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Abstract— This paper presents a formulation of image-based
visual servoing (IBVS) for a spherical camera where coordinates
are parameterized in terms of colatitude and longitude: IBVS-
Sph. The image Jacobian is derived and simulation results
are presented for canonical rotational, translational as well as
general motion. Problems with large rotations that affect the
planar perspective form of IBVS are not present on the sphere,
whereas the desirable robustness properties of IBVS are shown
to be retained. We also describe a structure from motion (SfM)
system based on camera-centric spherical coordinates and show
how a recursive estimator can be used to recover structure.
The spherical formulations for IBVS and SfM are particularly
suitable for platforms, such as aerial and underwater robots,
that move in SE(3).

I. INTRODUCTION

Visual servoing is the use of information from one or

more cameras to guide a robot to achieve a task [1], [2].

Image-Based visual servoing (IBVS) is a robust and efficient

technique where the task is defined in terms of the desired

view of the target and a control law is synthesized to move

the camera toward that view. The goal pose is defined

implicitly in the desired view. The pose of the target does

not need to be known apriori, the robot moves toward the

observed target wherever it might be in the workspace.

Image-based control can be considered as an inverse problem

to optical flow — given a current and desired view the

required optical flow can be computed. The problem is to

synthesize a controller to command the required motion in

SE(3) to achieve the desired flow.

The controllers typically used are based on a linearization

of the system kinematics, the image Jacobian, and are

technically only a local method. However in practice IBVS

demonstrates a remarkably large field of convergence and

robustness to errors in camera calibration and the range of

target points. One well known problem occurs for the case

of large rotation about the optical axis of the camera where

the camera moves away from the target as it rotates and

then back again — a phenomenon known as camera retreat

[3]. This behaviour leads to inefficient trajectories which can

cause robot joint limits to be exceeded. In [3] the camera

retreat effect is explained intuitively by the fact that the

IBVS control law causes feature points to move in straight

lines on the image plane. However for a rotating camera

the points move along circular arcs. The linear controller

resolves this by changing the overall scale dynamically in

order that motion along arcs appears as straight line motion.

The scale change is achieved by z-axis translation.
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Fig. 1. IBVS on the sphere. Showing the goal pose for simulation and the
four point features.

This intuition about the failure mode [3] leads us to

consider the use of different coordinate systems. Polar [4],

[5], or cylindical [6], coordinate systems have been proposed

where a point feature is represented by a distance, r, and

angle θ with respect to the center of fhe image instead of

its Cartesian coordinates. For large optical-axis rotation the

required feature motion is now a straight line parallel to

the θ axis. Similarly a pure scale change (z-axis translation)

would cause radial motion of the points which corresponds

to motion parallel to the r axis.

The polar coordinate formulation (IBVS-P), like the clas-

sical Cartesian one, is based on visual features sensed using

a “standard” perspective camera. In the last few years there

has been growing interest in spherical imaging, where the

image “plane” (more correctly surface) is considered to be

a unit sphere [7], [8], see Figure 1. A wide perceptual field

is important for many robotic competencies such as path

planning and collision avoidance and this has led researchers

to adopt, or develop, wide-angle viewing systems [9]–[11].

For example, a typical perspective cameras with a field of

view angle of 60 deg has a solid angle of approximately 1 sr
which is less than 1/6th of a hemisphere. The perspective

transform has a singularity for rays at 90 deg from the optical
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axis, and lenses capable of wide field-of-view are either

expensive or have significant distortion near the periphery

of the image. Fisheye and catadioptric camera systems have

been used [11], [12] for robotic wide-angle imaging and can

have fields of view well above 2π sr but result in highly

distorted images (but which can be well modeled).

For these reasons we consider visual servoing for wide-

angle non-perspective imaging and in particular visual ser-

voing on the sphere: IBVS-Sph. Spherical imaging has

other advantages for visual servoing. Firstly, a spherical

camera eliminates the need to explicitly keep features in the

field of view which is a problem with both position-based

visual servoing and some hybrid schemes. Secondly, for a

perspective camera there is ambiguity between Rx and −Ty

motion (and Ry and −Tx motion) which can lead to slow

convergence and/or sensitivity to noise in feature coordinates.

