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Abstract— Most unmanned aerial robots use a Global Nav-
igation Satellite System (GNSS), such as GPS, GLONASS,
and Galileo, for their navigation. However, from time to time
the GNSS fails to function due to geographical restrictions
and deliberated jamming. This paper proposes an Unscented
Kalman Filter-based GPS/IMU integration method in order to
accurately estimate the position and velocity of an unmanned
miniature helicopter even when the GNSS malfunctions com-
pletely. Different from previous GPS/IMU integration methods
that cannot propagate noisy inertial measurements to the
position and velocity estimations on the rapid vibratory Vertical
Take-Off and Landing (VTOL) platforms during the GNSS
outage, this method novelly prioritises the propagations of the
states in the Unscented Kalman Filter (UKF) algorithm and
leverages the time-varying GNSS dilution of precision in line
with the adjustments of the measurement noise covariances.
Moreover, this method models the stochastic process in the
inertial sensors by the acceleration white noise bias in addition
to the commonly used random walking process. Without con-
sidering the specific actuation models that vary from vehicle to
vehicle, this method can particularly be applied to the quivering
unmanned helicopters which equipped with two-stroke engines.
It yields a rapid and precise compensation for the sensor errors
in order to effectively facilitate the propagations of inertial
measurements to the position and velocity estimations. Finally,
the superior performance of the proposed method in terms of
accuracy and endurance is empirically demonstrated using our
fully instrumented JR Voyager GSR helicopter.

I. INTRODUCTION

Blossoming UAV progressions lead to the development
of the anti-UAV technology. One of the greatest challenges
to UAV deployments is the GNSS outage problem [1]. Let
alone the spoofing attack, scenarios like deliberate jamming
[2], weak satellite signal and multipathing can bring down
autonomous aerial agents which solely rely on the vulner-
able GNSS to georeference themselves [3][4]. While visual
odometer [5] and SLAM [6] depend largely on visibility,
and the anti-jamming GPS technology can only suppress
interference [7][8], the inertial measurement unit’s jam-free
and all-weather nature provide a more promising reference
to aid the GNSS among all other sensors. However, the
vigorously vibrating engine, particularly on the VTOL ve-
hicles, deteriorates the readings from the vibration-sensitive
Inertial Measurement Unit (IMU), and therefore it is more
challenging for the autonomous gasoline helicopters to sal-
vage useful information from the noisy inertial measurements
in order to deduce the position and velocity. Among various
types of state estimation methods including the particle filter,
complementary filter and recursive Bayesian estimation, the
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Fig. 1: The fully instrumented JR Voyager GSR260 for experiments. The IMU is
mounted on wire-rope isolators to avoid saturations.

family of Kalman filters are often applied in virtue of its rea-
sonable processing complexity and its extensive framework
to incorporate with multiple sensors. For the state estimation
using the family of Kalman filters, some patents [9][10]
describe GPS/INS integrated state estimation solutions for
aerial vehicles. The method by Abbott [9] differs from the
method by van der Merwe [10] in the consideration of the
code delay error and the Doppler frequency error. Abbott
linearised the nonlinear measurement models in order to
cooperate with the extended Kalman filter. On the other
hand, the method by van der Merwe [10] did not consider
errors due to the ionosphere and Doppler effects explicitly.
Instead, it modeled the sensor errors and augmented the
states when using the Sigma-Point Kalman filter (SPKF)
which is the root of the UKF. For this reason, the process
and measurement models are not linearised. And hence the
nonlinearities in the state estimation filter are preserved. The
method by Abbott [9] was analysed in [11] by a simulation
utilising the filter with a precision guided munition (PGM)
and the method by van der Merwe [10] was experimentally
analysed and demonstrated on an instrumented helicopter
in [12]. Other related work [13] attempted to integrate KF-
based GPS/IMU method for the unmanned quad-rotor aerial
robot but failed to maintain a reasonable accuracy when GPS
malfunctions. A potential solution is to design a cost function
[14], which is formed by the errors of the innovations and
estimations, and hence the noise covariances can accordingly
adapt to the varying influences by the measurement noises,
but it still cannot deal with the case when certain measuring
units are totally lost. As a whole, although the aforesaid
methods, which are based on Extended Kalman Filter (EKF)
and UKF, successfully demonstrated to fuse measurements
from multiple sensors and to obtain reliable state estimations
for UAVs in flight using different designs of process and
measurement models, they all cannot address the divergence
and underestimation problem when the GNSS experiences a
blackout.

