
Flexible, adaptable utility components for
component-based robot software

Geoffrey Biggs
Intelligent Systems Research Institute

National Institute of Advanced Industrial Science and Technology (AIST)
AIST Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan

geoffrey.biggs@aist.go.jp

Index Terms—Robot programming systems, component-based
architectures

Abstract—Component-based software design is a current
trend, both in general software practice and in robot software
practice. It brings benefits to the field of robot programming.
Component interfaces are fixed at design time and form a
contract with other components, guaranteeing functionality.
Known interfaces are typically important to reusability. How-
ever, in certain cases fixed interfaces can limit the reusability of
components. Utility components provide general functionality
that is reused a large number of times both within a single
software system and between systems. They need to be adapted
to the interfaces for each specific use case. This paper presents
a set of utility components that can adapt their interfaces to the
user’s needs without any code changes. Dynamic programming
language techniques are used to provide the adaptability. The
components are a great benefit to the reusability of common
utility components, removing a common cause of reinvention.

I. INTRODUCTION

Component-based software design and implementation is
a current trend in software engineering. Software is divided
into individual components, each with a well-defined interface
that specifies what functionality that component provides.
Multiple software components are combined together into a
complete software system in much the same way as hardware
components of electrical circuits are combined to create a
complete hardware system [1].

Component-based practices bring many benefits to software
design, implementation, maintenance and reuse, including
known interfaces that act as “contracts” between components,
“separation of concerns” (each component only deals with
its individual problem), and isolation testing, where each
component can be tested isolated from the others.

These benefits also apply strongly to the design, implemen-
tation, maintenance and reuse of robot software. For example,
the componentisation of hardware drivers and algorithms
allows robot systems to be built from pre-existing, ideally
off-the-shelf, software components. As a result, component-
based software is a major trend in robotics, particularly
service robotics. Recent examples include OpenRTM-aist [2],
ORCA [3], ROS [4] and OPRoS [5].

A robotic software system, as with any software system,
will accumulate some common, fundamental functionality.
For example, data structures representing common data types
such as 3D vectors. In a component-based system, some of

the common functionality may be entire components that
perform well-known, often-used functions on data streams
between the other components of the system. We term these
utility components. One of the difficulties in using utility
components is that they are more than just code. They also
feature a component interface that dictates how they interact
with other components.

A component’s interface is a contract it makes with other
components. The interface tells the world outside the com-
ponent what services it can provide and what it requires to
perform those services. In a very real sense, the interface dic-
tates the possible functionality of the component, significantly
affecting its reusability [6].

Because components are designed for a specific purpose,
their interfaces are typically fixed. While a well-designed,
fixed interface can promote reusability, by their very na-
ture, fixed interfaces tend to be inflexible interfaces. They
guarantee a certain level of functionality, but cannot easily
adapt to varying usage scenarios unforeseen by the original
design. Interfaces must therefore be designed carefully to
provide the necessary flexibility for their potential use cases.
Careful design choices are required at interface design time
to maximise reusability.

This is where the problem lies with regards to utility
components. Rather than being the promoter of reusability,
fixed interfaces are instead its antithesis. No matter how
carefully the interface of a general-purpose utility component
is designed, it will not be flexible enough, or it may become
so large as to be unusable. As a result, utility components
tend to be reimplemented over and over again, each time
with a different interface matching the new use case. Utility
components are likely to be implemented for a specific
system, designed to meet the interfaces used in that system, or
possibly even just the interfaces in the part of the system they
are to be used in. Should a developer wish to reuse a utility
component elsewhere, its interface must be altered to match
the new use case. Even if internal functionality is copied,
coding is still required to match it to the new interface.

This paper presents a set of utility components developed
over a period of time and used in real robot systems. They
target common needs in a robotic system built around a
component-based architecture. The architecture used in this
case is OpenRTM-aist [2], but the components should be

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4615

applicable to any component-based architecture. The key
point of these components is that they all provide flexible
interfaces that can be configured at run-time to meet the
user’s specific needs without any code changes. This saves
considerable reimplementation effort and vastly increases the
reusability of these components.

The paper begins by describing the components and the
common functionality each one provides in Section II. How
the flexibility is implemented is described in Section III. A
discussion of these components and their flexible nature is
given in Section IV. General flexibility in robotics is discussed
in Section V. Conclusions and recommendations are given in
Section VI.

