2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

Applying regression testing to software for robot
hardware interaction

Geoffrey Biggs
Intelligent Systems Research Institute
National Institute of Advanced Industrial Science and Technology (AIST),
AIST Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan
geoffrey.biggs @aist.go.jp

Abstract—If robots are to be fully accepted in the homes and
offices of the world, it is important that they are guaranteed
to be reliable and not to cause damage or harm. This requires
testing robot systems and the software that comprises them.
But testing robot software has always been a difficult process
for developers. Issues of repeatability, safety, access to hardware
and the general complexity of robot software are encountered.
In industrial robotics, these difficulties are mitigated somewhat
by the relatively simple, repeatable tasks and the controlled
environment. Robotics for real-world environments, on the other
hand, face the full challenges of testing.

In this paper, we discuss regression testing at a low level of
individual software components, particularly those components
that are designed to interface with robot hardware. We present a
software system for regression testing these components in a fully
repeatable fashion as a case study of performing such testing
in robotics. The presented system provides an efficient and
quick method to monitor changes in the behaviour of software
components as they are developed. Developers of robot software
can quickly discover undesired changes and correct them.

I. INTRODUCTION

Robotics is a field rapidly moving from its original envi-
ronment of industrial automation, where it is well-established,
to dynamic, human-oriented environments. In these new en-
vironments, robots face many significant challenges, from
the dynamic, rapidly changing nature of the real world!
to the inherit uncertainty found there. This is leading to
new challenges in the development process of creating robot
software [1].

As with any embedded system, or indeed any computer or
mechanical system in general, robots require significant test-
ing to ensure they behave as planned under all circumstances.
This is particularly important during erroneous conditions.
It is relatively simple to test robots located in controlled
environments, particularly industrial robots, for all expected
conditions and a wide range of unexpected conditions, such
as mechanical failures. The remaining unexpected conditions
can be controlled by virtue of the environment itself being
controlled. Similarly, the safety of surrounding humans can be
guaranteed by preventing entry to the controlled environment,
as is often the case with the robotic work cell of a factory
robot.

If we consider an industrial environment to be controlled to the point of
not being real, we can describe human environments as the “real world.”

978-1-4244-5040-4/10/$26.00 ©2010 IEEE

Unfortunately, conditions in the real world cannot be con-
trolled so tightly, and so it is impossible to guarantee that
all conditions not tested for will not occur. This presents the
field of service robots with a challenge: how to guarantee
safety when a complex robot is entered into the dynamic,
ever-changing environment of the human world? This is a
task perhaps best tackled in a piecemeal fashion. Testing
and guaranteeing the entire system as a whole is probably
too difficult a task without first guaranteeing the safety of
individual components. First, each component of the system
should be tested to ensure it conforms to a known set of
conditions, particularly with regards to its inputs and outputs.
If each component can be guaranteed to only produce a known
set of outputs given any input, the problem set of the whole
created from the component parts becomes smaller and safety
may be easier to guarantee.

In this paper, we consider the use of a technique from soft-
ware engineering, regression testing, and demonstrate its use
on software components for interacting with robot hardware.
Regression testing is a well-known testing technique that
ensures that new changes do not break existing functionality.

We have created a library that can be used to regression test
software written to interface with robot hardware, software
that has traditionally been difficult to test in a way suitable
for regression testing.

The rest of the paper is laid out as follows. Section III
briefly discusses some methods that are currently used to test
robot software. Section IV describes the library created to
facilitate regression testing of some types of robot software,
with its testing facilities described in Section V. Some use
cases giving examples of the use of the system are given
in Section VI, followed by discussion in Section VII and
conclusions in section VIII.

II. REGRESSION TESTING

Regression testing is a well-known technique for functional
testing. It is used after a change, such as a new feature or a
repair, has been made to the software, and after that change
has itself been tested. It aims to ensure that new changes
in the software do not break existing functionality [9]. Such
testing is necessary because, in complex software, it is very
difficult to determine exactly how a change made will affect
the rest of the software.

4621

It is important that regression testing cover all parts of
the software. This means that software dealing with hardware
interaction cannot be left out simply because the hardware is
not available. Regression testing is typically automated, due
to its tedious nature. Without automation, regression testing
may not ensure complete coverage of the software features.
Any method of regression testing needs to be able to be
automated [10].