Other than the attempts to integrate GPS and IMU for
the state estimation on UAV, other methods including visual
odometers and SLAM were also studied over the years. In
addition to the aforesaid methods, the Defense Advanced
Research Projects Agency (DARPA) is working on a project
named Robust Surface Navigation (RSN) [15] which aims at
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developing a solution that can position in GPS-denial area
with aids from RF-transmitting beacons. As a whole, except
the obvious drawback of being sensitive to vibrations, using
inertial sensors to aid GNSS is more promising than using
the vision or third party referencing beacons because of the
jam-proof and all-weather nature of the inertial sensors.

Based on the method by van der Merwe [10] which is the
first patent and publication which successfully demonstrated
the use of the UKF in the GPS/IMU integrated navigation
on the helicopters, this paper extends their work to deal with
the state estimation under the GNSS outage by prioritising
the propagation of states in the measurement-update steps
of the UKF algorithm, and leveraging the GNSS dilution of
precision in line with the adjustments of measurement noise
covariances. Moreover, this method models the stochastic
process of the inertial sensors not only by the commonly used
random walks but also by the acceleration white noise bias.
And hence during the GNSS blackout, the previous method
[10] can be empowered to salvage and propagate the useful
information in the corrupted acceleration measurements to
the position and velocity estimations without encountering
the issues of underestimation and divergence of the estima-
tion errors.

II. SENSOR NOISES

For a GPS/IMU integrated navigation system, the only
available sensor for navigation is the IMU when the GPS fails
to work. In general, an IMU is composed of rate gyros, ther-
mometers, accelerometers, and sometimes magnetometers. It
outputs attitude and acceleration information. The attitude
measurement, in forms of Euler angles or quaternions, is
often drift-free due to the constant calibrations by the mea-
surements of magnetic fields, temperature and the direction
of gravity [16]. And hence the attitude measurement is
reliable even after a long operation. The acceleration output,
however, is more vulnerable to vibrations. To formulate a
method to deduce the position and velocity from the outputs
by the IMU, it is crucial to identify the major source that
influences the resultant accuracy most. In this section, we
determine this influential source on the error equation of the
position estimation by the sensitivity analysis.

A. Sensitivity Analysis of Estimation Accuracy
To increase the accuracy of the state estimation, a straight-

forward method is to compensate for the sensor errors by
modeling them [17][18][19]. Generally there are two sources
of errors in the estimation of the position and velocity:
Attitude errors and measurement errors of the accelerations.

The attitude errors are composed of the fixed bias,
acceleration-dependent bias, aniso-elastic bias, aniso-inertia
errors, scale-factor errors, cross-coupling errors and angular
acceleration sensitivity [20]. To express the error of the posi-
tion estimation, it is important to look into the kind of IMU
in our study. Today, thanks to the advancement of MEMS
technology, the mechanical inertial sensors that involve a
spinning gyroscope or a swinging pendulum are replaced by
the strapdown inertial units. The mechanism of strapdown
inertial device is widely investigated and documented over
the last decade [17][21]. The IMU which is implemented in
this method is of strapdown measurement units as well. The
IMU model in this study is Xsens MTi. It exhibits less than
0.5 ◦ and 1 ◦ of static accuracies in roll/pitch and heading,
and its root-mean-square dynamic accuracy in attitude is 2 ◦
with a 0.05 ◦ angular resolution under 1σ standard deviation
of zero-mean angular random walk. The IMU, as shown in
Fig. 10, is situated on four wire rope isolators (CR1-400S)
from ITT Enidine Inc. to avoid saturations. To write the

Fig. 2: The navigation frame is defined in the North-East-Downwards convention, and
the body frame is at the sensor frame of the IMU.

error equation of the position, the coordinate frames are first
defined.

