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Abstract— It is frequently accepted in the manipulation
literature that tactile sensing is needed to improve the precision
of robot manipulation. However, there is no consensus on how
this may be achieved. This paper applies particle filtering to
the problem of localizing the pose and shape of an object that
the robot touches. We are motivated by the situation where the
robot has enclosed its fingers around an object but has not yet
grasped it. This might be the case just prior to grasping or
when the robot is holding on to something fixtured elsewhere
in the environment. In order to solve this problem, we propose
a new model for position measurements of points on the robot

manipulator that tactile sensing indicates are touching the
object. We also propose a model for points on the manipulator
that tactile measurements indicate are not touching the object.
Finally, we characterize the approach in simulation and use it
to localize an object that Robonaut 2 holds in its hand.

I. INTRODUCTION

One of the fundamental barriers to autonomous robot

manipulation in unstructured environments is perception.

Estimating the combined state of the manipulator and the

objects that the robot touches has proven to be difficult.

Attempts to estimate hand-object configuration visually are

hampered by occlusions. Instead, force and tactile sensing is

a natural way to track the combined state of the manipulator

and the objects acted upon during manipulation. Although

this type of measurement is information-poor relative to

camera images, it does not suffer from occlusions and it

has the potential to enable more precise position and force

estimates than is possible using only visual information.

This paper focuses on the problem of tracking the pose and

shape of an object that a robot holds between compliant

fingers. We are motivated by the situation where the robot has

enclosed its fingers around an object but has not yet grasped

it. This might be the case just prior to grasping or when

the robot is holding on to something fixtured elsewhere in

the environment. Our objective is to localize the object more

precisely using force and position sensing in order to assist

subsequent interactions with the object. The result should be

more accurate than the visual estimate alone and it should

account for displacements caused by the manipulator itself.

Particle filtering is a statistical approach to robust non-

linear state estimation that is well suited to the problem

of tracking object configuration based on a series of force

and position measurements [1], [2], [3]. In [1], the authors

applied Markov localization to the problem of localizing the
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planar pose (3 DOFs) of an inelastic fixtured part based on

tactile measurements. The likelihood of a particular position

was calculated by numerically integrating a Gaussian error

model over the contour of the object. The resulting likelihood

model was stored in a look-up table. Similarly, Petrovskaya

et. al. also localize an inelastic object by making repeated

contact with a single end-effector. In this work, localization

occurred in the space of spatial object poses (6 DOFs) [2].

The high-dimensional likelihood space caused Petrovskaya

et. al. to propose a variant of particle filter annealing that

iteratively increases measurement model entropy while de-

creasing the search space. In related work, Chhatpar and

Branicky apply particle filtering to the problem of localizing

the pose of a peg with respect to a hole [3]. In contrast to

the above, their work samples measurements from across the

state space on-line rather than creating an analytical model

for the measurement distribution.

This paper expands on the work described above by

proposing a new measurement model that can be used to

track hand-object configuration during manipulation. We are

specifically interested in the case where the pose of the robot

hand is known but the object configuration is unknown and

possibly moving in the hand. A key step in particle filtering

is the weighting phase where each particle is weighted

depending upon how likely the observed measurement would

be if the system were in the state hypothesized by that

particle. Our measurement model integrates the likelihood

of a contact position measurement over the space of all

possible true contact positions on the surface of the object.

This is different than that approach taken in [2] where the

likelihood of an observed contact is evaluated with respect to

the maximum likelihood point on the surface of the object.

This paper also proposes using negative information obtained

from contacts that are known not to be touching the object.

As in the above, we integrate the likelihood of the negative

contact measurement over the volume outside the object.

Also, we briefly describe a dynamic approach to particle filter

annealing that enables us to localize in five dimensions using

the particle filter. Finally, after demonstrating the advantage

of the new measurement model in simulation, we apply the

approach to a practical object localization problem where

we estimate the pose of an object that is captured by the

Robonaut 2 hand. The Robonaut 2 experiments demonstrate

that the approach is a viable solution to an important practical

problem in humanoid robotics.
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II. BAYESIAN FILTERING

The goal of Bayesian filtering is to track the state of a

stochastic system as it changes. It is assumed that state, x, is

a stochastic Markov function of time. At every timestep, the

measurements, z, depend only on the current state. Starting

with a prior distribution over state, P (x0), Bayesian filter-

ing recursively updates a posterior distribution, P (xt|z1:t),
where xt is the state at time t and z1:t = {z1, . . . , zt} is

the set of measurements between time 1 and time t. The

update to the posterior (also called the “belief state”) is

accomplished in two steps. First, the prediction step updates

the distribution by applying a system model:

P (xt|z1:t−1) =

∫

P (xt|xt−1)P (xt−1|z1:t−1)dxt−1 (1)

The above uses the Markov assumption that

P (xt|xt−1, z1:t−1) = P (xt|xt−1). In the second step,

the posterior distribution is updated in proportion to the

likelihood of having generated the observed measurements,

zt:

P (xt|z1:t) = ηP (zt|xt)P (xt|z1:t−1), (2)

where

η =
1

P (zt|z1:t−1)

is a normalizing constant.

Equations 1 and 2 constitute an optimal solution to the

problem of tracking state in a Markov system. However,

they ignore the question of how the posterior distribution

is represented. Two popular solutions to this problem are

the Kalman filter and the particle filter. The Kalman filter

is optimal, but makes strict (linear system, Gaussian noise)

assumptions regarding the system and measurement models.

The particle filter does not make these assumptions, but

relies on Monte Carlo methods that depend on an adequate

sampling the posterior distribution. This paper uses the

sample importance resampling (SIR) version of the particle

filter [4] to track hand-object state.

III. LIKELIHOOD OF CONTACT POSITIONS

In the context of mobile robot localization, range mea-

surements are functions of the relative configuration of the

robot in the environment. Since relative robot configuration

is generally the variable of interest, the likelihood of the

measurements can be used to infer robot configuration. How-

ever, in manipulation, contact positions are not functions of

object configuration alone. These measurements also depend

on manipulator configuration. Rather than requiring a model

of how the manipulator and the object interact, we evaluate

the likelihood of contact positions by integrating over all

possible manipulator configurations.

A. General case

Let x describe the object configuration (i.e. shape and

pose). Let R be a set of contact positions on the robot ma-

nipulator equipped with force sensors that measure whether

a point r ∈ R is touching the object or not. Let p =
(p1 . . . pP ) ⊆ R be the portion of contacts that are touching.

Let q = (q1 . . . qQ) ∈ R − p be the contacts that are not

touching. Assume that p̂ and q̂ are noisy measurements of

p and q, but that there is no uncertainty regarding mem-

bership in p and q. This corresponds to an assumption that

perfect contact force sensors determine whether a contact is

touching or not but that the position of the contacts cannot

be measured accurately. In our hardware experiments (see

Section VI), the uncertainty in the position measurements

was caused by modeling inaccuracies in the manipulator

geometry and kinematics.

Assume that the contact position measurements, p̂ and

q̂, are independent and identically distributed given object

configuration, x. Then the likelihood of the measurement

can be written as a product:

P (p̂, q̂|x) =

P
∏

i=1

P (p̂i|x)

Q
∏

j=1

P (q̂j |x). (3)

If an accurate model of the manipulator-object interaction

were available, then the likelihood of a given position mea-

surement could be evaluated in terms of its proximity to an

expected position measurement: P (p̂i|model(x, u)), where

model(x, u) denotes the expected contact position given an

object configuration x and manipulator control parameters, u.

However, since the ultimate position of manipulator contacts

on an object is a complex function of the second-order

impedances of the manipulator and object, creating such a

model can be prohibitively difficult. Instead, we propose a

simpler (but less informative) measurement model created by

integrating over all possible contact positions as a function

of object pose:

P (p̂i|x) =

∫

P (p̂i|pi)P (pi|x)dpi.

In principle, pi depends on both x and u, and we should

integrate over u:

P (pi|x) =

∫

P (pi|u, x)P (u|x)du.

However, in the absence of a model, assume that P (pi|x) is

uniformly distributed over all possible contact positions on

the surface of the object:

P (p̂i|x) =

∫

p∈δS(x)

P (p̂i|p)dp, (4)

where δS(x) is the set of points on the surface of the object.

