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Abstract—This paper presents an approach to sensor plan-
ning for simultaneous pose estimation and model identification
of a moving object using a stereo camera sensor mounted on a
mobile base. For a given database of object models, we consider
the problem of identifying an object known to belong to the
database and where to move next should the object not be easily
identifiable from the initial viewpoint. No constraints on the
motion of the object nor the robot itself are assumed, which
is an improvement on previous methods. Sensor planning is
based on the selection of the control action that optimizes a
cost metric based on information gain. Experimental results
from the implementation of the method on a two-wheeled
nonholonomic robot are presented to illustrate and validate
the method.

I. INTRODUCTION

This paper considers how a mobile robot equipped with

a stereo camera system should best plan its motions so as

to simultaneously identify and track moving objects in its

environment. Our approach is an extension of our previous

work ([1]) in which the motion of the object-to-be-identified

was constrained to lie within the field of view of the stereo

camera, and the motion of the robot was confined to a

circular ring about the object. In this paper neither the

object nor the mobile agent are constrained in their motion.

In addition, appropriate approximations and simplifications

have been introduced to enable real-time implementation on

a modest computing platform.

This paper is organized as follows: Section II discusses

related work and how our approach differs. Section III

summarizes our approach, highlighting the information gain

metric and associated computations. Section IV discusses the

implementation details including extensions needed for real-

time capabilities and how unconstrained motion of the object

and mobile agent can be achieved. Section V presents our

experimental results.

II. RELATED WORK

The problem of sensor planning for object identification

has been investigated extensively over the past several years,

more commonly referred to as an active recognition problem

[2] [3] [4]. The approach is to use vision imagery (stereo in

our case) to identify an object, determine the next sensor

viewpoint should the object not be identifiable from the

current view, and provide visual feedback for navigation

during the identification task. The use of information the-

oretic concepts has been investigated as a possible solution.

Fig. 1. The setup of our experiment is shown above where the mobile
agent is equipped with a stereo-camera head mounted to a pan-tilt unit. The
object to be identified is also mobile with the mobile component also a
two-wheeled nonholonomic robot controlled by an external operator.

In [5], the authors use entropy as the optimization metric,

and compute a discretized entropy map on the surface of

a viewing sphere. At run time, sensor planning for object

recognition is achieved by selection of the most informative

view based on the precomputed entropy maps.

Paletta et al. [6][7] also use an information theoretic basis

for their active recognition strategy that seeks to minimize

expected entropy loss. Their chosen features are appearance-

based parametric eigenspaces and the recognition process

uses a sequential Bayesian approach. Their work does not

include a procedure to estimate and track model pose, and

is thus limited to identifying static objects.

Denzler and Brown [8] use mutual-information as their

optimize criterion, and present a sequential decision-making

process, using Monte Carlo sampling to approximate analyt-

ical solutions. State estimation is limited to model ID and

no object pose estimation is considered. More recently, Ei-

denberger et. al. [9] presented a sequential Bayesian method

for active object recognition based on a cost metric defined

as the upper bound of the differential entropy. While their

use of Gaussian mixture model approximations to prior and

posterior distributions of the state variable allows for fast

parametric updates, 6D pose estimation and object tracking

capabilities are not explored.

Our work differs from these prior works by integrating

6D object pose estimation as a necessary part of the sensor-
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planning problem. In addition, our experimental results show

simultaneous sensor planning, pose estimation, and model

identification for both moving object and robot.

III. APPROACH

Consider an autonomous robot equipped with a stereo

camera pair mounted on a pan-tilt base and some means of

on-board localization (i.e. odometry, SLAM, scan-matching,

etc.). We assume that SIFT features ([10]) can be extracted

from images as well as their corresponding 3D point loca-

tions from stereo. The agent is provided an existing database

of L object models, {M0, M1, · · · ,ML−1}, generated via a

training phase as similarly described in [11], [12], and [13].

Each object is observed from various viewpoints on an

equitorial ring surrounding the object. For each viewpoint, a

set of SIFT features and their 3D locations are recorded and

defined in an object-centered reference frame. SIFT features

are chosen [14] due to their robustness in the areas of feature

correspondence, re-detectability, and lighting effects. At the

end of the training phase, the ith model is defined by a set

of Ni total database features, Bi = [bi0 bi1 . . . biNi
].