For the convenience of the flight navigation, except the
inertial frame and the body frame on the helicopter, the
navigation frame is also the frame of reference. The body
frame is located at the sensor frame of the IMU, and therefore
the hammering acceleration can be avoided. The coordinate
frames are shown in Fig. 2. The rate of velocity of the
helicopter with respect to the navigation frame can be derived
as,

v̇n = Cn
b āb +

(
2ωI

e + ωe
n

) × v + gl (1)

where Cn
b is the transformation matrix from the body frame

to the navigation frame. āb is noise-free body acceleration
measurement by the IMU, hence it is with respect to the body
frame. ωI

e is the Earth rate with respect to the inertial frame.
ωe

n is the turn rate of the navigation frame with respect to
the Earth. In the rest of the paper, ·̄ refers to the noise-free
measurement, ·̂ refers to the estimation, ·̃ refers to the noisy
measurement. Consider,

Δpn =
∫ T

0

Δv̇n dt (2)

where Δpn is the position error, such that Δpn = p̂n −
pn, pn is the position of the vehicle with respect to the
navigation frame and is expressed in the navigation frame.
p̂n is the position estimation. Δvn is the velocity error. T
is the total time length. gl is the local gravity, such that
gl = g−ωI

e ×
(
ωI

e × R
)
. R is the position of the origin of

navigation frame with respect to the origin of Earth frame.
The estimated rate of the velocity can then be written in the
same form as in (1). Differencing the two velocities for the
estimation error,

Δv̇n = ˙̂vn − v̇n (3)

=Ĉn
b âb − Cn

b ab +
(
2ω̂I

e + ω̂e
n

)
× v̂ −

(
2ωI

e + ωe
n

)
× v + Δg

= (I + Γ)Cn
b (Δab + ab) − Cn

bab −
(
2ωI

e + ωe
n

)
× v + Δg

+
[
2

(
ΔωI

e + ωI
e

)
+ (Δωe

n + ωe
n)

]
× (Δv + v) (4)

where CI
b is the transformation matrix from the body frame

to the inertial frame. Δg is the gravity error. Γ is the skew

symmetric matrix of the attitude error [ Δφ Δθ Δψ ]T

for roll, pitch and yaw. Assuming that the error of grav-
ity estimation is small, Coriolis effect is insignificant, the
product of error terms are small and the states are static.
The sensitivity analyses can be performed on (3) and the
influence of the attitude and acceleration measurement errors
to the position estimation errors can be analyzed.

The analyses are performed by using the Monte Carlo
method instead of Jacobian, which is a method of obtain-
ing the first order partial derivatives on the outputs with
respect to each input parameter, because the method of
using Jacobian fails to take the statistical distribution of each
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(a) Δabx against Δv̇n (b) Γφ against Δv̇n

Fig. 3: Analysis results using the Monte Carlo method. The resultant diagonal line
in (a) indicates a strong correlation between the accuracy of the position estimation
and the measured acceleration by the accelerometers when comparing to (b). Similar
results are obtained in other channels and hence are not shown.

item in the analytical form into account [22]. Assume that
both input parameters, the attitude error and the acceleration
measurement error, are of zero-mean white noises, such that,

Δab ∼ N (0, σΔab
) and Γ ∼ N (0, σΓ)

where σΔab
and σΓ are the variances of the acceleration

error and the attitude error. From Fig. 3, it is observed
that the outputs of the analytical form in (3) demonstrate
a strong correlation with the acceleration error compared
to the attitude error. This result indicates that the accuracy
of the position estimation is susceptible to the acceleration
measurement errors, and the attitude error influences rela-
tively less to the position estimations as long as the following
relation is satisfied,

Rx(Δφ)Ry(Δθ)Rz(Δψ) ≈ I + Γ (5)

From the Monte Carlo method, the accuracy of the position
estimation depends largely on the acceleration measurement
errors, so it is reasonable to expect a significant improvement
on the position estimations when the accuracy of the accel-
eration measurements are improved. Based on this analysis,
the sources of errors in the acceleration measurements are
further investigated in order to achieve an effective noise
compensation.

B. Sensor Error Characteristics
As described in the previous sections, the acceleration

measurement errors are a gala of a wide range of error items
[17][23], and are subjected to the vibration, sensor assembly
and fabrication procedures. And these sources of errors
eventually reflect to the quantization error, velocity/position
random walk, bias instability, rate random walk and drift rate
ramp [17][20]. Although the present accelerometers often
have immunity to the vibro-pendulous error, the variations
on the noise coefficients, even identified, require constant
re-calibrations from time to time. Otherwise, these variations
severely deteriorate the estimation accuracy in the progress
of time.

Identification of the noise characteristics can help us
to precisely model and design an algorithm for the state
estimation. In the previous sections, it is found that the
measurement errors of the accelerations play a major role in
the position estimation errors. Different from previous works
that categorized the errors into different items and identified
them in a piecewise manner, this study aims at capturing
the prime factor that governs the measurement errors so
as to pin-point this prime noise factor and to maximize
and eventually improve the accuracies of the position and
velocity estimations.