II. FLEXIBLE UTILITY COMPONENTS

In 1994, Gamma et al published their now-famous book,
“Design Patterns” [7]. This book laid out in detail 23 different
common structures of software design that can be found
in varying software projects and introduced the concept of
software design patterns. In a similar vein, software projects
will often use a collection of utility functions and objects.
However, rather than being the basis of a software object’s
design, these are complete pieces of code.

Component-based software is not excluded from this. It
is likely to regularly reuse entire utility components. Such
components may perform tasks such as selecting between the
outputs of two similar components, logging the data streams
between components, and filtering component outputs. These
general purpose components are frequently required through-
out a component-based system, and so need to be adaptable to
a wide variety of use cases. The required adaptability cannot
be achieved using fixed interfaces. This leads to significant
duplication of effort and wasted time reimplementing utilities
for specific needs.

Instead, interfaces that are configurable by the user to the
specific use case are necessary. Ideally, the user should not
need to recompile the component to create the interface they
require.

This section describes a collection of utility components
built over time based on experience creating robot systems us-
ing the OpenRTM-aist software architecture [2]. These com-
ponents are created using the Python version of OpenRTM-
aist, and written purely in Python. The key point of these
components is that they all feature flexible, run-time config-
urable interfaces. The user specifies the interface they require
when starting a component. No further work nor time is
necessary. This is a major benefit to the reusability of these
components; they are written once and used indefinitely. The
following sections describe the functionality of each of these
components, with particular focus on their flexibility.

A. FlexiDump

This is a simple console-dumping component. It was
written in response to frustration at the limitations of the
console-dumping component provided with OpenRTM-aist.
This component, called SequenceIn, is designed to function
with any numeric data type provided by OpenRTM-aist. To

Fig. 1: The SequenceIn comp, as seen in RTSystemEditor.
Each port represents a different data type.

provide this functionality, it has one port for each numeric
type, including sequence data types (see Figure 1). It is hard-
coded to have this interface. Should the user wish to dump
more than one stream of the same data type, two instances
of the component are required. The component doesn’t even
support all data types available in OpenRTM-aist.

Rather than this limited interface, the author decided that
a component that could provide any interface required by
the user would give much greater usability and reusability.
It is more ideal that the ports simply don’t exist when they
are not required. The FlexiDump component was the result,
and this idea was extended to other component types. Any
combination of input ports using any combination of data
types can be dumped to standard out. The output is suitably
prefixed to increase readability.

B. FlexiFilter

The FlexiFilter component acts as a filter or an adaptor
between two or more component ports, altering data types
and data shapes as necessary to allow those components to
work together. The user specifies one or more input and
output ports, and a mapping between them. This mapping is
important, as it tells the component which output ports to send
data received at input ports to. For example, a TimedFloat

port could be directed to a TimedLong port, causing its data
to be cast from a float to an integer and so allow the data
output by one component as floating-point values to be used
by another that expects integers.

The component is more powerful than just casting data
types. It can also map the individual values of sequence
ports to other ports, and even to individual values of output
sequence ports. Conceptually, this is like mapping individual
pins of one port to individual pins of another. This is illus-
trated in Figure 2. When only some pins of an output port
are altered, the remainder can either be left at their previous
values or reset to a specified value, for example, zero.

For example, a FlexiFilter instance can be configured with
three input ports, each a TimedFloat representing x, y and
z values. These can be mapped to a single output port of
type TimedFloatSeq, with each going to a different index
of that port. The result is a filter component that can convert
the outputs of three individual controllers, one for each axis

4616

Fig. 2: A possible filter layout capable with the FlexiFilter
component, mapping desired input values to their new posi-
tions in the output ports.

of a robot, to a single vector containing all three that can be
used by a robot interface component expecting its data in that
format. This is achieved without any reimplementation of the
filtering component.

The component is also capable of modifying the data as
it passes through. Data from a channel can be offset by a
given value, or it can be scaled. The earlier example of a
TimedFloat being cast to a TimedLong can be extended to
include multiplying the data by 1000. This gives a FlexiFilter
component that converts data from metres in floating point to
millimetres in fixed point.