III. TESTING IN ROBOT SOFTWARE

There are two commonly-used methods of testing robot
software. The first is to run the software on real robot
hardware, while the developer or an assistant hovers nearby
with their hand on an emergency stop switch. This is not
an ideal testing environment. As well as the obvious reasons
such as the danger involved in trying new code on a valuable
piece of hardware that may be capable of causing damage to
itself or injury to people around it, there are other reasons
such as the non-repeatability of this method of testing. A bug
may appear in one run of the software, but, due to a very
slight change in the robot or the environment around it, not
appear in the next. Repeatability can only be achieved by a
statistical approach of running the software many times and
performing a statistical analysis on the combined outcomes.
There is less verifiability in such an approach, and it is both
time-consuming and difficult to debug software under such
circumstances.

Simulators are usually used to avoid the dangers of testing
on a real robot, but they can also add some repeatability. The
simulated environment and robots can be controlled much
more finely than real hardware. Even so, simulation is still a
difficult way to test robot software. It may not necessarily
guarantee repeatability and it is typically not possible to
step through control code as the simulator keeps running. It
is, however, possibly the best method we have of testing a
complete robot system with the greatest repeatability (given a
simulator with sufficient accuracy in its calculations). A large
number of simulators have been developed over the years.
The Stage [2] and Gazebo [3] simulators are the best known
examples of simulators for research, although there are also
several simulators in industrial robotics. Examples include
the simulators provided by companies such as ABB [4] and
KUKA [5] for their industrial robots, and the COSIMIR
simulator [6].

When we consider the smaller components that make up a
complete robot system, other testing methods become avail-
able. Components can be tested in isolation to ensure they
conform to all aspects of their described external interface. If
the design of the greater system that combines components
together is correct, this greatly reduces the likelihood of
problems occurring in the system as a whole. This will often
involve testing based on use cases from the design phase of
the development process. There are established ISO processes
for such testing that can be applied [7].

Testing components in isolation is a well-established soft-
ware engineering practice, and it applies just as well to
robot software development as it does in other domains of

programming. Components can also be regression tested to
compare their new behaviour after modification with previous
behaviour. This allows the developer to identify all changes in
behaviour that have been caused by changes to the software
code, and correct those that are unintended or not desired.

When discussing testing robot software components, it is
important to consider the difference between purely software
components, such as navigation algorithms, mapping systems
and image processing algorithms, and software for interfacing
with and controlling robot hardware. The former is relatively
simple to test. It does not require the presence of hardware (in
most cases, even a simulator is not necessary, just a suitable
data set) and it is possible to make the tests one hundred
percent repeatable through the use of a pre-defined data set
as input. A regression test of such software can be performed
by running it over the same data set before and after changes
are made, and comparing the outputs. Software for interfacing
with hardware, on the other hand, requires that hardware
be present and may depend on environmental factors being
identical. For example, a software driver for a laser scanner
(not a data processing algorithm, but the software responsible
for interpreting the scanner’s data transfer protocol).

To regression test such software, we need a way to make
the output of the hardware perfectly repeatable. Ideally, we
should not need the hardware to be present to regression
test the software driver, which would allow regression tests
to be automated. The following sections discuss a software
system that allows this, implemented as part of the flexiport
library [8].

IV. FLEXIPORT

Flexiport is a low-level stream-oriented communications
library written in C++. It is designed to provide a unified
API for communicating with hardware via various different
types of connections. Currently, it provides support for serial
port (including serial-over-USB), TCP and UDP connection
types, three common methods of communicating between
computers and hardware. The bulk of the API is unified
and the library uses an object-oriented design. This allows
different port types to be swapped without changing the code
of the software using the library.

Swapping port types at run-time is facilitated by a factory
function used to create an instance of a Port object and the
method of customising that object to the applications’ needs
(see Listing 1, line 4). Rather than passing in port settings as
individual function arguments, the factory function accepts a
string containing the port settings as <option,value> pairs,
similar to command line arguments passed to an executable
in a command shell. One of these is the type of port to create,
such as “serial” or “tcp,” allowing port types to be swapped
transparently without code changes.

Flexiport is distributed as a member of the Gearbox
project [8]. It is utilised by other libraries in Gearbox.