The acceleration measurement is analysed by the Allan
variance [24] in view of its avail in both time and frequency

domains. The Allan variance can be evaluated by using this
formula,

σ2
A (τ) =

1

2τ2 (N − 2m)

N−2m∑
k=1

(ak+2m − 2ak+m + ak)2 (6)

where σA is the Allan variance. τ is the time length. N is
the total number of samples. m forms the current τ with
the initial time length, such that τ = mτo. ak is the kth

acceleration measurement.
The data in this analysis are measured by the Xsens MTi

which is an IMU equipped on our fully instrumented two-
stroke engine miniature helicopter. Fig. 4 shows the variation
of the Allan variance in the progress of time length in a
bin for differencing. The plot indicates that the variance
decreases gradually as the time length increases, and reaches
a minimum point between 100 and 101 seconds before
reviving up. The noise items, including the quantization
error due to the finite bit resolution in the analog-to-digital
converters during digitization, velocity random walk, corre-
lated noise, bias instability, rate random walk and rate ramp,
are identified using the slopes and line shapes [25]. From
the analysis by Allan variance, we not only find that the
acceleration measurement is rich of various types of noises
that characterise differently in a function of the time length.
It is also observed that although the measurement unit is of
a strapdown inertial unit, its calibrated acceleration readings
are still significantly haunted by the stochastic processes.
Different from the prior work that further decomposed the
results obtained by the Allan variance and span into nu-
merous dimensions for the sensor noise compensation, this
study takes another perspective by considering that all forms
of noise items are additive. Since the purpose is not to
obtain an accurate acceleration output but the position and
velocity estimations, this study does not pin-point each noise
coefficient, instead it further analyses the outcomes that these
noise coefficients eventually reflect to. And these outcomes
are the position and velocity estimations.

C. Random Walk Acceleration Noise
Fig. 5 (a) and Fig. 6 (a) show the velocity and position

estimations obtained from the inertial measurement unit
through the time-step integrations for ten series of data. The
acceleration measurements are collected statically from the
inertial measurement unit at 100Hz. The velocity estimation
diverges linearly, while the position estimation diverges
exponentially as expected,

δp = p̃ − p̄ =
∫ T

0

(∫ T

0

ā +
∑

εa dt

)
dt − p̄ ∝ T 2

(7)

where δp is the measurement noise in the position, p̃ is the
noisy acceleration measurement, p̄ and ā are the noise-free
position and acceleration measurements,

∑
εa is the sum of

all noise terms in the acceleration measurements.
In Fig. 5 (b,c) and Fig. 6 (b,c), these figures exhibit

the velocity and position estimations by the accelerations
which are simulated by the random walk and the white noise
random process. It is observable that the actual patterns of
divergence differ from the ones generated by the acceler-
ations which are modeled as random processes. Therefore,
without decomposing the sum of all noise terms in (7), this
study models the influence of the stochastic process on the
velocity and position estimation by its accumulating attribute,
i.e. the random walk process, after comparing the divergence
patterns in Fig. 5 and 6. That is,

ȧb = wab
(8)

wab
∼ N

(
0, σwab

)
(9)
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Fig. 4: This figure shows the variation of Allan variances against the progress of
time length for a series of acceleration measurement by the inertial measurement unit.
Each segment is categorized into different types of noise terms [25]. The dotted lines

indicate the error boundary [24], such that εσA
=

√
2(N/τ − 1)

−1
. This plot

remains valid for up to 20 minutes of characteristic time. Only the x-axis of the body
frame is shown.

In fact the simple but effective form of the random walk
process is widely applied in the modeling of inertial sen-
sors [19][18][20]. However, different from previous work
[10][12] that model the noises in the acceleration measure-
ment by the random walk and several constant coefficients.
This study proposes to model the acceleration measurement
with an extra term called the acceleration white noise bias
(AWNB). That is,

ā = ã − ab − nb − aw (10)

ȧw = 0 (11)

where aw is the acceleration white noise bias, and nb is
a constant noise term. AWNB is modeled as the states in
the UKF hence they vary and converge although its rate
of change is modeled as zeros. From the perspective of
the effective error minimization, the proposed extra term in
the modeling of the sensor error is in analogue to a dual-
gear calibration system as shown in Fig. 7. The position
of the pointer (top yellow triangle) can be more effectively
adjusted than a single-gear design. Similarly, adding a to-be-
predicted constant bias as a noise term can estimate the ac-
celeration effectively because the sooner the drifting noise is
compensated, the more accurate estimation can be achieved.
Therefore, putting the AWNB in the equation along with
the original random-walking noise terms can speed up the
changing rate of the estimated value, and hence the drifting
noises can be compensated at an earlier stage. As a result, the
overall performance is improved. This claim is confirmed in
the experiments (Section IV). In addition, in another attempt
the AWNB is transformed and acts as an acceleration scale
(AS) to the noisy acceleration measurement but the result is
not satisfactory as being an additive term. The comparison
is shown in Table I as well.