Suppose that one database object is presented to the

robot which is tasked with identifying the (possibly moving)

object. The problem of where the robot should move if it

is unable to correctly identify the presented model from the

initial viewpoint is now considered.

A. Motion & Measurement Models

Let the state of the ith model, Mi, at timestep k be

defined as Xk,i = [xir x
i
o] ∈ R6, which represents the 6-DOF

Euler parameters that define the object translational pose

(xr = [x y z]) and orientation (xo = [α β γ]) with respect to

the camera-centered reference frame. Let uk−1 = [us uω ]k−1

be the control action (speed and angular rate control for a

planar robot) executed by the robot at timestep k−1. Also,

let Dk = [d0 d1 . . . dnk ] be defined as the set of nk 3D-SIFT

features measured at timestep k. We assume that the features

have a one-to-one correspondence with a subset of database

features for model Mi represented by the correspondence

vector, Ji ∈ Z+. The variable Ji( j) = l indicates that the

jth current measurement (d j) corresponds to the lth database

feature of the ith model (bi
J( j) = bil). While there exist many

different methods of determining Ji, our experiments use

a comparison of the normed difference of the 128-element

SIFT descriptor in the framework of Lowe’s Best-Bin-First

search algorithm [15].

Consider the diagram shown in Fig. 2 which shows the

key reference frames and the spatial transformations between

reference frames at one timestep and the next 1. The transfor-

mation between the object frame and camera frame follows

the recursive prediction equation:

GCk,Ok
= G−1

Rk,Ck
G−1
Rk−1,Rk

GRk−1,Ck−1
GCk−1,Ok−1

GOk−1,Ok
(1)

The transform GOk−1,Ok
is derived from the object’s motion

model which we assume to be a random walk perturbed by

1The notation used here is that the transform GAB ∈ SE(3) transforms a
3D point defined in frame B into the reference frame of A.

Fig. 2. There are three reference frames considered: the robot reference
frame (R), the camera reference frame (C), and the object reference frame
(O). For a given robot motion between timesteps k− 1 and k, the various
SE(3) frame transforms can be used to bring measurements from one frame
into another to establish the motion and measurement models for the system.

noise at the velocity level. Similarly the transform GRk−1,Rk is

governed by the robot’s motion model, chosen here as a basic

wheel odometry model which incorporates the control action

from the previous timestep, uk−1. The transforms GRk,Ck
and

GRk−1,Ck−1
define the location and orientation of the camera

relative to the robot at subsequent timesteps, which will

be different because of the varying motions of the camera

commanded by the pan-tilt base. Provided appropriate pan-

tilt states are known at each timestep, these transforms can

be easily determined. Lastly, the transformation GCk−1,Ok−1

is obtained from the previous timestep’s estimate of the ith

object’s location, Xk−1,i. This leads to a motion model for

the state of the ith object found by extracting the object Euler

parameters from GCk,Ok
:

Xk,i = F(Xk−1,i,uk−1)+η (2)

where the nonlinear function F incorporates the various

frame transforms (the exact expression has been omitted for

brevity) and η is Gaussian white noise.

The system’s measurement model is derived in a similar

manner. Since the data measurements Dk are received in the

camera reference frame and the ith object database features

(Bi) are described in an object-centered reference frame,

the matched database features can be transformed into the

camera reference frame via application of GCk,Ok
:

Dk =








d0
d1
...

dnk








=









xir +R(xio)b
i
J(0)

xir +R(xio)b
i
J(1)

...

xir +R(xo)
ibi

J(nk)









k

+ξ

, H(Xk,i,Ji)+ξ (3)

where ξ ∈R
3nk×1 is Gaussian white measurement noise with

covariance given by Σm ∈ R
3nk×3nk and R(xio) is the rotation

matrix associated with GCk,Ok
, explicitly stated as a function
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of the ith object’s orientation parameters. Note the use of

the correspondence variable Ji in the measurement model,

which assumes the correspondences are known or at least

given. This issue is discussed more below.