Similarly, since the contact points, q, do not touch the object,

assume that they are uniformly distributed over the set of

possible contact positions outside of the object (but within a

gross region about the object):

P (q̂i|x) =

∫

p∈S̄(x)

P (q̂i|q)dq, (5)

where S̄(x) is the finite set of points outside of but within

a gross region of the object.
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B. Positive contact on a polyhedron

In general, Equations 4 and 5 have no closed form solution

and must be evaluated numerically or approximated by

a simple surface. This section explores approximations to

Equation 4 for polyhedrons. Let F be the set of faces that

comprise the polyhedron. Then Equation 4 becomes:

P (p̂i|x) =
∑

f∈F

P (p̂i|f), (6)

with

P (p̂i|f) =

∫

p∈f(x)

P (p̂i|p)dp, (7)

where f(x) is the set of positions on face f when the

object is in configuration x. Suppose the contact position

measurement noise is Gaussian:

P (p̂i|pi) = N (p̂i|pi, Σ)

= N (pi|p̂i, Σ), (8)

where N (·|µ, Σ) denotes the normal distribution about µ

with a covariance matrix, Σ. For each facet, define an

orthonormal basis described by the rotation matrix, Rf =
(tx, ty, n), where n is a basis vector normal to f and tx and

ty span the plane containing f . Let

pt =

(

tTx
tTy

)

p

be the projection of p onto the plane and let

pn = nT p

be the projection onto the normal. As a result, we can write:

P (p̂i|p) = P (p|p̂i)

= P (pt|pn, p̂i)P (pn|p̂i). (9)

P (pt|pn, p̂i) and P (pn|p̂i) can be evaluated using standard

Gaussian manipulation techniques [5]. The Gaussian distri-

bution in Equation 8 can be treated as a joint distribution

over pt and pn with a covariance matrix:

Σ =

(

Σtt Σtn

Σnt Σnn

)

.

Then

P (pn|p̂) = N (pn|p̂n, Σnn), (10)

and

P (pt|pn, p̂i) = N (pt|p̂t|n, Σt|n), (11)

where

Σt|n = Σtt − ΣtnΣ−1
nnΣnt,

and

p̂t|n = p̂t − ΣtnΣ−1
nn(pn − p̂n).

Substituting Equations 10 and 11 into Equation 7, we have:

P (p̂i|f) =

∫

(pt,pn)∈f(x)

N (pt|p̂t|n, Σt|n)N (pn|p̂n, Σnn)

= N (fn|p̂n, Σnn)

∫

pt∈ft(x)

N (pt|p̂t|n, Σt|n),(12)
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Fig. 1. The dotted line in (a) shows a hypothetical path of a contact
measurement in the neighborhood of a planar rectangle. (b) illustrates the
likelihood of the measurement along this path. The dip in the likelihood
function occurs as the path turns the corner.

where ft(x) is the set of tangent coordinates of the points

in face f and fn = pn ∈ fn(x) is the constant position of

points in face f measured along the normal vector, n.

If the facet f is indefinite, then the integral in Equation 12

goes to one and

P (p̂i|f) = N (pn|p̂n, Σnn). (13)

If the facet, f , is bounded by a rectangle,

pt ∈ R2 : px
t ∈ [xh, xl] ∧ p

y
t ∈ [yh, yl],

and Σt|n is isotropic, then Equation 12 becomes:

P (p̂i|f) =
1

4
N (pn|p̂n, Σnn)YfXf , (14)

where

Yf =

[

erf

(

yh − p̂y√
2σy

)

− erf

(

yl − p̂y√
2σy

)]

,

and

Xf =

[

erf

(

xh − p̂x√
2σx

)

− erf

(

xl − p̂x√
2σx

)]

,

and erf denotes the error function and σx and σy are the

singular values of Σ associated with eigenvectors directed

along the rectangle axes, tx and ty . Note that in order

to apply this technique on multiple differently oriented

rectangular faces, the requirement for Σt|n to be isotropic

essentially requires Σ to be isotropic. Also, note that P (p̂|f)
tends toward Equation 13 as the facet becomes larger relative

to σx and σy .

Figure 1 illustrates the behavior of the likelihood function

in the neighborhood of a planar rectangle. The dotted line

in Figure 1(a) illustrates a hypothetical path of a contact

measurement, p̂, through the space around the rectangle.

Figure 1(b) illustrates the likelihood function for the path.

The dip in Figure 1(b) occurs as the path turns the corner

and shows that the likelihood of the measurement decreases

in the neighborhood of the corner.
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C. Negative contact on a polyhedron

Whereas it is possible to give a good closed-form approx-

imation of the likelihood of contacts touching a polyhedral

object, there is no similar closed form expression for the

likelihood of negative contacts (contacts that do not touch

such the object). Our analysis in Section III-B was possible

because of the constraint that the Gaussian was integrated

over rectangular surfaces. However, it is not possible to

use this method to evaluate the integral over the space

outside of the object unless the object itself is rectangular.

Rather than considering only rectangular objects, we propose

approximating the likelihood function by integrating over an

appropriate half plane.