III. STATE ESTIMATION ALGORITHM

The structure of the proposed state estimation algorithm
is illustrated in Fig. 8. The outline of the main idea is that
the acceleration measurements influentially determine the
position and velocity estimation errors and hence they must
be compensated effectively before the propagations. It is
found that the commonly used random walking process is not
sufficient to model the stochastic process of the acceleration
measurements by the IMU. As a result this study proposes
to add the acceleration white noise biases to the modeling
of the sensor error equations in order to achieve a rapid and
precise sensor error compensation. On the other hand, from
the original UKF framework, each state are propagated from
its related ancestors obtained in the previous iteration to the

(a) (b) (c)

Fig. 5: These figures plot the velocity estimations deduced from three kinds of
acceleration. (a) From calibrated accelerations measured statically by Xsens MTi IMU
at 100Hz. (b) From accelerations simulated by the random walk process. (c) From
accelerations simulated by the random white noise process.

(a) (b) (c)

Fig. 6: Integrating the velocity estimation in Fig. 5, the position estimations are obtained
accordingly.

Fig. 7: A dual gear mechanism which is an analogue of having both the random
walking bias and the proposed white noise bias for the sensor noise compensation. In
this mechanism, the lower gears can position the upper gears for further fine-tuning
process on the top-most triangle pointer.

Fig. 8: The structure of the proposed state estimation algorithm.
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next hierarchy of state. And hence the position estimations
are delayed and undervalued especially when the GNSS
malfunctions. Therefore the proposed method prioritises the
measurement-update steps in the original UKF algorithm so
that the states of the position can inherit the latest velocity
and acceleration estimations in each iteration. Lastly, during
the GNSS outage, more emphases should be allocated to
the inertial measurements. Therefore, this method proposes
to augment the measurement noise covariances between the
GNSS and IMU readings according to the time-varying
GNSS dilution of precision. And hence the state estimation
can adapt to the correct operating mode without underesti-
mating or overrating the measurement inputs.

A. Process and Measurement Models

For the sensor error modeling of the acceleration mea-
surements, based on the analysis that the acceleration mea-
surement errors influences the position estimations most,
this study focuses on compensating the noise items in the
acceleration measurements and propose to model the sensor
error with the acceleration white noise bias along with the
commonly used random walk process. As shown in Eq. (11)
the random walk bias and the acceleration white noise bias
have to be updated to the optimal values for an accurate error
compensation. Without using the particle filter [26] which
makes no assumption on the stochastic process underneath
and hence computationally expensive, this study utilises one
of the variants of the sigma-point Kalman filter [27], the
UKF, in order to obtain the optimal estimation of noise terms
shown in Eq. (11) for the compensation of the sensor errors.
UKF implements the sigma points which are generated by
considering the variance of each state and are applied to the
exact nonlinear process and measurement models without
losing generality. Also, in each iteration, the sigma-points
are weighted to formulate a sum to yield an estimate that
captures all variations in the process. For the process and
measurement models inside the filter, this study furthers the
sensor and process model in [12] and extend them to deal
with the state estimation on the vibratory helicopter platforms
when the GPS malfunctions completely. Before detailing the
enhancement on the original UKF algorithm to deal with
state estimation on the vibratory helicopter platforms using
the IMU only when GPS fails, the whole modified sensor and
process models which evolved from [12] are first presented.