There has been relatively little work on spherical visual

servoing. Fomena and Chaumette [13] consider the case for

a single spherical target from which they extract features

derived from the projection to the spherical imaging plane, a

circle, the center of the circle, and the apparant radius. Tahri

et al. [14] consider spherical image features such as lines

and moments. Hamel and Mahony [7] describe kino-dynamic

control of an underactuated aerial robot using point features.

They observe that only the image geometry of a spherical

camera preserves the passivity-like properties of the body

fixed frame dynamics of a rigid object in the image space.

In all these works a unit vector, a redundant parameterization,

is used to represent points on the sphere.

In this paper we consider IBVS on an ideal spherical

image “plane” with point features projected onto a sphere

and represented by their angles of colatitude and longitude.

The unified imaging model [15] provides a means to trans-

form images, or features, from different types of cameras,

perspective, fisheye or catadioptric on to the sphere where

they can be treated uniformly. This has advantages over

trying to formulate IBVS controllers for the many different

projection models that are possible for wide angle cameras

such as equiangular, stereographic, equisolid etc. It also has

the advantage that conventional robotic sensors can also be

projected onto the image plane, for example the gravity

vector, magnetic field vector or angular velocity [16].

The contributions of this paper are the derivation of the

Jacobian for IBVS on the sphere using an angular param-

eterization of colatitude and longitude, and investigation of

the performance of the resulting controller. The paper also

develops a camera-centric structure-from-motion technique

where the depth map is defined on the surface of the sphere.

The next section, Section II, derives the optical flow

equation and image Jacobian for the sphere, and then in

Section III the IBV-Sph control scheme is outlined. Section

IV presents simulation results for canonical motions along

and about the different axes as well as for general motion.

Section V recalls the unified imaging model that can be

used to create a spherical image from one or more cameras

that could be perspective, fisheye or catadioptric. Section VI

outlines camera-centric structure-from-motion technique and
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Fig. 2. The coordinate system. P is a world point, mapped to p on the
surface of the unit sphere represented by the angles θ and φ.

presents further simulation results.

II. IMAGE JACOBIAN FOR SPHERICAL IBVS

We follow a similar approach to that used for the perspec-

tive camera [1] and assume that the camera is moving with

translational velocity T = (tx, ty, tz) and angular velocity

ω = (ωx, ωy, ωz) in the camera frame. A world point,

P, with camera-relative coordinates c
P = (X, Y, Z)

T
has

camera-relative velocity

˙cP = − cωe × c

P + c
Te (1)

which can be written in scalar form as

ẋ = zωy − yωz + tx (2)

ẏ = xωz − zωx + ty (3)

ż = yωx − xωy + tz (4)

The world point P is projected, Figure 2, to point p on the

surface of a unit sphere centered at the origin

x =
X

R
, y =

Y

R
, and z =

Z

R
(5)

where the focal point is at the center of the sphere and the

radial distance to the point is R =
√

X2 + Y 2 + Z2. The

spherical surface constraint x2 +y2 +z2 = 1 means that one

of the Cartesian coordinates is redundant, and we will instead

use a minimal spherical coordinate system comprising the

angle of colatitude

θ = sin−1 r, θ = [0, π) (6)

and the azimuth angle

φ = tan−1 y

x
, φ = [−π, π) (7)

yielding the point feature vector f = (θ, φ). Note that any

minimal representation admit singularities, in this case at the

poles. Note also that motion on this plane is in general not

a great circle on the sphere — only motion along lines of

colatitude and the equator are great circles.

Taking the derivatives of (6) and (7) with respect to time

and substituting (2) – (4) as well as

X = R sin θ cos φ, Y = R sin θ sinφ, Z = R cos θ (8)
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Target points (±1, ±1, 0)
Goal position (0, 0, −2)
Gain γ 0.001

θ∗ 0.6155 rad
φ∗ −3π/4, −π/4, π/4, 3π/4

TABLE I

SIMULATION PARAMETERS.

we obtain, in matrix form, the spherical optical flow equation
[

θ̇

φ̇

]

= J(θ, φ, R)
[

tx ty tz ωx ωy ωz

]T
(9)

where (10) — next page — is the image feature Jacobian or

optical flow equation in terms of the spherical point feature

f = (θ, φ). A spherical Jacobian, with respect to translation

only, was described in [17].