V. REGRESSION TESTING WITH FLEXIPORT

The flexiport library provides the low level communications
between robot hardware and the software directly respon-

4622

Listing 1: Creating two ports with different configurations.
One port is a serial port, the other is a TCP network port.

string portOptions =
"type=serial,device=/dev/ttyS0, timeout=1";

flexiport::Port *portl, =*port2;

portl = flexiport::CreatePort (portOptions);

port2 = flexiport::CreatePort
("type=tcp,ip=130.216.217.24,1listen");

sible for communicating with and controlling it. Ensuring
the correctness of this interface, particularly a developer’s
interpretation of the communications protocols used, means
ensuring that the software implementing the interface is
correct. We term this software the client software from here
on, i.e. a client of the flexiport library and the hardware.

The correctness of this interface can be tested by ensuring
that the contents of the communications session on the wire
between the software and the hardware is correct. With
regards to regression testing, this means ensuring that one
communications session is identical (or similar enough, within
acceptable bounds) to a previous communications session.
With the flexiport library, we can perform regression testing
by applying the well-known technique of log files: first
recording a communications session that is known to be good,
and then replaying that session back through the software
component, emulating the hardware device and communi-
cations port. The remainder of this section describes the
facility in flexiport for recording log files, followed by the
facility for handling the more complex task of emulating a
communications port.

A. Logging ports

The ability to swap port types transparently presents us
with an opportunity to introduce a powerful logging facility
to the library. By creating a new port type that wraps around
one of the existing port types and logs every action performed
with that port, we can record a detailed log of the activity of
the communications channel.

This is the purpose of the LogWriter port type. This port
type encapsulates another instance of the Port type. All calls
to the standard flexiport API made against this object are
passed on through to the internal Port object, but first they
are recorded in a log file, including their arguments, such
as data to be written. Similarly, the result of any calls is
recorded before it is returned to the caller. This includes any
data received by the port, where applicable.

A log of a communications session actually consists of
two separate log files, one for the data written to the port and
one for the data read from the port. The files are separate to
simplify the format they are written in, as there is no need to
specify whether an operation is a read or a write in the files
themselves this way.

The log file is written using a simple block-based format,
illustrated in Figures 1 and 2. Each block consists of a time
stamp, a data size (as an unsigned 32-bit integer), and any

Timestamp Timestamp Data size
) (us) (bytes) Block data
4 bytes 4 bytes 4 bytes N bytes

Fig. 1: The format of the log files used by flexiport to record
communications sessions.

Block 1 0 0 15 Block data (15 bytes)
Block 2 0 4573 0

Block 3 2 63678 10 Block data (10 bytes)

Block 4 2 96739 7 Block data (7 bytes)

Fig. 2: An example log file showing how the format is used.

data that is present. The time stamp is taken against the time
the log file was opened for writing. It is measured in seconds
and microseconds and is written as separate 32-bit unsigned
integers. 32-bit sized values are used to ensure compatibility
across 32-bit and 64-bit architectures (important if the log
files are to be disseminated to other library users). It is also
unlikely that the 293-billion-year range afforded by using 64-
bit values is necessary. These values are changed to network-
byte order before writing for the same reason. The data,
however, is written in its raw state, as byte-ordering is not
important for single-byte values.

When considering what to log, the LogWriter object
was designed with a minimalist approach. It only logs those
actions and the data necessary to recreate the data received
from and sent to the port by the client software. This is
because when regression testing software using flexiport, it
is not important to check that, for example, the data received
from the hardware during a skip operation (which reads
data from the port and dumps it without returning it to the
caller) is identical to data skipped in previous communication
sessions. It only matters that the data on either side of the skip
that is used by the client is identical. This both simplifies
the implementation of the log recording and playback, and
reduces the size of log files.

Client software can provide a log-writing alternative to their
usual port type for the type option when the port object is
created. The factory function that constructs port objects (see
Section IV) will construct an instance of the Logliriter
object, passing in the remaining options as usual, but with
the type option re-added, this time specifying the type of
the internal port object to create. The LogWriter constructor
then makes its own call to the factory function to construct
the internal port, passing in the entire set options. In this way,
a user still has full control over the options of the internal port
object. For example, the options shown in Listing 1 could be
amended to:

type=seriallog,device=/dev/ttyS0, timeout=1
creating an identical serial port, but wrapped with a log writer

4623

that will record all activity using that port.

