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Abstract— Many surveillance and reconnaissance tasks make
use of multi-cameras in order to ensure that a particular mis-
sion is accomplished. These networks of cameras are useful as
they can reduce the cost of human observers, are continuously
observant (unlike humans who may fall asleep on the job), and
can be implemented for a fairly low cost. However, in many
scenarios, it does not make sense or may not be possible to
have a fixed camera installation because the surveillance may
only be needed for a short duration or it may take too long to
do a proper install and observation is needed now.

In terms of short terms and immediacy, mobile robots
acting as a camera network provide an interesting middle
ground. They can be deployed quickly to cover immediate
needs, and they can be packed up and moved to another
area if needs change. However, as the duration of the mission
in which they are used increases, the robotic team will run
out of power. This paper addresses some of the issues with
keeping a surveillance team active while their batteries drain.
Multiple task-reallocation methods are used in conjunction
with an analysis of the effects of fixed vs mobile docking
stations. Simulations were run requiring the team to provide
camera coverage of a group of mobile “pedestrians” moving
dynamically through a scene and the results are presented.

I. INTRODUCTION

The problem of understanding where to place cameras
in a given scene has great practical importance. There are
numerous strategies for dealing with where to place the
cameras, ranging from the classical art gallery problem [1], to
the exterior visibility problem [2], to determining the optimal
locations to place cameras for continuous tracking [3]. In
each of these approaches, the goal is to determine how many
cameras are necessary to cover a given scene effectively,
where effectiveness is a function of the task at hand. These
algorithms work extremely well when cameras can be in-
stalled in a fixed position where secondary constraints such
as available power are effectively non-issues.

In [4], the cameras are actually modeled by individual
mobile robots and the approach is to adapt their location as
the scene changes. The work in this paper takes that work one
step further. In addition to assuming that cameras must move
over time to respond to dynamic events, the amount of power
available to the mobile cameras is constrained. Individual
mobile cameras must seek a source of power when they are
running low. Coordination between individual members of
the team must occur when parts of the team are no longer
able to perform their aspect of the mission.

In order to support the team of cameras, a docking station
is introduced which can both recharge and transport multiple

robots (cameras) simultaneously. Simulated results show the
performance difference when this docking station is mobile
and fixed, along with the effects of multiple task reassign-
ment strategies which are used when robots (cameras) no
longer have enough power to participate in the observation.

The remainder of this paper will be organized as fol-
lows. Section II will discuss related work in the areas of
camera placement, task allocation across robotic teams, and
coordination of robotic teams. Section III and Section IV
discuss the approaches for team coordination and camera
placement used in this work respectively. Section V provides
an overview of the simulation environment and performance
metrics. Future work and conclusions are discussed in Sec-
tion VI.

II. RELATED WORK

This work is most related to recent work which focuses
on multi-robot surveillance. In [5], a multi-robot system is
simulated with Gazebo in order to surveill a large arbitrary
area, detecting any movement and alerting a human guard.
The robot movement is random with stops in order to detect
movement in the video. This is somewhat similar but simpler
than our activity monitoring robot team. However, our system
takes into account the activity which is present in an area
and attempts to monitor the areas where it is most likely for
activity to occur.

This problem could be considered to be a modification
of the sensor planning problem [6] with a dynamic feature
set. We only seek to find the optimal locations and rotations
of the cameras in the system, and have no interest in
the computationally complex feature detection optimization.
Additionally, the robotic team which is simulated for sensing
is very resource-constrained and many of the sensor planning
tasks are unable to run on the system.

Static camera placement has been studied extensively,
starting with the art gallery problem and extending to
more recent placement algorithms for sensor networking
and surveillance applications. In [7], a large area under
observation is split into sections which are assigned an
importance and these sections are given more weight. Thus
it is similar to our algorithm but uses a simpler method
based on the geometry of the area instead of the actual
activity which has been observed. In [8], a placement using
heterogeneous sensors and a metric based on observability
of subjects is formulated. Again the authors do not take

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 420



into account the dynamic nature of many situations, but the
inclusion of a motion sensor could point to a possible use
for simpler robots in the system proposed here.