Consider that the Earth rate and the angular velocity of
the helicopter are insignificant, so rewriting (1),

v̇n = Cn
b ā + g (12)

Recall the proposed sensor error models in section II-C.
Substituting (10) into (12) leads to,

v̇n = Cn
b (ã − ab − nb − aw) + g (13)

For the transformation matrix from the body frame to the
navigation frame, the quaternion is ultilised instead of Euler
angles in virtue of not involving computationally demanding
trigonometrical functions. The typical quaternion representa-
tion and its rate [28] are as follows,

CI
b = 2

[
0.5 − e2

2 − e2
3 e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 0.5 − e2
1 − e2

3 e2e3 − e0e1

e1e3 − e0e2 e2e3 + e0e1 0.5 − e2
1 − e2

2

]

(14)

q̇ =
1
2
ωqq (15)

where,

q = [ e0 e1 e2 e3 ]T

ωq =

⎡
⎣ 0 ω̄p ω̄q ω̄r−ω̄p 0 −ω̄r ω̄q−ω̄q ω̄r 0 −ω̄p−ω̄r −ω̄q ω̄p 0

⎤
⎦ (16)

The noise-free angular velocity measurement can be written
in a form similar to (10),

ω̄ = ω̃ − ωb − (Cn
b )T

ωn
e − nω (17)

ωn
e =

[
ωI

e cos(θlat) 0 −ωI
e sin(θlat)

]T
(18)

where θlat is the degree of latitude where the navigation
frame located. ω̃ is the noisy angular velocity measurement.
ωn

e is the Earth rate with respect to the navigation frame. nω
is a constant noise term. ωb is the rate bias which is modeled
as the random walk process as well, That is,

ω̇b = wωb
(19)

wωb ∼ N (0, σωb) (20)

where σωb
is the variance of the body angular velocity.

The measurement model for the GPS can be written by the
following vector sum:

pn
gps = pn

imu +
(
Cb

n

)T
pimu

gps + np (21)

vn
gps = vn

imu +
(
Cb

n

)T (
ω × rimu

gps

)
+ nω (22)

Where np and nω are the constant noise coefficients. These
formulations of the process and measurement models are
discretised by time-step integrations, and are iterated in the
UKF.

B. Selection of Operation Modes

The formulation of the SPKF, including the UKF which
is one of its subclasses, relies on the generation of the sigma
points. And these points are evaluated based on their previous
state estimations and their noise covariances. Such that, for
i = 0, 1, ..., 2L,

Xi,t =
{
x̂t +

√
Pi,t, for 0 < i � L

x̂t −
√

Pi,t, for L + 1 � i � 2L
(23)

The matrix of sigma points,

X = [ x̂t X1,t ... X2L,t ] (24)

where L is the number of states, such that Xi ∈ R
L. x̂ is

the estimated state vector. Pi is the ith column vector in
the covariance matrix of the process and measurement noise
terms, and the physical states. During the GNSS outage, it is
obvious that the weights that reflect the degree of reliability
of certain raw measurements have to be reallocated. And
hence the estimation can be less susceptible to the dizzying
outage readings by the GNSS. One of the direct assessments
to the ambiguity of the GNSS measurements is by comparing
the dilution of precisions, σgps

i , with some pre-defined
thresholds, such that,

Pi =
{
Poutage

i , for norm (σgps
i ) � σthreshold

Pnormal
i , for norm (σgps

i ) < σthreshold
(25)

Taking the GPS as an example, these dilutions of precisions
are commonly available in the form of standard deviations
and they can be extracted from the standard NMEA (Na-
tional Marine Electronics Association) messages which are
transmitted from the GPS devices. Although the dilution of
precision is often overlooked and not used, it provides valu-
able information to the adjustments of the noise covariances
in the UKF, so that the accuracies of the state estimations
can be improved by avoiding the overvaluation on the GNSS
measurements during the outage.
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Fig. 9: The modified UKF algorithm. It allows the states of the position to be
propagated from the latest estimations in each iteration.

TABLE I: THE PERFORMANCE COMPARISON WITH THE BENCHMARK [12]

PPS AWNB PPS, AWNB
Δp Improvement% 8.0593 18.4718 35.7816

AS PPS, AS
Δp Improvement% 13.9462 19.9808

C. Prioritised Propagation of States
In the original UKF framework, each state inherits the

influences of its related ancestors from the previous iteration.
It is obvious that during the GPS outage, the acceleration has
to be propagated by two hierarchies of states in each iteration
to fill the voids in the position and velocity measurements.
The original update mechanism not only introduces laten-
cies but also underestimations. To cope with this multiple
state propagations in a single iteration, this study proposes
a modification on the original UKF algorithm so that it
can propagate states in time. In order to propagate the
accelerations to the velocities, then to the positions in an
iteration, one of the steps in the measurement-update from
the original UKF algorithm is modified. The modification is
shown in Fig. 9 in details. The whole idea is that the velocity
estimations should have a higher priority to be updated.
This modified approach first propagates the acceleration
measurements to update the velocity and then the velocity
estimations fill the void of the velocity measurements due
to the GPS outage; and then the just-estimated velocities are
propagated to update the position estimations. Finally the
rest of the physical states are updated. This method avoids
underestimations and the overall performance is shown in
Table I.