B. Emulating ports

Once a communications session has been recorded, it can
be used to emulate the hardware and communication port, and
so test if the software driver to interface with the hardware
is behaving as expected with respect to previously known
behaviour.

The LogReader port type is used to provide this function-
ality. Unlike its log-writing relative, this port type does not
need to encapsulate a real port object, as it uses the provided
log files for its data source.

While at first, playing back a recorded communications
session would seem to be a simple task, it is not as easy as
simply reading from the recorded file and comparing data. It is
important that, for an accurate test, the timing of when data
becomes available for reading is emulated. Driver software
often relies on the timing of data for operation, such as the
length of time between messages being used to determine
when a message has ended.

However, it is also not simply a case of reading a chunk
from the log file and attempting to match it against the
current read or write operation being performed by the client
software. The goal is to ensure that the client software still
performs the same overall task correctly and with the same
result, not that it performs every operation identically. If what
was previously done in three separate read operations is now
performed in a single operation, this is acceptable, provided
that there is data available from the log file within the timeout
of that single read operation and the same total quantity of
data is read.

For this reason, the LogReader object performs a complex
operation involving reading and buffering the data from the
log files in overflow buffers as necessary. The algorithm for
reading blocks from the log files is shown in Figure 3. It
should be noted that the option to test without emulation of
timing is available, if timing is not important.

As each read is performed, the data is sent back to the
client software. If the client software is expecting something
different, due to a change in its code, it will cause an error
in the client software and will therefore indicate that the
regression testing has failed. It is then up to the developer
to determine the cause of the failure, which may be due to
an unintended change in the behaviour of the client software,
or due to a planned change (in which case, new log files
matching the new behaviour must be created for future tests).

Testing of writes requires comparing the data passed in
by the client software against that found in the write-data log
file. Times are checked to ensure data is not written too early,
again because some protocols require accurate timing of reads
and writes. However, more flexibility is given for checking
of write operations than read operations. Three levels of
strictness are available:

1) Writes are not checked at all

2) Writes are checked, but timing is not checked

3) Writes are checked, and timing must be accurate to

within a user-provided margin of error.

Is there
data in the
overflow

buffer?

Move required
quantity of data
from overflow

Is more
data
required?

No

Is there
sufficient data
available from
the file now?,

Read all data blocks
up to the time limit,
placing unneeded data
in the overflow

Is there
sufficient
data available
within the
timeout?

N N
0 Return timeout

Calculate the
timeout end time

Read all data blocks up to
this time, placing unneeded
data in the overflow

Y

Sleep for the period
between now and the
timeout ending

(Return # bytes read J=&

Fig. 3: The algorithm for reading blocks from the log files.
Note that memory management of the overflow buffers is not
shown.

The reason for option one is that often the commands of a
protocol may change while the data returned by the hardware
does not, necessitating a change in the behaviour of the client
software that sends those commands without changing the
behaviour responsible for reading the result. Option two is
provided for the case where timing is not important.

VI. USAGE EXAMPLES

This section describes two examples of using flexiport to
both bring flexibility in communications to robot software for
interfacing to hardware and, more importantly, using flexiport
to regression test that software. The first example is of a
hardware driver in the Gearbox project that uses flexiport for
communications. The second is a more generic solution as
part of the Player project [11].

4624

A. Gearbox

Flexiport is a member of the Gearbox distribution of robot
software. The hokuyo_aist library from Gearbox uses flexiport
for communication with hardware.

Hokuyo_aist is a hardware driver for small-scale laser
scanners from Hokuyo, including the URG-04LX, UHG-
08LX and UTM-30LX [12]. The URG-04LX provides serial
and USB (via USB serial port emulation) communications,
while the others provide only the USB option. They can all
be communicated with using flexiport’s SerialPort object.

Because of this, we are able to regression test the
hokuyo_aist library. A communications session between the
example program provided with the hokuyo_aist library and
a URG-04LX model laser scanner was recorded. The log files
from this recording are distributed with the library, available
for use by users of the library to try the example when
hardware is not present and confirm the library is functioning
as expected. This is a secondary use of the logging facilities.

This process can be automated within Gearbox’s automated
testing system, ensuring that the library continues to function
correctly after any code changes. This is an important example
of how we can ensure robot software quality is maintained.