B. Next-best View

The information gain metric, Iuk(·), used to optimize

with respect to a future control action, uk, is chosen to be

the difference between the current model entropy and the

expected model entropy based on a hypothetical future action

uk and the data associated with that action, Dk+1:

Iuk = H(M|D1:k,u1:k−1)−EDk+1
[H(M|D1:k+1,u1:k)] (4)

where EDk+1
[·] denotes expectation with respect to Dk+1 and

the entropy function H(M|D1:k,u1:k−1) is defined as:

H(M|D1:k,u1:k−1) = (5)

−∑
i=0

P(Mi|D1:k,u1:k−1) logP(Mi|D1:k,u1:k−1)

where the subscript notation 1 : k indicates the set of mea-

surements, actions, etc. from timestep t1 up to and including

timestep tk. Note that the entropy H(M|D1:k+1,u1:k) is simi-

larly defined. P(Mi|D1:k,u1:k−1) represents the discrete prob-
ability of the ith model, given the set of data measurements

D from t1 up to tk and the set of control actions from t1 up

to tk−1.

The optimal control action, which is the next-best sensing

action, is that action which optimizes the information gain:

u∗ = argmax
uk

Iuk . (6)

The remainder of this section expands Eq. (4) into meaning-

ful and computable expressions.

To determine Iuk , the current and expected model entropies

must be found. Using Bayes’ Rule, the model probability in

Eq. (5) can be expressed as a function of the data likelihood:

P(Mi|D1:k,u1:k−1) = (7)

data likelihood
︷ ︸︸ ︷

p(Dk|D1:k−1,u1:k−1,Mi) ·P(Mi|D1:k−1,u1:k−1)

∑
j=0

p(Dk|D1:k−1,u1:k−1,M j)P(M j|D1:k−1,u1:k−1)
.

Note that the data likelihood p(Dk|D1:k−1,u1:k−1,Mi) can be

further expressed by marginalizing over the state of the ith

model, Xk,i:

p(Dk|D1:k−1,u1:k−1,Mi) = (8)
∫

p(Dk|D1:k−1,Xk,i,u1:k−1,Mi)p(Xk,i|D1:k−1,u1:k−1,Mi)dXk,i

where an approximate solution can be found if appropriate

assumptions are made. By making a Markov assumption that

past and future data are independent if the current state is

known, the first term of the integral reduces to a normal

distribution via the measurement model of Eq. (3); and by

assuming a locally linear approximation to the motion model

of Eq. (2), the second term of the integral also reduces to a

normal distribution via an Extended Kalman Filter (EKF):

p(Dk|D1:k−1,u1:k−1,Mi)

=
∫

N(H(Xk,i,Ji),Σm) ·N(Xk,i|µ̄k,i, Σ̄k,i)dXk,i ,

where (µ̄k,i, Σ̄k,i) are the predicted state and covariance from

the EKF. By making a similar linear approximation to the

measurement model, i.e. H(Xk.i,Ji)≈Ck,i ·Xk,i, where Ck,i =
∂H

∂Xk,i
, then the integral associated with the data likelihood can

be resolved and reduces to:

p(Dk|D1:k−1,u1:k−1,Mi) = N(Dk|µDk,i,ΣDk,i) , (9)

µDk,i = Ck,iµ̄k,i ,

ΣDk,i = Ck,iΣ̄k,iC
T
k,i +Σm .

The second term of the numerator in Eq. (7) can be

resolved by noting that P(Mi|D1:k,u1:k) = P(Mi|D1:k,u1:k−1)
since the anticipated control action uk will not have a

direct effect on the current model probability and can

be safely omitted from the conditional dependence. Thus

P(Mi|D1:k,u1:k) can be solved for recursively, provided that

at the first timestep, the model probabilities are set to a priori

values, i.e. P(Mi|D0,u0) = P0,i.

Note that the calculation of the model probability (and

hence the current model entropy), requires the estimation of

the 6D pose of the ith object, which is an integral part of

computing the overall information gain.