The user passes in the port configurations and port mapping
on the command line. For example, the component shown in
Figure 2 would be configured as follows:

./flexifilter.py -i TimedFloatSeq:2 -i
TimedString -i TimedLong -o
TimedStringSeq:4 -o TimedFloat -m
"2>0:2,0:1>0.1>0:3,0:1>1"

Once the component is running, it waits for data to be
received. As data is received on a port, that data is altered
based on the port map and sent to the indicated output ports.

C. FlexiLogger

The FlexiLogger component performs a function com-
monly used, not just in component-based robotic systems,
but in any robotic system: logging data. It is also capable
of replaying log files, optionally using recorded timing to
simulate the speed of the original system.

Logging is accomplished using either a flat text file or
Python’s pickle module. Pickled is the preferred mode as it
is a binary dump of the object data. This preserves accuracy
in floating-point data.

The component is switched between record and replay
mode using a command line option. The default is to record.

The replay time replication is limited in its accuracy by the
lack of real-time support in the Python interpreter. Replayed
data types that feature a time stamp, such as TimedLong, can
optionally have their time stamp adjusted for the current time,
making it appear as if the data originates in the present rather
than when it was recorded.

The flexible interface makes this component very versatile.
It can log any combination of ports and OpenRTM-aist data

types. Rather than creating one component for each data type
and logging data streams separately, a user can create a single
component representing all the data they wish to log in a
synchronised fashion by specifying the appropriate port types.
The data will be recorded, stored and played back together,
preserving synchronisation between streams.

D. FlexiSelect

This component performs a very useful function in any
component-based system: selecting between two or more
inputs based on another input. For example, it could be used
to select between two controller components based on the
output of a third component that determines the robot state.

The user specifies the normal input ports, as with the other
flexible components, but with the limitation that these ports
must all be of the same data type. A single output port is
created automatically that matches this data type. A separate
integer input port is created for the selection port. The value
received is used as the index of the input port to switch to.
In the simplest case, with two input ports, sending a one or
zero simulates binary high and low.

E. FlexiAdd

The FlexiAdd component can be thought of as the motor
schemas [8] component. It takes the input ports defined by
the user, all of the same data type, and adds them together to
produce a single output.

The user can specify both scalar and vector data types. They
will be added together correctly. In the case of vector types,
addition is member-by-member, producing an output of the
same length as the inputs. This means that all input ports must
receive data of the same length. For example, this component
can be used to add a controller moving forward and a
controller moving away from obstacles together, producing
a single input for the robot component.

F. FlexiConst

FlexiConst generates one or more constant values matching
a data type specified by the user. It can generate the values
at specified intervals, or produce a continuous stream. It is
capable of outputting scalars and sequences.

III. IMPLEMENTING FLEXIBLE INTERFACES

All the flexible components described in the previous
section share a common feature: their input and/or output
ports are not predefined at compile-time. Instead, they are
configured at run-time based on the user’s needs. When
starting the component, the user provides command line
options that describe the input and output ports they require.
The component does the rest, creating a component that
meets the other components of software system the user is
implementing.

This flexibility in the interface, and therefore in the compo-
nents, is possible because of Python’s dynamic programming
language capabilities.

The start-up process of a flexible component best describes
how the flexibility is accomplished. Briefly, the steps are as
follows:

4617

1) User specifies via command line options what input and
output ports they require, in terms of data type.

2) Using Python’s reflection facilities, determine what data
types are available for use on data ports and ensure
those required by the user are available.

3) Create a component without any flexible ports (other
ports are created as normal) and pass it the list of ports
it should have.

4) Component object’s onStartup() method adds the
ports using Python’s ability to dynamically add member
functions and variables to a class at run-time.

As these steps show, the flexibility depends on two key
features of Python: reflection allowing introspection of the
available name spaces and names, and dynamic programming
language features allowing run-time type modification of
classes. Implementation in a language without these features,
such as C++, would be less straight-forward and may depend
on some hard-coding of type names.