Optimal allocation of tasks among team members has been
shown to be an NP-hard problem [9]. Because of this, much
of the current research has been focused on approximations
using auctioning methods [10] using various cost functions.
Considering the size of the robot team in the experiments,
it was possible and feasible to compute all possible robot
assignments. Locating the correct cost functions are therefore
more important to this research, although if the system is
expanded to more robots these auction methods should be
considered.

This work utilizes the simulation enhancements to the
Player/Stage system allowing marsupial actions [11]. Using
the Player/Stage system makes it possible to run many
simulations simultaneously as well as calculating the power
requirements of the moving robots. The marsupial extension
allows for the robots in the simulation to be picked up
and replaced and recharged while inside the docking station
robots.

III. DEPLOYABLE TEAM FORMULATION

The coordination of the docking station with the de-
ployable robots are based upon the work in [12]. In this
work the robots being supported by the docking station
are modeled as a finite state machine. This machine has
three superstates, “Active”, “Inactive”, and “Maintenance”.
In the “Active” superstate, the deployable robots be in one
of two states: “Deploy” where the robot is deploying to a
specific mission objective or “Mission” where the robot is
conducting a mission-specific task. The “Inactive” superstate
contains those states where the robot is unable to work on any
mission-specific task because it is either “Seeking Home” in
search of power, “Abandoned” to the point where it can not
make it to the docking station on it’s own power and enters
a low power state, or “Dead” where it is completely without
power and cannot be recovered. The remainder of states
fall into the “Maintenance” superstate, where the robots are
“Waiting to Dock”, “Docked”, and “Waiting to Deploy”.

The deployable robots must be serviced by a docking
station whose actions are determined as follows. Supportable
robots in need of assistance communicate throughout the
network that they need support and provide an estimate
of their location and remaining energy reserves. Using this
information, the docking stations divide the robots in need
of service into clusters using the ISODATA [13] algorithm.
Once divided into clusters, a specific cluster (SI ) is chosen
for the docking station to support. The docking station will
continue to support this cluster until all of the members have
docked or died.

The docking station can be represented by a vector
−→
RD

which has the location of the docking station at a given time.
The ith member of SI is represented by another vector (

−→
Ri).

The docking station must choose where to position itself in
the next time step to minimize the cost of recovering all

members of SI . The cost function being optimized is given
in Equation (1):

f(
−→
RD) =

n∑
i=1

xeα(x−1). (1)

In this equation, x = 1
vεdist(

−→
RD,
−→
Ri), v = RiV or the

velocity of the ith robot, and ε = RiE or time remaining
based upon the remaining energy of the ith robot. There
are a number of methods which can be used to solve this
minimization.

While one docking station is busy with a particular set
SI , other docking stations can repeat this process with the
remaining robots that are in need of support to support
larger teams in parallel. Previous work, [12], has shown how
this coordination algorithm can be easily scalable to larger
numbers of robots and docking stations.

It should be noted that in the simulation presented in
Section V, the deployable robots have enough power to run
for four times the amount of time it takes to charge. Thus,
in an ideal situation (i.e., the docking station is not full,
there are no difficulties in docking, the docking station was
always in the perfect position, etc.) the maximum amount of
time that a deployable robot can stay active is 80 % of the
simulation runtime.

IV. CAMERA PLACEMENT FORMULATION

The camera placement formulation derived by Bodor
[14] can be utilized with a distributed robotic team. This
formulation determines the positions that the robots should
take in order to observe the trajectories of targets that are
maneuvering in an area of interest.

The basic formulation is as follows:
1) Determine a minimum distance for observation — The

key to successful operation of this camera placement
algorithm is to maximize the resolution of the images
being observed. To ensure that the highest resolution
images can be obtained, the path of motion must
be observed in its entirety from the closest possible
position. We will call this position d0, and the actual
distance between the ith camera and jth path as dij .

2) Determine the best camera position for the given path
— Each path must fall within the frustum generated by
the view of the camera projected on the ground plane.
This ensures that the camera is able to see the activity
along the path in order to attempt to monitor / classify
that activity.