The expected model entropy, H(M|D1:k+1,u1:k−1,u
+), can

be computed in an analogous manner. However, due to the

use of an expectation operator, the set of all valid control

actions u+ (and the expected future data measurement as-

sociated with each action, Dk+1) must be considered, which

can lead to an intractable integral.

Using Monte Carlo approximations, the expected model

entropy can be approximated by sampling N measurements

from the future data likelihood of model Mi and comparing

that measurement against all other models, as described by

the following steps:

EDk+1
[H+] (10)

= ∑
i

P(Mi|θ ,u+)
∫

H+ · p(Dk+1|θ ,u+,Mi)dDk+1

≈ ∑
i

P(Mi|θ ,u+)
1

N

N

∑
n

H+(D̃)

where θ = (D1:k,u1:k), H+ , H(M|θ ,Dk+1,u
+) and D̃ ∼

p(Dk+1|θ ,u+,Mi). However, it can be difficult to specify

how a future set of 3D SIFT measurements should be

sampled and how future feature correspondences achieved.

Note that future measurements D̃ from model Mi sampled

according to p(Dk+1|θ ,u+,Mi) are needed to determine the

utility of the control action u+. That is, if control action

u+ is executed, leading to measurements D̃ (assuming Mi

is the true model), the utility of action u+ to discriminate

between all other modelsM j is determined by the distribution
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p(D̃|θ ,u+,M j) – which is integral to the calculation H+ in

Eq. (10).

Realizing that p(D̃|θ ,u+,M j) is identical to the data

likelihood term of Eq. (7) with a simple index shift, the

approximated results of Eq. (9) are applied to yield the

following normal distribution:

p(D̃|θ ,u+,M j) = N(D̃;µ j

D̃
,Σ j

D̃
) . (11)

Note that Eq. (11) has an inherent dependence on the corre-

spondence vector J j since (D̃−µ j

D̃
) is an array of residuals

between the sampled future measurements from model Mi

and the linearized expected location of that matched feature

in model M j.

If each SIFT measurement of the sampled set D̃ is assumed

mutually exclusive from all other features in the same set,

then Eq. (11) can be re-written as:

p(D̃|θ ,u+,M j) =
W−1

∏
m=0

N(d̃m|µ
j

d̃m
,Σ j

d̃m
) (12)

for D̃ = [d̃0 d̃1 · · · d̃W−1], dm ∈ R
3.

Now if we consider the magnitude of the distance of

the object from the robot in comparison to the nominal

displacements between sampled features on the object from

one timestep to the next, and realize the former is much

larger in scale to the latter, then the magnitude of the

residuals will be on roughly the same (small) scale and

can be approximated as constant. Thus treating Σ
j

d̃m
and

[d̃m−µ j

d̃m
] as both constant matrices, i.e.:

Σ
j

d̃m
= Σo (13)

[

d̃m−µ j

d̃m

]

= δo ∀ d̃m ∈ D̃ (14)

then Eq. (11) reduces to:

p(D̃|θ ,u+,M j) =
1

(2π)W/2|Σo|1/2
exp(−

W

2
δT
o Σ−1

o δo) (15)

where the variable W in the density p(D̃|θ ,u+,M j) of

Eq. (15) is the number of SIFT features in the predicted

measurement set D̃ (i.e., it is the number of expected feature

correspondences between the database features of models

M j and Mi that are expected under control action u+).

Assuming W can be found, this approximation eliminates

the need to invert large covariance matrices and sample

an entire measurement set of 3D SIFT features, which is

a vast improvement over our previous work, and increases

computational speed by an order of magnitude.

One possible approach to estimate W is as follows. Con-

sider a true model Mi viewed from various poses during

training. For each pose, X̃, the observed features of model

Mi are compared against the database of features of model

M j for a total of T times. If out of T total comparison,

the lth database feature of the jth model matches a feature

in the ith model τ times, then P
j
bl

= τ
T
. P

j
bl

represents the

probability of the lth feature of model M j corresponding to

any feature in the ith model at relative pose X̃. By repeating

TABLE I

PROBABILITY LOOKUP TABLE: Mi = M2 AND M j = M0

True Model: M2 M0

Pose [x y z α β γ] P0
b0

· · · P0
bN0−1

0.00 0.40 1.01 0.01 0.04 1.59 0.00 . . . 0.00

0.01 0.40 1.01 0.01 0.09 1.61 0.05 . . . 0.00

0.01 0.39 1.00 0.01 0.31 1.60 0.95 . . . 0.00

0.01 0.40 1.00 0.02 0.44 1.59 0.35 . . . 0.05

.