A. Finding available port types

Python’s reflection facilities, in particular its inspect

module [9], provide an array of functionality for inspecting
a live Python program. Of particular interest here is the
module’s functions to list the available members of a class or
name space. OpenRTM-aist provides a set of standard data
types, and user-specified IDL can also be used for the data
type of a data port. The flexible components do a search using
inspect to find the available types:

def FindPortType (typeName):
types = [member for member in

inspect.getmembers (RTC,
inspect.isclass) if member[0] ==
typeName]

if len (types) == 0:
return None # Type not found

elif len (types) != 1:
return None # Ambiguous type name

return types[0][1]

The key line here is line 2. It builds a list of classes in the
RTC name space that match the given type name.

This function returns the name of the data type and its
value, which in Python is essentially a constructor that can
create objects of that data type. Each data type factory is
added to a list of input or output ports to be created during
component construction.

We note that the components, as currently implemented,
cannot change their interfaces after construction. The reason
for this is not related to the component implementation itself;
the facilities described here are quite capable of doing this.
However, the system editor tool provided with OpenRTM-
aist, RTSystemEditor, only reads a component’s ports when
the component registers with the name server. After that point
any changes in the ports are not reflected in the system editor’s
graphical system diagram and so are not usable. Moreover,
removing ports would lead to serious errors in the use of the
system editor. Should a user be programmatically connecting
ports, this would not be an issue.

B. Creating ports

Once the creator objects for each data type have been
located, the empty component can be instructed to add its
ports. Each flexible component has a step in its onStartup

method that adds input and/or output ports according to the
list created earlier. For example, the code shown below is
from the FlexiSelect component’s onStartup method.

self.__inPorts = []
self.__inPortBuffers = []

newPort = ports[0]
for ii in range(newPort[2]):
newInPortData = newPort[1](RTC.Time (0, 0),

[])
newInPort = OpenRTM.InPort(’input%d’ % ii,

newInPortData, OpenRTM.RingBuffer(8))
self.registerInPort(’input%d’ % ii,

newInPort)
self.__inPorts.append([newInPortData,

newInPort])

self.__outPortData = newPort[1](RTC.Time (0,
0), [])

self.__outPort = OpenRTM.OutPort(’output’,
self.__outPortData, OpenRTM.RingBuffer(8))

self.registerOutPort(’output’, self.__outPort)

Adding a new member variable to a class instance in Python
is simple. This is because Python classes are implemented
as dynamic name spaces referenced by the self variable.
Anything added to the name space becomes a member of the
class instance and can be accessed both within that class and
by external objects.

Once all ports have been created, the onStartup method
exits, and the component is available for use with its cus-
tomised interface. The process is very quick and requires no
user interaction beyond specifying the interface layout on the
command line.

IV. FLEXIBLE UTILITY COMPONENT DISCUSSION

Flexible interfaces are, in some cases, very important for
increasing both usability and reusability. The components
presented here are adaptable to the user’s needs. Rather than
reimplementing components, even if just wrappers around a
provided core, to suit a specific need and specific interface,
the user only has to provide options when starting the
components.

The collection of flexible components, built up over a
period of time through observation of repeating implemen-
tations, illustrate some of the most common functionality
required in a component based system. A component-based
architecture should endeavour to include components repre-
senting this set of functionality. This would save considerable
reimplementation by architecture users.

While these interfaces are flexible, they are not a hindrance
to automatic system construction. They can be treated as any
other component with a known interface, as their interfaces
remain static after component initialisation and can be known
from the start-up configuration.

4618

Unfortunately, because Python does not support real-time,
the components also do not support real-time. However, we
have not had any difficulty using them in several control
schemes.

A. Alternative implementation methods
The components implemented here depend on the avail-

ability of dynamic language features that allow introspection
of a run-time system and modification of class instances at
run-time. Without such features, these components would be
more difficult to implement, but not impossible.

For example, C++ templates and Java generics can be used
to create components customisable by data type. However,
these generic programming techniques require the component
to be compiled before use. The technique used in this paper
does not, making reconfiguration much faster and simpler.

A faster approach in a language that does not support
reflection is the use of standard object-oriented techniques
and dynamically allocated types. For example, in C++ with
OpenRTM-aist, the port objects could be allocated on the heap
at run time. This would provide much of the flexibility of the
Python implementation, but at the expense of much longer,
more repetitive code. It would also be limited to those types
available at compile time, unlike reflection.

B. Comparison with fixed interfaces
Examples of fixed-interface utility components can proba-

bly be found in any research lab using a component-based
architecture. There is little to describe; these components
simply present an interface that represents the data stream
they manipulate.