A separate, somewhat anecdotal example comes from the
development of the hokuyo_aist library. After its initial re-
lease, a bug report was received from one user that it was
not functioning as it should for their laser scanner. The
behaviour was difficult to describe and the verbose output of
the example did not provide enough information to diagnose
the problem. Because the bug only occurred on the user’s
specific revision of a URG-04LX laser scanner, it was not
possible for the developers of hokuyo_aist to debug directly
on the hardware. As a replacement, the reporter of the bug
provided a recording of a communications session in which
the bug occurred. The developers were able to replay this
log through a hokuyo_aist instance as if using the actual
hardware, with the added advantage of being able to step
through the code, unconstrained by time as is usually the
case when debugging with the actual hardware. The bug was
rapidly diagnosed and fixed in much less time than it would
have required had the log file not been available (especially
given the delays and limitations of email communication).
While not regression testing, this illustrates the importance of
being able to record and replay the wire-level communications
between robot hardware and its interfacing software in the
modern world, where software may be used by others around
the world. The mailing list exchange discussing this bug is
archived online2, and similar exchanges have since occurred
for other bugs.

B. Player

Player [11] is one of the most popular robot software
frameworks. It uses interfaces to abstract away the differences
between various implementations of device types. One inter-
face is provided for each device type, for example a ranger

2See http://sourceforge.net/mailarchive/forum.php?thread_name=
18405740.post@talk.nabble.com&forum_name=playerstage-users

interface for range sensors, and a position2d interface for
controlling the position and velocity of a robot in 2D space.
Drivers provide the implementation for a specific piece of
hardware, such as a driver for a SICK laser scanner or a driver
for a Pioneer robot. Drivers can communicate with each other
using these interfaces to access resources provided by other
drivers.

One of the difficulties with developing drivers for Player
has been maintaining them. Many of the drivers are orphaned,
their original authors having moved on. With Player under
constant development and API changes being made when new
versions are released, all drivers must be updated regularly
and bugs are often found by users that must be fixed. It is the
responsibility of the core Player developers to perform these
tasks. However, the core developers do not have access to
most of the hardware supported by Player. Drivers are often
updated without being tested, which can lead to bugs being
introduced that are not detected for a long period of time.
Some drivers are not updated for this reason (the “why update
it if I cannot test it?” mentality), meaning they fail to work
or even compile correctly.

The solution, and the inspiration for the work presented in
this paper, is to provide a method for regression testing drivers
when they have been updated after a change in Player’s
driver API. One way to do this is to use the flexiport library
when writing a driver to provide the communications with
the hardware. This approach leads to regression testing that
is mostly similar to that described in Section VI-A.

Another method is through the use of Player’s generic
opaque interface. This interface is designed to allow devices
which don’t match one of the provided interface types to
still use Player. A client and a driver send opaque messages,
which are simply blocks of raw data, across the opaque
interface, and decode them manually at either end. This can
be utilised for removing the hardware communications from
a driver by reading and writing an opaque interface as if
it were a communications port. A separate Player driver,
sitting at the other end of the opaque interface, receives
data to write and writes it to the hardware port, and reads
data from the hardware port which it then sends over the
opaque interface. This separates hardware communications
and protocol interpretation into two separate drivers, which
can even be running on separate Player servers on separate
computers.

By providing an opaque driver which uses flexiport to
implement the hardware communications, regression testing
capability has been added to Player for any driver which
uses the opaque interface to access its hardware rather than
directly opening a port (currently, this is only a small number
of drivers, as the idea is relatively new). We are then able
to record a communications session for any of these drivers,
store it with the Player distribution, and test drivers at a later
date without the hardware present. This driver uses flexiport’s
port options to allow a Player user to fully configure the
port created by the driver at run-time, including using a
LogWriter or LogReader port. See Listing 2 for an example
of specifying the port options in the Player configuration file.

4625

Listing 2: A sample player configuration file showing the
configuration of two flexiport drivers with different port
configurations.

driver (
name "flexiport"
provides ["opaque:0"]

portopts "type=serial,device=/dev/ttyACMO"
)

driver (
name "flexiport"
provides ["opaque:1"]
portopts "type=logreader,file=testl"

This eliminates a major obstacle in the development and
maintenance of Player drivers. The core developers are now
able to update drivers when necessary and test their behaviour
without requiring the hardware to be present.