We are interested in integrating over the half plane (in

Cartesian 3-space) outside the object that contains the largest

part of the probability mass, N (q|q̂, Σ). Consider the set of

half planes bounded by planes that contain the faces of the

polyhedron. If q̂ is inside the object, then the largest part of

the probability mass is contained in the half plane associated

with the closest face. If q̂ is outside the object, then this is the

half plane that contains q̂ and is bounded by the plane furthest

from q̂. Let c(f) be the plane that contains that face f ∈ F .

Let c+(f) be the half plane associated with c(f) that does

not contain the object. Let h(q̂) = {f |q̂ ∈ c+(f)} be the set

of faces that bound half planes containing q̂. Let d(f, q̂) be

the distance from q̂ to c(f). We integrate N (q|q̂, Σ) over the

half plane outside the object associated with the following

face:

f∗(q̂) =

{

arg maxf∈h(q̂) d(f, q̂) if q̂ outside object.

arg minf∈F d(f, q̂) if q̂ inside object.
(15)

Now, we expand Equation 5 by integrating over the

positive half plane for face f∗(q̂):

P (q̂|x) =

∫

(qt,qn)∈f∗(q̂)

N (qt|q̂t|n, Σt|n)N (qn|q̂n, Σnn).

Since we are integrating over the entire half plane, the

tangent integral goes to one and we have:

P (q̂i|x) =

∫ ∞

q∗
n

N (qn|q̂n, Σnn)dqn

=
1

2

[

1 − erf

(

q∗n − q̂n√
2σn

)]

, (16)

where q∗n is the normal coordinate of face f∗(q̂) and σn is

the square root of the variance in the normal direction (again,

we have assumed an isotropic covariance matrix, Σ).

One interesting point about using negative contact infor-

mation is that all hand surfaces are known to be outside the

object – not just those hand surfaces equipped with force

sensors that indicate they are not touching. If a large number

of appropriate negative contact surfaces are used, then in

principle, good object localization is possible just using

negative information and without using contact force sensors

at all. Essentially, these negative contacts roughly encode

the geometry of the hand or manipulator and extrapolate

the object configuration based on the available free space.

Combining positive and negative contact information is a

unified way of combining the information about where the

manipulator touches the object and the available free space.

IV. MAINTAINING PARTICLE DIVERSITY USING DYNAMIC

ANNEALING

Until this point, the proposed measurement model can

be applied equally well in the context of a particle filter,

Kalman filter, monte carlo maximum likelihood estimate, or

a different form of inference. Exactly which method should

be used depends on the exact nature of the localization

problem. For problems where object configuration is known

to be fixed, a filtering solution should be discarded in favor

of a maximum likelihood or maximum a priori estimate.

The scaling series approach in [2] performs inference in

a six dimensional space. However, since we are interested

primarily in tracking the unknown motions of an object

captured by the robot hand, our focus is on a filtering

solution.

Although the particle filter has had success in three-

dimensional tracking problems, it is not clear that it is

suitable for localization problems in five, six, or higher di-

mensions (as in the present object localization scenario). The

key problem is ensuring the particle set maintains a diversity

suitable for the level of “confidence” present in the system.

When system state is uncertain, a higher entropy particle set

is appropriate while a lower entropy sampling improves the

accuracy of a highly-confident track. Deutscher et. al. address

this problem in the context of human motion tracking (a

very high dimensional state space) by proposing an annealing

technique where the entropy of the measurement distribution

is gradually decreased over time by taking the distribution to

an increasing power [6]. While this approach assists initial

localization, it does not help if the track gets “lost” because it

is impossible to increase the expected entropy of the sample

set. While this is irrelevant to the problem of locating a

static object, it is important when the object is moving in

an unknown way in the robot hand.

We address this problem with a dynamic annealing ap-

proach that adjusts measurement model entropy as a func-

tion of the normalized likelihood of the most recent mea-

surements. Large measurement likelihoods indicate that the

particle set is distributed in a likely region of space and it

is possible to decrease measurement model entropy. Small

measurement likelihoods indicate that the particles are not

focused in likely regions of space and a higher entropy

distribution is needed in order to “find” the peaks. We control

the entropy of the distribution by varying the eigenvalues

of the measurement model covariance matrix, Σ, in Equa-

tions 16 and 14 between a minimum, σmin, and maximum,

σmax. This happens in inverse exponential proportion to

the measurement likelihood of Equation 3. Assuming an

isotropic covariance matrix, Σ, let σ2 denote the variance

of Σ. Then set σ according to:

σ = (σmax − σmin)exp

(

−P (p̂, q̂|x) − Smin

Smax − Smin

)

+ σmin,

(17)
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Fig. 2. Illustration of simulation setup. Three fingers (the lines) tracked the
rotating motion of a rectangle (in the plane) by applying small simulated
inward forces.

where Smin and Smax are convenient minimum and maxi-

mum values for the likelihood, P (p̂, q̂|x).