3) Minimize the effects of foreshortening — In 2D, there
are two sources of foreshortening: the angle between
the camera position and the path normal (θ) and the
angle between the normal to the image plane and the
path center (φ). To minimize these effects, the camera
should observe the path directly on, thus cos(θ) = 1
and cos(φ) = 1. In the 3D case, two more angles are
introduced for observation, but will not be utilized in
this simulation.
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Using the formulation above, an objective function for
each path-camera pair can be defined as follows:

Gij =

{
0 if d2ij < d20,
d20
d2ij

cos(θij) cos(φij) otherwise.
(2)

In a single camera case (i = 1), the cost function to be
optimized becomes:

V =

paths∑
j=1

Gij . (3)

In multiple camera systems, the cameras must be placed
jointly in order to achieve an optimal solution. The compu-
tations to do this are exponential in terms of the number of
cameras, and quickly grows infeasible for large systems. As a
result, an iterative approach is used to make the complexity
of camera placement linear with respect to the number of
cameras by “pushing” the next camera into locations that
currently have the lowest observability. This is accomplished
by using the inverse of the observability of the previous
camera values (1−Gkj) in Equation (4).

Vi =

paths∑
j=1

[
Gij

i−1∏
k=1

(1−Gkj)

]
. (4)

The cost of each individual camera can be summed to
provide the total cost function to optimize:

V =

cameras∑
i=1

Vi. (5)

Using this approach, the ideal positions and poses for each
of the cameras (or in this case observing robots) can be
calculated.

V. SIMULATION

In this simulation, a series of simulated people are moving
randomly through a scene. A team of robots are tasked
with observing these individuals. The algorithm for deter-
mining where the robots should be placed for observation
is based upon the work in [4], which looks at optimal
camera placement using a team of robots and applies the
team of robots to scenarios where the distribution of people
being observed changes over time, requiring the robotic
systems to redistribute themselves. Figure 1 shows a sample
environment where such a scenario would take place.

As individuals move throughout the scene, their trajecto-
ries are tracked. In reality, this can be done with overhead
cameras or spliced together from static camera networks. In
this simulation, the tracking of objects was done using the
Stage interface. These trajectories are then fed to a camera
placement module. The camera placement algorithm uses a
model of the environment and the recorded trajectories to
determine where the robots which are carrying the camera
systems should be located. Figure 2 provides an overview of
the simulation.

Fig. 1. Sample environment where pedestrians may be monitored as they
walk on the sidewalks that surround the buildings.
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Fig. 2. A schematic overview of the simulation.

Once the observation positions are known, the robots must
deploy to these positions. There are a number of methods
by which this assignment could take place. Section V-A will
discuss the methods implemented further.

As the deployed robots which are monitoring the scene
lose power, the mobile docking stations are utilized to
coordinate their recovery and redeployment. Additionally, as
the trajectories of individuals moving throughout the scene
are continuously monitored, the camera placement software
periodically re-updates the placement of the distributed cam-
era system. Depending upon the number of cameras deemed
necessary by the camera placement software, extra robots
can be stored on board the docking stations for recharge.

A. Task Allocation Schema

Throughout the simulation runs, one of the key factors
affecting the system’s overall performance is expected to
be how robots are assigned to take over tasks from one
another as individuals lose power or as dynamic changes in
the environment require reconfiguration of the distribution of
observing robots.

Three strategies have been implemented for addressing the
task allocation problem:

1) Random Allocation – This schema is not expected to
be optimal, but will serve as a baseline. The distributed
black board system that is used to manage communi-
cations will simply distribute locations to each of the
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deployed robots at random. In this case, no analysis
will be done with respect to how far the robots will
have to travel, how much energy remains on each
robot, etc.

2) Simple Allocation – The simple allocation strategy
will attempt to improve performance of the system
over simple random allocation by prioritizing which
observing robot will move to which location using
simple Euclidean distances between the robot and
the observation position. The smaller the distance the
observing robot must travel, the higher the priority it
will be for the observing robot to go there.

3) Advanced Allocation – A third, more advanced, strat-
egy will further attempt to improve this performance by
having the observing robots positions assigned based
on more than just location. Using this strategy, the
observable robots will also weight their priority for
where to go by how much power they have available.