.

.
.
.
.

.

.

.
.
.
.

0.06 0.39 1.02 0.01 0.03 1.58 0.10 . . . 0.00

this process until the set of relative poses used during training

is exhausted, a probability lookup table is generated like the

one displayed in Table I. Table I shows the values used for

a true model M2 compared against model M0.

For L database models, L− 1 lookup tables must be

generated per model, yielding a total of L · (L− 1) tables.

The variableW in Eq. (15) can be estimated from the lookup

table for assumed true model Mi and candidate model M j by

finding that relative pose which best matches the predicted

state of Mi for potential control action u+. Once found, the

set of database features of M j is sampled in accordance

with the probability values P
j
bl
. The net number of positively

sampled features is equal to W and will be different for

different models M j.

IV. IMPLEMENTATION

The algorithm described above was implemented using the

architecture of Fig. 3. We used a multi-threaded implemen-

tation to take advantage of multicore processors.

The next-best-view calculations are divided into three

functions:

• calcCurrentEntropy(·), estimates the current model en-

tropy and updates the model probabilities.

• calcPossibleControlActions(·) generates a list of valid

control actions, and can incorporate obstacles or other

motion constraints into the planning process.

• calcExpectedEntropy(·) uses the set of possible actions
produced by calcPossibleControlAction(·), to evaluate

Eq. (15), utilizing sets of probability lookup tables.

All three functions use the output of the Extended Kalman

Filter (Bayes’ Filter), which is implemented as a separate

block. The Extended Kalman Filter output is also needed

for the evaluation of the integral in Eq. (8).

The use of the pan-tilt-unit (PTU) control loop is one

of the additions to our previous work[1]. The independent

movement of the camera on the PTU allows the robot to

take more optimal paths toward a goal location without the

added constraints of keeping the object in the field of view

at all times while simultaneously satisfying the vehicle’s

nonholonomic wheel constraints.

The PTU control loop operates in two states: a “tracking

state” and a “scanning state”. The tracking state keeps the

object origin in the camera field of view once it is detected.

Because the model identity is not known with certainty at the
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Fig. 3. Block diagram of the algorithm implementation uses in the experiments. Note that the information gain is calculated only when the system state
reaches the goal determined by the optimal control action u∗. The pan-tilt-unit (PTU) control block is implemented as a separate thread.

time of initial detection, the location of object’s origin is a

vague concept: an Extended Kalman Filter is applied to each

of the plausible models in the database, so that there are up

to L different origins. Hence, the average origin of all models

(weighted by model probability) is chosen as the origin

for the purposes of tracking. Denoting the weighted origin

coordinates as Pob j =
[
xob j yob j zob j

]T
. the projection of

the origin on the image plane, pob j ∈ R
2, is defined as:

pob j =

[
ximg
yimg

]

=





f ·xob j
zob j

+ cx
f ·yob j
zob j

+ cy



 (16)

where f is the focal length of the camera and (cx,cy) the

image center. A simple proportional feedback law was used

to control the pan angle slew-rate:

upan = −K ·δpan = −K(cx− ximg) = −K
f · xob j
zob j

(17)

A similar method can be used for PTU tilt, though tilt control

was not necessary in the experiments described below.

The “scanning” PTU control state moves the camera head

in a scanning pattern, and is typically deployed during the

initial startup of the algorithm when the robot is searching

for any known object, or when the robot loses an existing

model track. In the latter case, the robot stops (HALT in

Fig. 3) until the track is re-established. Depending on the re-

initialized object state, a new iteration of the next-best-view

calculation is carried out, or the last control action interrupted

by the loss of the track is resumed.