V. SIMULATIONS

The first experiment compared the positive contact mea-

surement model proposed in this paper to the maximum

likelihood model used in [2] and [3]. Let

p∗ = arg max
p∈δS(x)

N (p|p̂, Σ)

be the most likely point on the object surface given the po-

sition measurement, p̂. Then, under the maximum likelihood

model, the likelihood of this position measurement is:

P (p̂|x) = N (p̂|p∗, Σ).

Figure 2 illustrates the experimental setup. A three finger

manipulator touches a moving rectangle two inches wide

and one inch high. The fingers apply small inward forces

such that the contacts always touch the object but do not

impede its motion. The objective is to localize and track

the rectangle using measurements of the three fingertip

positions. The rectangle rotates between −π
7 and 2π

5 radians

about an interior point in 86 time steps while the “palm”

position remains fixed. Localization occurred over the three-

dimensional space of planar object poses. The height and

width of the rectangle were assumed to be known.

Simulation results are illustrated in Figure 3. The figure

shows localization error (measured as an L2 norm in state

space) averaged over ten trials for identical runs using the

maximum likelihood model and the proposed measurement

model. The results show that measurably better performance

is obtained by the proposed model. Beyond that, a couple of

features are apparent. First, localization convergence takes

30 or 40 time steps. This is surprising since, in principle,

a minimum of only three measurements are needed to

localize the planar rectangle. However, note that three of

the right measurements are needed. For example, when the

manipulator is in the configuration shown in Figure 2, it

is impossible to accurately localize displacement along the

long axis of the box. Therefore, complete localization only
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Fig. 3. Comparison of the maximum likelihood model (dotted line) for
positive contacts with the likelihood model proposed in this paper (solid
line). Results are averaged over ten runs for each likelihood model.

Fig. 4. Robonaut 2.

occurs after one of the contacts moves over the a corner of

the rectangle. The other reason that localization takes several

steps is that the particle filter update occurs only once at each

time step. Although it is possible to execute multiple filter

updates on each time step, notice that position measurements

are plentiful in this scenario and there is no need to conserve

this information. It is a better use of computational resources

to track using the latest data. The second feature that is

apparent in Figure 3 is that the localization error actually

begins to increase after time step 50. It turns out that this is

an artifact of measurement aliasing after timestep 50. During

this period, the rectangle was in a configuration relative to

the contacts similar to that shown in Figure 2. As a result,

it was impossible for the system to localize position error

along the long axis of the rectangle and error slowly began

to integrate. This would continue until a contact again turned

a corner of the rectangle.
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Fig. 5. Robonaut 2 hand. The black dots indicate the contacts used in the
experiments.

VI. EXPERIMENTS WITH HARDWARE

Experiments were performed using Robonaut 2, shown in

Figure 4. All hardware experiments used the positive and

negative contact measurement likelihood models described in

Sections III-B and III-C. Although our goal is to track object

pose in dynamic scenarios (for example, when the object

moves in the hand), our experiments consider the converse

problem: localizing a fixed object by moving the hand over

the object surface. This is slightly easier than the original

problem because the robot measures hand velocities relative

to the object. If the object were moving in the hand, this

information might not be available. Our experiments evaluate

the efficacy of localization when the Robonaut 2 hand makes

the same sequence of compliant moves for nine different

relative tube configurations.

A. Setup

In all hardware experiments, Robonaut 2 interacted with a

piece of rubber tubing fixtured to the ground approximately

1.5 inches in diameter. Robonaut 2 is equipped with ac-

tively compliant fingers [7] that allow the stiffness of the

finger joints to be controlled programmatically. In addition,

Robonaut 2 has torque-controlled arm joints that similarly

allow the stiffness of the palm Cartesian position to be

specified programmatically. This arm and hand compliance

enabled Robonaut 2 to compliantly move along the surface

of the tube. After wrapping its fingers around the object, the

manipulator reference configuration was adjusted according

to a fixed pattern that pulled the manipulator approximately

along the length of the tubing in a twisting motion. Because

of the manipulator compliance, the resulting motion of the

robot hand was a function of the cylinder pose and radius.