B. Simulation Results

A total of 180 runs of this simulation were conducted.
These runs were divided up as follows. There are 60 runs
of each of the three task swapping methods listed in Section
V-A, and each of those 60 runs are split into 30 runs where
the docking stations are fixed and 30 runs where the docking
stations are mobile.

In each run, there are 20 “pedestrians” which were mov-
ing throughout the scene generating paths. Observing these
“pedestrians” are a team of 8 deployable robots which are
supported by a single docking station. The generation of
the optimal camera locations is CPU intensive, and new
configurations are available at as soon as they have been
computed, albeit at irregular intervals. The irregularity results
from the fact that since the “pedestrians” generate the paths
as the result of a random walk, at times they may be clustered
where a single camera can achieve significant observability.
Paths are also aged out of existence in order to reduce the
computational burden on the camera placement algorithm.
Each of the simulations runs for a total of 80 minutes, so
that there is sufficient time to have paths age out multiple
times and sufficient time to enable several recharges of the
deployable robots to occur.

All of the runs take place in the CityMap environment
(Figure 3) which was specially created for Stage for this
simulation. In this image, there are a number of black poly-
gons which represent obstacles for pedestrians and observing
robots to navigate around. They have been staggered to
introduce more variation in the paths that pedestrians must
take to cross the scene. As with other environments, this
has been scaled to be 50m by 50m to allow expansive
deployment by the observing robots.

The metrics of “Mean Time in State (%)” for each of
the “Active”, “Inactive”, and “Maintenance” superstates (as
defined in Section III), the number of observing robots which
died, and how many recharges a robot receives are all still
included in these experiments. However, an additional metric
has been created based upon a theoretic observability of each

Fig. 3. Stage simulation in the CityMap environment.

path. When the camera placements are being calculated, each
path gains observability (on a scale of [0 1]). Using this
metric, an upper bound with the number of available cameras
can be calculated and normalized over the number of paths
to give a theoretical upper bound as a percentage. Then,
as the robots are deploying, observability of the real-time
configuration is calculated using the same method.

Figures 4-9 illustrates how the theoretical and actual
observability change over time in each of the six different
configurations. The periodic drop that is observable in some
of the scenes is the result of the deployed robots having to
obtain power and being forced to abandon their observation
tasks. In these figures, the upper portion of the figure depicts
the observability of the “pedestrians” in two ways. The
first, indicated by solid blue lines is the theoretical upper
bound of observability (To) using 8 cameras. The X’s at
the start of these lines indicate when the computation for
that observation was made. It is important to note that these
line segments serve as the base points for where the robots
should deploy to and are based on historical data. The second
illustration of observability is shown in the form of the
dotted green lines. This shows what the observability of the
“pedestrians” are based on the present location of the robots
using the live path data (Lo). Thus it is possible to have the
value of Lo > To as To is based on aged information.

The lower portion of Figures 4 - 9 indicate the number of
robots that are in the “Active” superstate. Periodic changes in
this value correspond to robots having to go to the docking
station for recharge. It should be noted that the first major
drop-off that occurs in both the top and bottom portions of
the figure represent that first recharge point. Since all robots
are deployed simultaneously, their initial recharge typically
occurs at a single time. Previously this has been discussed
as one of the reasons that a significant number of deployable
robots die as the docking station can become overwhelmed
with requests.

The results for these simulations are shown in Tables I and
II. Comparing the results between these two tables, it is clear
that there is a significant difference between the performance
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Fig. 4. Theoretical and actual observability calculation for a single
simulation run involving 8 observing robots, a single mobile docking station,
and random task reassignment.

Fig. 5. Theoretical and actual observability calculation for a single
simulation run involving 8 observing robots, a single fixed docking station,
and random task reassignment.

of the system with respect to whether or not there is a moving
dock. There were minute differences between the allocation
strategies, but ANOVA testing showed that there was no
statistically significant difference.

This result was somewhat surprising. However, the lack of
a statistically significant result is likely the combination of
two factors. First, the rate at which the optimal configuration
could be calculated was low, thus the deployable robots
would continually swap the same configurations and may
not have been able to achieve anything significant benefit
from the swaps. Second, the task reallocation was happening
with only 8 robots. This was done because of the cost of
calculating more optimal camera placement with more paths

Fig. 6. Theoretical and actual observability calculation for a single
simulation run involving 8 observing robots, a single mobile docking station,
and simple task reassignment.

