paretic Gait 0.71 0.69
Inter-class 0.95 0.64

(b)

Fig. 2. (a) 10-fold cross-validation classification accuracy for individual
sequence classification. (b) Means and standard deviations of inter- and
intra-class distances.

these reconstructions contain significant information regard-
ing the presence of gait debilitation, even if they are only
from two tracked points on the body. Another observation
is that the standard deviation of the paretic gait intra-class
distances is relatively large. This can be attributed to the fact
that the set of paretic gaits contained subjects with both left-
and right-side paralysis, and each person’s paralysis resulted
in a different gait appearance, leading to large variability
within this class.

E. Subject Classification

So far we have treated each gait sequence individually,
regardless of which subject it was from. However, taking the
identity of the subject into account may aid in performing
a more robust analysis. In this experiment, we consider a
more realistic case, which is perhaps more similar to the way
analysis would be performed in a clinical setting. Instead of
measuring only inter-sequence distances, here we consider
inter-person distances, taking into account all available gait
sequences for each subject1. Here the goal is to classify each
person or subject as belonging to either the healthy or paretic
gait category. Note that this is more similar to the type of
automated analysis that could be performed in a doctor’s
office: first several gait samples would be collected from the
current subject in question, then this person’s gaits would
be compared to both the healthy and debilitated subjects in
the database in order to make a diagnosis. To compute the
inter-person distance between two subjects, we simply take
the median of all inter-sequence distances between these two
people. Inter-sequence distances were computed as described
earlier. The median was used here due to its robustness
to outliers. In this experiment each subject was classified
as either healthy or paretic based on all gait sequences
from one side of his/her body. As before, classification was
performed here using a simple nearest-neighbor scheme,
where in this case a subject was assigned the same label as
the subject in the training set with which the minimum inter-
person distance was computed. In each case, one subject
was used as the test set, while the training set consisted
of all remaining subjects (i.e., the database). Using this
classification scheme, we achieved a classification accuracy
of 100% for both the healthy and paretic subjects. As can be
seen from this result, classification accuracy is improved by
treating each subject as a whole, instead of considering only
individual gait sequences separately. In addition, the use of

1We take the left- and right-side gaits of healthy individuals separately,
and use only the paretic side of debilitated subjects.

Inter-Person Distance mean std
Intra-class: Healthy Subject 0.52 0.11
Intra-class: Paretic Subject 0.88 0.70
Inter-class 1.06 0.67

Fig. 3. Means and standard deviations of inter- and intra-class inter-person
distances.

the median for computing the inter-person distances made
our classification more robust to outliers, in which one inter-
sequence distance might be erroneous due to factors such
as inaccurate reconstruction or poor tracking performance.
Finally, some statistics of the inter- and intra-class distances
were again computed, except that in this case we use the
inter-person distances rather than just comparing individual
gait sequences. The results are summarized in Table 3. As
we expect, it appears that the class of healthy subjects is
relatively tightly clustered with respect to the inter-class
distances, as is the case with the paretic subjects. This
helps explain our ability to classify subjects correctly, and
again supports our assertion that gait reconstructions using
only two points on the body can still contain significant
information about the subject.

F. Manifold Embedding

We further explore the information content of these gait
reconstructions by examining their embedding in a low-
dimensional manifold space. Each gait sequence was taken
as a point on the manifold in some high-dimensional space,
and embeddings were computed using ISOMAP. Only the
inter-sequence distance matrix was required as input, so it
was not necessary to explicitly represent each gait sequence
as a point in this space.

A plot of the two-dimensional embedding of the healthy
and paretic gait sequences is shown in Figure 4, where
healthy gaits are indicated by blue points, and paretic gaits
by red points. One fact that is quite striking about this em-
bedding is that, barring three outlier points, the healthy and
paretic gaits are linearly separable in this low-dimensional
space.

We can draw two interesting conclusions from this obser-
vation. First, this result seems to indicate that most of the
variation in this set of data can be explained by only two
degrees of freedom. So even though the gaits represented by
these high-dimensional points are quite complex motions,
most of the difference between them can be parameterized
with two variables. Second, this embedding explains our
previous results for both the sequence classification and the
subject classification tasks. It is clear that, at least in this
particular embedding, it would be difficult to develop any
classifier which could achieve perfect classification accuracy
based only on the individual sequences. This is evidenced
by the few outliers depicted in Figure 4 – the three healthy
gaits embedded in the midst of all the paretic data points.
However, when we switch to subject classification using
inter-person distances, this problem is alleviated, since we
take into account all gait sequences from each subject, and
small numbers of outliers no longer affect the classification.
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Fig. 4. Two-dimensional ISOMAP embedding of the healthy and paretic
gait sequences. Blue/red points indicate healthy/paretic, and circle/cross
points represent left/right-side, respectively.

Interestingly, the manifold embedding indicates not only
linear separability in 2D but also contains information about
the degree or severity of the subject’s paralysis. Informally,
we can observe that paretic gaits closer to the healthy
gaits in the manifold embedding (i.e., red points farther
to the right in Figure 4) show less paralysis than those
farther from the healthy gaits. Unfortunately, it is difficult
to illustrate the differences in gait in a static image. As
such, video clips showing examples of three different gait
sequences with different levels of paralysis can be found on-
line at http://www.ece.umn.edu/users/ribn0003/strokedata/.
Included are paretic gait sequences from three different parts
of the manifold – moving from right to left in Figure 4. Each
sequence shows the motion-capture tracks of the subject’s
knees and ankles, where each sequence was synthesized from
the real motion-capture as described earlier.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have built on our previous work on
reconstructing periodic motions in 3D in order to explore
its effectiveness in human motion analysis. In order to
justify the use of these reconstruction techniques, we have
performed an empirical study regarding the periodicity of
real human motion. Using motion-capture data from several
instances of normal gait, measures of both temporal and
spatial periodicity were considered, as well as the suitability
of the proposed motion model for periodic trajectories. We
have found that human motion can indeed adhere closely to
strict periodicity over a duration of 3-4 strides.

Finally, the applicability of the proposed algorithms to
the domain of human motion analysis was demonstrated in
clinical gait analysis. Reconstructions of two points on the
body could be used to accurately classify gait sequences
as belonging to either healthy individuals, or to subjects
whose movement has been affected by stroke. A classi-
fication accuracy of 100% was achieved when classifying
between sets of trajectories consisting of multiple instances
of each subject’s gait. Furthermore, it was observed that a
low-dimensional manifold embedding of the reconstructed
trajectories contained information regarding the severity of
the debilitation.
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