VII. DISCUSSION

The ability to regression test robot software components is
important to ensuring the continued health of created robot
software. In the world of open-source robot software, where
software may be maintained by developers other than the
original author, it is even more important.

However, regression testing of software for interfacing with
hardware components is a non-trivial task. The hardware may
not be available when the testing is to be performed, or may
not be available at all. Therefore the ability to emulate any
hardware in a generic fashion is important. The ideal method
for doing this is to record and replay the communications
session between the hardware and the interfacing software at
the wire-level. This is the niche that flexiport fills for robotics
with its logging facilities. Flexiport provides a great benefit
to any software that must directly interface with hardware,
allowing it to be tested in a repeatable way (not to mention
the other benefits it brings in cross-platform capability and a
unified API for various port types).

As mentioned in Section VI-A, flexiport also brings benefits
in finding and fixing bugs in robot software that has been
distributed to other users around the world. The log files can
be used to replay a communications session that triggers a
bug on some esoteric variation of hardware the developer of
the software does not have access to, greatly reducing the
time and difficulty involved in fixing the bug.

VIII. CONCLUSIONS

Testing in robotics is a difficult practice. Industrial robotics
typically features repeatability of the tasks involved and a
controlled environment. It benefits from these when it comes
to testing, both in simplifying the testing requirements and
reducing the exceptional conditions that must be tested for
and guaranteed against. Robots operating in the dynamic
and unpredictable real world do not have these benefits, and
testing the software that must operate in these conditions
is correspondingly more difficult. However, we can still
apply existing established testing procedures in many ways.
One of these techniques is regression testing, which allows
developers to confirm that previously-established behaviour
still takes place, usually in an automated way.

In this paper, we have described the implementation of a
method for regression testing software that interfaces with
robot hardware. The method uses a logging facility built into a
communications library. It records a communications session
between hardware and its driver software. The record of this
session can then be replayed later, emulating the hardware
and allowing the software to be tested independent of the
hardware. Two examples of using this facility have been
presented, and an example of the benefits it can bring to the
debugging process has also been discussed. The ability to
regression test software components is shown to be a benefit
to the process of developing robot software.

REFERENCES

[1] B. A. MacDonald, G. Biggs, T. H. Collett, and Y. H. Kuo, Software
Engineering for Experimental Robotics. Springer, 2007, ch. 44.

[2] R. T. Vaughan, B. P. Gerkey, and A. Howard, “On device abstractions
for portable, reusable robot code,” in Proceedings of the 2003 IEEE/RSJ
Intl. Conference on Intelligent Robots and Systems (IROS03), vol. 3,
Las Vegas, Nevada, October 2003, pp. 2421-2427.

[3] (2010) Player Project - Gazebo. [Online]. Available: http://playerstage.
sourceforge.net/index.php?src=gazebo

[4] (2010) The ABB group. [Online]. Available: http://www.abb.com/

[5] (2010) KUKA Automatisering + Robots N.V. [Online]. Available:
http://www.kuka.be/

[6] D. Freund, E.; Pensky, “COSIMIR Factory: extending the use of
manufacturing simulations,” in Proceedings of the IEEE Intl. Conf. on
Robotics and Automation (ICRA "02), vol. 3, May 2002, pp. 2805-2810.

[7]1 Y. K. Chung and S.-M. Hwang, “Software testing for intelligent robots,”
Control, Automation and Systems, 2007. ICCAS ’07. International
Conference on, pp. 2344-2349, Oct. 2007.

[8] (2010) GearBox Project - Flexiport. [Online]. Available:
//gearbox.sourceforge.net/group__gbx__library__flexiport.html

[91 G. 1. Myers, The Art of Software Testing, 2nd ed. Hoboken, New
Jersey: John Wiley & Sons, Inc., 2004, ch. 6.

[10] E. Dustin, Effective Software Testing. Addison-Wesley Professional,
2002, ch. 39.

T. Collett, B. MacDonald, and B. Gerkey, ‘“Player 2.0: Toward a practi-
cal robot programming framework,” in Proceedings of the Australasian
Conference on Robotics and Automation, University of New South
Wales, Sydney, Australia, December 5-7 2005.
(2010) Scanning range finder URG. [Online].
/Iwww.hokuyo-aut.jp/02sensor/07scanner/urg.html

http:

(11]

[12] Available: http:

4626