Fig. 7. Theoretical and actual observability calculation for a single
simulation run involving 8 observing robots, a single fixed docking station,
and simple task reassignment.

Fig. 8. Theoretical and actual observability calculation for a single
simulation run involving 8 observing robots, a single mobile docking station,
and advanced task reassignment.

and more cameras was computationally too expensive. It is
believed that in a larger team configuration would have had a
more noticeable benefit. In order to test this theory, a faster or
alternate implementation of the camera placement algorithm
would be required.

VI. FUTURE WORK AND SUMMARY

This work can be extended in many ways to improve
applicabilty, computational requirements and flexibility. Re-
moving the requirement for global tracking of subjects is
an interesting enhancement which enables the system to be
used in situations where you cannot easily track subjects
globally. In these situations, it may be required to have a

Fig. 9. Theoretical and actual observability calculation for a single
simulation run involving 8 observing robots, a single fixed docking station,
and advanced task reassignment.
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TABLE I
RESULTS OF SIMULATION WITH A FIXED DOCKING STATION.

Random Simple Advanced
Allocation Allocation Allocation

Mean Time
in State(%)

Active 54.79 55.02 56.40
Inactive 37.57 37.10 36.14
Maintenance 7.64 7.88 7.45

# Robots
Dead

Mean 2.93 2.83 2.77
Std 0.95 1.69 1.72

Robot
Recharges

Mean 7.28 7.28 7.46
Std 1.05 1.78 1.61

% Live
Observability

Mean 43.87 45.52 47.11
Std 0.06 0.08 0.10

TABLE II
RESULTS OF SIMULATION WITH A MOBILE DOCKING STATION.

Random Simple Advanced
Allocation Allocation Allocation

Mean Time
in State(%)

Active 73.13 72.97 75.40
Inactive 15.64 15.99 13.01
Maintenance 11.23 11.04 11.59

# Robots
Dead

Mean 0.93 0.87 0.47
Std 1.13 0.91 0.50

Robot
Recharges

Mean 10.03 10.03 10.45
Std 0.94 0.86 0.57

% Live
Observability

Mean 62.35 62.66 63.62
Std 0.04 0.04 0.03

general coverage algorithm to bootstrap the system before
adapting to the dynamic needs of a situation, and modify
the placement algorithm to take into account the information
loss.

Three separate strategies were investigated with experi-
ments here, with no statistically significant differences found
between them. This is possibly due to the limited team size
and the relatively low reconfiguration rate that the optimal
placement implementation allowed. The placement formula-
tion currently is very computationally intensive, taking many
minutes to complete a placing when there are 500 activity
paths to consider. Clustering or dynamic programming could
be used to reduce this time, enabling the system to respond
more quickly to dynamic situations or take more historical
data into account. already, testing with a larger working area
or sensing team size may amplify the differences in robot
reasssignment strategies.

The docking stations in this formulation were idle when
they were not actively involved with recharging one of the
sensing team robots. It is worth considering using at least
part of this idle time to enhance the sensing task. In this
case, it would be essential for the docking stations to either
balance the importance of the recharging and sensing tasks,
or have the activity monitoring task provide feedback on
points which would enhance the observability of the moving
subjects but were non-essential for an adequate coverage.
The idle time of these docking stations could also be used
in some other useful way as well which should be examined.

To illustrate the effectiveness of the coordination strategy,
a new simulation was constructed in which the task assigned
to the deployed robots was to maximize observability of a

scene, rather than to explore randomly. Observability was
derived from the approach of Bodor [14], and normalized
to indicate the percentage of paths that were completely
observed. A series of simulations were then carried out in
Player/Stage illustrating how a team of eight robots could
observe twenty pedestrians moving through a scene with the
support of one docking station. Half of the simulations were
run with a fixed docking station and the remainder allowed
the docking station to be mobile. The mobile docking station
enabled a much higher amount of time in the “Active”
superstate as well as a much higher observability rating.
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