V. EXPERIMENTAL RESULTS

Our method was implemented on an Evolution Robotics,

Inc.TM , ER-1 robot equipped with a PointGreyTM Bumble-

Bee2 color stereo-camera (image resolution of 320× 240

Fig. 4. The experimental data base consists of four box-like models. Each
model had 3 identical faces, while the fourth face was unique to each model.
Magazine pages were used as the model faces.

pixels) mounted on a Directed Perception PTU-D46-17 pan-

tilt unit (accuracy of 0.0514◦in pan and tilt). All computa-

tions were carried out on a laptop computer (IntelR Core2

DuoR 2.40GHz processor) running Linux. The algorithm was

written in C/C++ using the Intel OpenCV library.

The object database consisted of 4 boxes, whose four

sides were each covered with a distinct pattern (a magazine

cutout). For each experimental run, a box was attached to

another ER-1 robot in order to enable object motion. The

on-board wheel odometry of the second robot was used

as a reference in analyzing the pose estimates from the

experiment. Fig. 4 shows the four different models used. All

4 models shared 3 identical faces, with only the last face

being different for each model. This choice increased the

difficulty of the model identification process, and also forced

the robot to carry out sensor-planning actions. Moreover, the
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Fig. 5. The object position and orientation estimates (as defined in the global ref. frame) are respectively shown in the top and second rows. The estimated
pose is shown by the solid-blue line and the object reference pose (as estimated by odometry on the moving object) is shown in the dotted-red line. The
third row shows the model probabilities versus time. The yellow and green bars indicate the time periods during which the PTU control loop was actively
scanning or actively tracking, respectively. The cyan dotted lines indicate moments at which a new sensor planning action was commanded and executed.

Fig. 6. An annotated screenshot of the visual interface developed for our
experiment. The mobile robot is shown in green and the mobile object is
in the center of the equitorial ring.

second robot was remotely controlled by a human operator

in such a manner so as to prevent the discriminating model

face from being observed by the robot. This strategy required

repeated sensing and planning operations on the part of the

robot until the model probability of one model peaked to

near 100% certainty.

In the first trial, Model 1 was selected as the true model.

Fig. 5 shows the estimated object poses as a function of

time2. Plotted against the pose estimates are the mobile

object’s pose from on-board wheel odometry. Note some

error spikes in the pose estimates which can be attributed

to feature mismatches.

The bottom row of Fig. 5 plots the model probabilities

against time to indicate the history of model confidence

throughout the experiment. Note that initially all model

probabilities stay uniform, as the discriminating face of the

object has yet to be observed. As continued sensor planning

actions are executed (indicated by the cyan dotted lines), the

discriminating face of the object is eventually seen (at t =
160s) and the true model is identified. The yellow and green

stripes indicate the time periods under which the PTU control

loop was actively scanning (yellow) or actively tracking

(green); all other time periods indicate passive tracking of

the control loop.

The experiment was repeated with other models chosen

as the true model, the results of which are shown in Fig. 7

(6-DOF pose estimates have been omitted for brevity). As a

result of sensor planning actions, the true model is eventually

identified in each experiment by bringing the discriminating

face of the object into the robot’s field of view.

Fig. 6 shows the visual interface developed for our sys-

tem. The equitorial ring is centered on the object with the

information gain plotted at various locations along the ring.

2While multiple pose estimates exist for all plausible models in the
database, only the pose estimates for the true model are shown.
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Fig. 7. Model probabilities are plotted against time for three additional test experiments, with different models chosen as the true model (as shown by
the asterisk).

The peak information gain is denoted by the vertical yellow

line, and is marked as the future goal location.

VI. CONCLUSIONS AND FUTURE WORK

This paper developed a method for dynamic sensor plan-

ning for model identification. We showed how 6-DOF pose

estimation and tracking can be integrated into the optimiza-

tion of the information gain metric. This derivation allows

for the robot to naturally select the motions and sensing

actions which are needed to discriminate an evading object.

We also developed sensible approximations that allowed for

a convenient separation of the computationally burdensome

parts of the method into an off-line structure that could be

stored in a simple look-up table format. Our experiments

validated that our the multi-threaded control system can

execute in real-time on a modest laptop computer. Future

work will extend our proposed method to numerous database

objects and consider the use of this technique as a part of

an overall strategy for visual search of moving objects.
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