There are important similarities to the Jacobian derived for

the projective camera in polar coordinates [5], [6]. Firstly, the

constant elements 0 and 1 fall at the same place, indicating

that colatitude is invariant to rotation about the optical axis,

that azimuth angle is invariant to optical axis translation, but

equal to optical axis rotation. As for all image Jacobians the

translational sub-matrix (the first 3 columns) is a function

of point depth 1/R. Note also that the second row of the

Jacobian is not defined at the poles where sin θ = 0 and

azimuth has no meaning.

We can also partition the Jacobian [3] into a translational

and rotational part

[

θ̇

φ̇

]

=
1

R
Jt(θ, φ)





tx
ty
tz



 + Jω(θ, φ)





ωx

ωy

ωz



 (11)

which is important for both control and structure estimation.

For points at infinity the first term will be zero yielding a sim-

ple relationship between optical flow and angular velocity.

For a mobile robot moving in SE(3) the vector (ωx, ωy, ωz)
can be measured using a gyroscope which leads to a simple

relationship between optical flow and translational velocity.

III. SPHERICAL IBVS CONTROL LAW

For control purposes we follow the normal procedure of

computing one 2 × 6 Jacobian, (10), for each of N feature

points and stacking them to form a 2N × 6 matrix














θ̇1

φ̇1

...

θ̇N

φ̇N















=







J1

...

JN






v (12)

The control law is

v = J
+ḟ∗ (13)

where v =
[

tx ty tz ωx ωy ωz

]

is the camera

velocity screw and ḟ∗ is the desired velocity of the features.

Typically we choose this to be proportional to feature error

ḟ∗ = −γ(f ⊖ f∗) (14)

where γ is a positive gain, f is the current value of the

feature vector, and f∗ is the desired value, which leads to

locally linear motion of features within the feature space.

⊖ denotes modulo subtraction giving the smallest angular

distance given that θ = [0, π) and φ = [−π, π).
For the case of a point close to the pole singularity we add

only the first row of its Jacobian and would need sufficient

points to ensure that J has full rank. Alternatively it would

be possible to perform a change of coordinates of the poles.

If the attitude was servoed by a non-visual sensor such

as gyroscope, accelerometer or magnetometer then we could

use a partitioned IBVS scheme [3] where we would write

(11) as

1

R
Jt(θ, φ)





tx
ty
tz



 =

[

θ̇

φ̇

]

− Jω(θ, φ)





ωx

ωy

ωz



 (15)

and solve for translational velocity only.

IV. RESULTS

We present simulation results for the cases: pure z-axis

rotation, pure x-axis rotation, pure z-axis translation, pure

x-axis translation, and general motion about all axes. The

cases of pure-y axis rotation and y-axis translation are not

presented but are symmetric to the x-axis cases. The simula-

tion parameters are summarized in Table I. We assume, for

now, that the range of each feature point is known exactly.

For each simulation we present the feature paths in the

θ−φ feature space, and the time history of the camera pose

shown in terms of translation and rotation in roll-pitch-yaw

format. The results are shown in Figure 3 and summarized

as:

Rz has resulted in pure rotation of the camera with no

unwanted motion. The features have moved along

lines of constant colatitude.

Rx has resulted in unwanted translational motion in

the y-axis and z-axis directions. Two features have

had to move more than the others in the colatitude

direction.

Tz has resulted in the desired motion with no unwanted

motion. The noise on the attitude is at the limits of

arithmetic precision and can be considered as zero.

The features have moved along lines of constant

longitude.

Tx has resulted in unwanted translational motion along

the z-axis and pitching about the y-axis.

Gen. the roll angle (rotation about x-axis) has undershot

and translation along the y-axis has converged quite

slowly.