The flexible components offer an enormous advantage over
what they would look like were they implemented with fixed
interfaces. In the case of FlexiDump, we can directly compare
with an existing component, the SequenceIn component.
The interface style of SequenceIn is to present one port
for each data type in the system. This is clearly not an ideal
situation. Such an interface would need to have a port for
every data type in the system. Should a new basic data type
be added, any component with this style of interface would
need to be updated. Even worse is the possibility of a user-
defined data type, a feature provided by OpenRTM-aist, being
desired.

The advantage offered by the flexible components is espe-
cially the case for the more complex utility components, such
as FlexiFilter, FlexiLogger and FlexiSelect. While a fixed-
interface console dumper can work, the ability to configure
a logging component to handle any configuration of ports
allows all data to be logged to a single log file, aiding both
in reviewing that data and in keeping that data synchronised
during playback. In a more extreme case, the FlexiFilter
concept is simply not possible with a fixed interface. A new
component would need to be implemented for every new filter
configuration.

C. Application to other components
The technique presented here is not limited to utility com-

ponents. It may find uses in other components. For example,

a component implementing multiple interfaces, of which only
a subset are active at any one time based on use case, could
use this technique to prevent the other interfaces from existing
when not needed. This would bring benefits in less system
designer confusion (due to less ports cluttering the interface),
ability to reuse port names, and reduced clutter in graphical
system editor tools such as OpenRTM-aist’s RTSystemEditor
and ROS’s node viewer.

The reduction in space used in a graphical system is,
we concede, a minor benefit. However, it should not be
overlooked. The usability of a component within a graphical
system editor should be considered. A large component inter-
face leads to a large graphical representation of components
using that interface, which can lead to complicated system
diagrams and node graphs.

The same principle could be applied to a component
implementing a complex interface of which only a well-
defined subset of ports are available for use at any one time.
Complex interfaces, like complex APIs, can reduce usability
and increase maintenance costs through programmer error.

In general cases, however, it is the author’s opinion that
standardised interfaces are more important than flexible in-
terfaces that may be unknown. Fixed interfaces only reduce
reusability in a limited subset of use cases.

V. OTHER ROUTES TO FLEXIBILITY

The use of dynamic language facilities described in sec-
tion III is not necessarily the only way to achieve flexibility in
component design. There are other possibilities. These include
property bags and subdividing interfaces.

In addition, the dynamic programming language features
used for the flexible components are not limited to user-
specified configurations. They could be used for components
that adapt their interfaces automatically at run-time based on
any number of criteria, from changes in internal robot state to
the direction of an outside orchestration system. They would
facilitate reconfigurability of entire robot systems.

Component wrappers, which wrap one component in an-
other to alter its interface, are another option for flexibility.
There is likely to be considerable work involved in using this
option each time to create the new interface, though.

The CORBA specification provides a dynamic interface
facility [10]. This is a special generic interface used to make
requests on distributed objects where the object type is spec-
ified at run-time. This is an implementation method, and the
facilities presented here would still need to be implemented
if this approach were used.

A. Property bags

A property bag is a technique for providing additional
“properties” of an object beyond what its main interface
provides, which is typically based on some standard or
inherited from a parent object in some way. Prudent use of
property bags can allow the common aspects of a general
interface to be provided by that interface, while the parts that
vary considerably between more specific component types

4619

within the same category are provided by a property bag on
each component.

Property bags are not a new concept, but they are relatively
under-utilised in robotics. Previous work has been done
implementing a property bag system for a robot programming
architecture [11].

The Player architecture recently added a feature resembling
property bags [12]. In this case, the bags are split open
and each property is treated individually. The addition of
properties is still not widely used by Player’s drivers, but
in cases where it is, it provides additional driver-specific
run-time configurability beyond what the standard Player
interfaces allow. For example, the scanning speed of a laser
scanner can be altered via the standard laser interface, but the
baud rate of the connection to the scanner cannot. Creating a
property for this baud rate allows it to be changed.

A disadvantage of properties and property bags is that they
may not tend towards standardised properties. Instead, the
property names may diverge considerably between compo-
nents even for identical properties. This has been seen to
some extent in Player. However, they are a powerful means of
providing additional flexibility to components beyond what a
known interface may allow.