The pose and radius of the rubber tubing was estimated

using a particle filter operating in a six-dimensional state

space comprised of 5 pose DOFs (no axial orientation) and

one dimension describing radius. Pose localization occurred

in five dimensions rather than four (the pose configuration

space of an infinite cylinder is only four dimensional) for pro-

gramming convenience. Since the measurement models pro-
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Fig. 6. Localization error for position (cyan), radius (green), and orientation
(blue) as a function of time (tenths of a second). The top plot shows error;
the bottom plot shows standard deviation of the particle cloud. The results
are averaged over the nine different tube orientations shown in Table I.

posed in this paper operate on polyhedra only, the shape of

the tubing was approximated by an infinite length prismatic

hexagon for the purposes of localization. Figure 5 illustrates

the contact points used during localization. The six contact

positions on the index finger, middle finger, and thumb are

equipped with embedded force sensors that measure contact.

These positions were included in p̂ when the corresponding

force sensor registered an above-threashold force and in q̂

otherwise. The contact position on the palm did not have a

force sensor and was always assumed to be out of contact.

B. Experiment

The robot interacted with the tubing in the nine different

relative configurations shown in Table I. In each localization

trial, the tube was fixtured in a different orientation and the

robot executed the same sequence of compliant motions.

The filter used a set of 1000 particles. Figure 6 shows

localization error averaged over nine trials in each of the

different relative configurations. Position measurements were

made every 0.1 seconds. The results show that particle

variance has converged after 20 iterations of the filter (two

seconds of data). Localization converges to a position and

radius error approximately one tenth of an inch. Orientation

error converges to approximately 8 degrees. Orientation

error seems large because the kinematics of the hand-tube

system are poorly configured to measure orientation. When

the robot grasps the tube, a change of 8 degrees in tube

orientation results in little movement of the contacts. (One

might imagine placing two hands on a tube to measure its

orientation more precisely.)

The underlying cause of localization error was a result

of modeling errors measuring contact location. First, rather

than calculating the exact contact location on the (complex)

surface geometry of the finger, our experiments simplified

localization by assuming contact locations at the center of

4307



Label A B C D E F G H I

Angle 0◦ 8◦ 16◦ 8◦ 16◦ 8◦ 16◦ 8◦ 16◦

Axis NA z z z z x x x x

TABLE I

THE NINE DIFFERENT TUBE ORIENTATIONS USED IN EXPERIMENT 1. THE x AND z AXES ARE AN ORTHOGONAL BASIS PERPENDICULAR TO THE

CYLINDER AXIS WHEN IT IS THE ORIENTATION IS AT ZERO.
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Fig. 7. Comparison of localization using only positive contact measure-
ments (dashed line) and localization using positive and negative contact
measurements (solid line). The results show orientation error averaged over
ten runs in tube orientation F . The top plot shows error; the bottom plot
shows standard deviation of the particle cloud.

the finger on the corresponding phalanges. If all finger

contact surfaces were spherical, then this assumption would

be accurate for a corresponding extruded object. However,

for the actual Robonaut 2 hand, this approximation is clearly

a source of error. More significant, however, were errors

caused by incorrect kinematic modeling or incorrect joint

calibration. Given the large number of joints in the hand and

the particularly complex kinematics of the thumb, maintain-

ing a very accurate kinematic model in the context of period

recalibration of the finger joint angle sensors proved to be

difficult.

Figure 7 compares the accuracy of localization using only

positive contact measurement and using both positive and

negative contact information. The cylinder was fixtured in

configuration F (see Table I). Performance of localization

using only positive contact information improves when neg-

ative information is incorporated.

VII. CONCLUSIONS

This paper considers the problem of hand-object state

estimation during mechanical interactions between the robot

hand and the object. We are particularly interested in local-

izing a partly or incompletely grasped part that is moving in

an unknown way. This capability could be used to identify

or characterize objects that the robot touches. Or, it could

be used during grasping to confirm that the robot is holding

the part correctly and to provide information about how to

adjust the grasp. Or, it could enable the robot to achieve a

desired hand-object relative pose in the context of a task or

assembly. The paper makes three main contributions. First,

we provide a new model of the likelihood of contact position

measurements and demonstrate a measurable improvement in

localization accuracy. Second, we propose modeling negative

contact information to improve localization. Finally, we

demonstrate that the methods can be used to localize an

object touched by a humanoid robot hand.
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