For the Rx, Tx and general cases the paths on the θ-φ
plane have been curved rather than straight line motion. This

is a consequence of the system’s non-linearity. The unwanted

motion, observed for the Rx, Tx cases, is a result of cross-

coupling terms in (10).

Overall we can conclude that IBVS-Sph handles the

cases of pure z-axis rotation and translation very cleanly.

While still very satisfactory, it exhibits imperfect decoupling

5552



J(θ, φ, R) =

2

6

6

4

cos(φ) cos(θ)
R(t)

sin(φ) cos(θ)
R(t)

−
sin(θ)
R(t)

.

.

. − sin (φ) cos (φ) 0

−
sin(φ)

R(t) sin(θ)
cos(φ)

R(t) sin(θ)
0

.

.

. −
cos(φ) cos(θ)

sin(θ)
−

sin(φ) cos(θ)
sin(θ)

1

3

7

7

5

(10)
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Fig. 3. IBVS-Sph for various initial poses. (left), the θ-φ feature plane
where the initial coordinate is marked with a ‘o’ and the final coordinate
marked with a ‘*’. (right), the evolution of camera Cartesian translation and
rotation (RPY format) versus time. Units are in radians and metres.
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Fig. 4. IBVS-Sph results on the sphere for different approximations to
point true range.

rotation and translation about the x- and y-axes. This is

very similar to the conclusions for the polar form, IBVS-

P, discussed in [4].

A. Effect of range uncertainty

The Jacobian, (10), is a function of the range to the point,

its distance from the center of the spherical camera. In Figure

3 the true value was assumed for simulation but in this

section we investigate the effect of errors in range. The initial

and desired range to the target is R = 2 and the camera

is initially offset only in the x-direction. Figure 4 shows

simulation results for three different cases: underestimation

(R = 1.5), overestimation (R = 5.0) and the range value at

the goal pose (R = 2.5). Compared to Figure 3 we see that

the convergence is slower for the R = 1.5 case and faster

for the R=5 case which is expected since closed-loop gain

for translational DOF is proportional to R. The unwanted

z-axis translation is slightly worse for the R = 5 case. In all

three cases the pitch angle undergoes unwanted motion with

a long settling time which is independent of R. In general
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though we can conclude that for a significant range of error

in point depth the closed-loop response is quite satisfactory.

In this respect IBVS-Sph is similar to its perspective-imaging

counterpart IBVS.

V. SPHERICAL CAMERAS

True spherical cameras are under development [18], [19]

but until they become a reality we must be content with

partial spherical views from a camera, or a mosaic view from

multiple cameras (such as the Point Grey Ladybug camera).

The unified model of Geyer and Daniilidis [15] provides

a convenient framework to consider very different types of

cameras such as standard perspective, catadioptric and many

types of fisheye lens. The projection model is a two-step

process. Firstly, the world point P is projected to the surface

of the unit sphere with a focal point at the center of the

sphere. The center of the sphere is the origin and the image

plane is normal to the z-axis at a distance −m. Secondly

the point p is re-projected to the image plane using a focal

at a distance l along the z-axis, where l is a function of the

imaging geometry.

Commonly used mirrors have a parabolic or hyperbolic

cross-section, and for these l = ǫ the eccentricity of the conic

section: l = 1 for a parabola and 0 < ǫ < 1 for a hyperbola.

Mirrors commonly used in robotics, for example [9], [20],

have an equiangular model and the focal point is not constant

for all points in the scene. Theoretically the unified model

does not apply to this case (non-central projection) but in

practice this difference in focal point is very small compared

to the world scale and such mirrors are well approximated

by the unified model. Many fisheye cameras can also be

included in this framework [21], generally with l > 1.

Using the second step of the unified model we can project

images captured with wide-angle cameras to the sphere. All

common image processing operations can be formulated on

the sphere, including spherical SIFT features [22]. Alter-

natively features could be detected in perspective camera

images and projected to the spherical feature plane.