B. Subdividing interfaces
Perhaps the most obvious method for creating flexible

interfaces is to split those interfaces up. Creating many small
interfaces that can be combined together as needed gives great
flexibility. Interfaces could be defined at as fine-grained a
level as the individual ports. This would still ensure that each
port conforms to a known contract, while at the same time
allowing which ports are provided to be selected as needed
by the component designer or the component user (given
a suitable implementation of the component - see below).
This is the approach taken by, for example, ROS, in which
interfaces are not monolithic, and only individual message
types, each published on its own channel, are defined [4].

The downside of the coming and going of ports is the same
in any case of flexible interfaces: knowing at run-time which
ports are available for an automated orchestration method to
connect to them. This is considered an implementation issue
that can be solved by, for example, a meta-interface query for
which ports are provided.

It is worth noting that subdivided interfaces could be imple-
mented using the same techniques used to create the flexible
utility components described in section III. This would give a
combination of flexibility and standardisation, which could be
very powerful, especially with a suitable introspection system
for finding which ports are available programmatically.

VI. CONCLUSIONS

This paper has presented a set of flexible utility com-
ponents. These perform many functions commonly found

in component-based software systems, and, in particular, in
component-based robotic systems.

The components are implemented for the OpenRTM-aist
architecture, using the Python edition. They make heavy use
of Python’s dynamic programming language and reflection
facilities to allow for run-time configuration of their external
interfaces. This ability to alter their external interfaces is the
key to their flexibility. Without it, they would not be able
to adapt to different use cases and meet the widely-varying
needs placed on utility components by users.

The usefulness of this approach to flexible component
interfaces has been discussed. How useful this flexibility may
be in other types of components has also been considered. It
is the author’s view that, in general, known fixed interfaces
are likely to be a greater benefit to reusability than flexible
interfaces, but in certain cases flexible interfaces bring the
greater benefit. Other ways in which components and their
interfaces can be more flexible have been discussed, including
sub-divided interfaces and property bags.

In suitable situations, flexible and configurable component
interfaces greatly extend the power of component-based soft-
ware design. Flexibility of an interface should always be a
consideration during the interface design process.

REFERENCES

[1] C. S. with Dominik Gruntz and S. Murer, Component Software –
Beyond Object-Oriented Programming, 2nd ed. Addison-Wesley and
ACM Press, 2002.

[2] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K. Yoon, “RT-
middleware: distributed component middleware for RT (robot technol-
ogy),” in Intelligent Robots and Systems, 2005. (IROS 2005). 2005
IEEE/RSJ International Conference on, August 2005, pp. 3933–3938.

[3] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback,
“Towards component-based robotics,” in Intelligent Robots and Sys-
tems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on,
Aug. 2005, pp. 163–168.

[4] (2009) ROS.org. [Online]. Available: http://www.ros.org
[5] B. Song, S. Jung, C. Jang, and S. Kim, “An Introduction to Robot Com-

ponent Model for OPRoS (Open Platform for Robotic Services),” in
Intl. Conf. on Simulation, Modeling and Programming for Autonomous
Robots 2008, Workshop Proceedings of, Nov. 2008, pp. 592–603.

[6] G. Broten, D. Mackay, S. Monckton, and J. Collier, “The robotics
experience,” Robotics & Automation Magazine, IEEE, vol. 16, no. 1,
pp. 46–54, March 2009.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison–Wesley, 1995.

[8] R. C. Arkin, Behavior-based robotics. MIT Press, 1998.
[9] (2009) 28.12. inspect – Inspect live objects – Python v2.6.2 documen-

tation. [Online]. Available: http://docs.python.org/library/inspect.html
[10] M. Henning and S. Vinoski, Advanced CORBA Programming with

C++. Addison-Wesley Professional, 1999, ch. 2.
[11] Y. hsin (Oscar) Kuo and B. MacDonald, “A distributed real-time

software framework for robotic applications,” in Proc. IEEE Int. Conf.
on Robotics and Automation (ICRA’05), Barcelona, 18–22 April 2005,
pp. 1976–81.

[12] (2007) SourceForge.net: The Player Project:. [Online].
Available: http://sourceforge.net/mailarchive/message.php?msg id=
46346FE0.5010801%40auckland.ac.nz

4620