VI. STRUCTURE AND MOTION ESTIMATION ON THE

SPHERE

In the IBVS example of the previous section the values

of R required to compute the image Jacobian were taken

from the simulation engine or approximated. However it is

straightforward to estimate point depth by rewriting (11) in

identification form as


Jt(θ, φ)





tx
ty
tz







 (1/R) =

[

θ̇

φ̇

]

− Jω(θ, φ)





ωx

ωy

ωz





(16)

or

AΘ = b (17)

where and (θ̇, φ̇) is the optical flow which is observed during

the motion and the camera motion (tx, ty, tz, ωx, ωy, ωz)
is known, since IBVS commands it. Camera velocity could

also be measured — the rotational component quite easily

using a gyroscope, the translational component with more

difficulty in practice.

This a spherical form of the classical structure from

motion (SfM) problem [23]. Here we consider the scene in

camera-centric form as a spherical depth map D : S
2 →

R. For discrete features we maintain a list of (θ, φ, R)
tuples. This form makes it trivially easy to handle camera

rotational motion, the depth map “rolls around the sphere”.

For translational camera motion the feature points move over

the sphere according to the direction of translation and the

point’s range. This form of depth map concisely represents

the local environment and camera centric depth is used to

predict optical flow for the estimator and also to assist the

tracker in following features from one frame to the next,

reducing computational cost compared to a Cartesian map

representation. Uncertainty can also be represented in just 1

DOF per feature.

In the simulation we consider 20 random feature points

uniformly distributed within a 10 × 10 × 10 volume. The

camera moves from corner to the other and estimates the

range of points at each time step. As with all SfM and SLAM

techniques we assume that point correspondence is known

precisely. World points that are inside the unit sphere during

the motion are not updated for that time step.

The range to feature points from the camera center during

motion is shown in Figure 5 and varies continuously as the

camera moves. Many estimation techniques can be brought

to bear on this problem to account for noise in the estimates

of optical flow, camera velocity and spherical angles of the

feature itself. For example an EKF is often used in structure

from motion systems. Alternatively a particle filter could be

used and would better model the non-Gaussian distribution

of depth uncertainty. In this simulation we used a simple

α − β tracking filter driven by the scalar solution to (17).

At any time during the motion we can reproject the

camera-centric world model to Cartesian coordinates as

shown in Figure 6. The median error between estimated and

actual feature points is 0.1561 or 1.5% of the size of the

dimension of the simulation volume.

VII. CONCLUSIONS

In this paper we have presented a formulation of image-

based visual servoing for a spherical camera: IBVS-Sph.

Points are projected onto the surface of a unit sphere and

described by two angles: colatitude and azimuth. This pa-

rameterization is minimal but contains a singularity at the

poles for one row of the Jacobian, which in practice is not

a significant issue if enough other points are available for

control. In the future it would be interesting to study other

surfaces, perhaps a torus, or other parameterizations of points

on a sphere such as the Mercator projection.

The image Jacobian was derived and simulation results

were presented for rotational, translational and general mo-

tion. Problems with large rotations that affect the planar

perspective form of IBVS are not present on the sphere,

whereas the desirable robustness properties of IBVS such as

uncertainty of point depth were shown to have been retained.
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Fig. 5. The range of a subset of points with respect to the camera over its
trajectory.

Fig. 6. A snapshot of the spherical depth map part way through the motion.
The arrows represent the features estimates in (θ, φ, R) form, and the ‘*’
are the true location of the features.

Simulation results show well behaved control responses

even for large rotations, although with some cross coupling

evident for translational and rotational motion involving the

x- and y-directions.

The unified imaging model of Geyer and Daniilidas can be

used to map many different types of cameras to the sphere

where IBVS-Sph can then be applied. The less attractive

alternative is to formulate the Jacobian for every different

type of camera projection.

We also described a spherical structure from motion (SfM)

system based on camera-centric spherical coordinates and

show how a simple estimator can be used to recover scene

structure. Future work includes a spherical SLAM system

which is similar to the bearing-only SLAM problem. The

spherical formulations for IBVS and SfM are particularly

suitable for robots that move in SE(3) such as aerial and

underwater robots.
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