Fig. 10: The configurations of IMU and GPS antenna.

IV. EXPERIMENTS

The experiments are carried out on the fully instrumented
JR Voyager GSR260. Its weight is 11.2kg, length 1.48m
and height 0.67m. The Xsens MTi IMU is used to measure
the angular velocity, orientation and body acceleration. The
geometric data are collected from the NovAtel RT2 GPS
card, and the accuracy is up to ±2cm at 20Hz sampling rate
as long as the satellite coverage is sufficient. The helicopter
carries a mini-pc which runs with an Intel Atom 1.6GHz
CPU to store all channels of data during the flight under
the manual control, and are then processed in MATLAB.
In addition to the implementation of our proposed method,
the patented state estimation method [12] is implemented
as a comparison. The results are shown in Fig. 11. It is
assumed that the GPS completely malfunctions in the mid-
flight (indicated as the shaded area. Each blackout lasted for
fifteen seconds) and therefore switch to the GPS outage mode
in the filter. As shown in Fig. 11 (a-d), our proposed method
yields a referable position estimation while the previous
method [12], in which our method evolved from, cannot
even deliver a sensible estimation during the GPS outage (the
shaded area). The poor benchmark results can be explained in
twofold: (1) The benchmark method [12] consistently relied
on the GPS measurement, in terms of noise covariances, for
the position estimation even when the GPS experienced an
outage. (2) And during the outage, the position measurement
from the GPS is kept at the last known position, therefore,
the benchmark estimation is kept nearly unchanged during
the outage period. The proposed method deals with this
method by varying its reliance to GPS measurement as
well as by compensating for the disturbing noise from the
IMU so that the UKF-based framework can reliably estimate
the position and velocity also when the GPS measurement
becomes untrustworthy. Using the proposed method, even
for the minute-long GPS outages, it yields a durable and
convergent estimation, and achieves a remarkable root-mean-
square accuracy of ±1.98m in the position channels. The
results are shown in Fig. 12.

V. CONCLUSION

This paper showed that it is possible to utilize simple
model equations in the UKF for the localization of miniature
unmanned helicopters when the GPS malfunctions com-
pletely. It is demonstrated by Monte Carlo method that
the acceleration accuracy dominantly influences the position
estimation errors. By analysing the Allan variances, this
study proposed to model the acceleration errors not only by
the random walk process, but also by the acceleration white
noise bias. In order to effectively compensate for a variety
of sensor errors, this study proposed a method to prioritise
the propagation of states in the original UKF algorithm,
and to vary the noise covariances according to the dilutions
of precision. Finally, the durability and convergence of the
proposed method is validated using the fully instrumented JR
Voyager GSR260 helicopter. The experiments demonstrated
that this approach yields a reliable position estimation while
the previous work [10], in which our method evolved from,
cannot even deliver a sensible estimation during the GNSS
outage. The advantages of this state estimation method are
that it requires neither the knowledge of the input-output
kinematics on the miniature helicopter, nor that of the
physical parameters like the inertia tensors. Moreover, the
proposed mechanism for the noise compensation in the iner-
tia sensors is remarkably robust against the severe vibrations
due to the onboard two-stroke engine throughout the GNSS
outage. The empirically proven georeferencing ability of the
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Fig. 11: The performance of the proposed method and the benchmark [12] during GPS
outage. The shaded area indicates periods of the deliberated GPS blackout, which
lasted 15 seconds. (a-d) are the position estimations and (e-h) are velocity estimations.
For comparison, the actual GPS measurements during the GPS outage is also plotted
(in the shaded area). The deficient benchmark results are detailed in Section IV.

Fig. 12: The performance of the proposed method for a long period of the GPS
outage. Upper: The shaded area shows the period of GPS outage. The solid line
is the position estimation by the proposed method (AWNB and PPS). The dash line
is the actual position measurement by the GPS for comparisons. The dash-dot line is
the input to the state estimation method during the deliberated outage period. Lower:
The corresponding noisy acceleration measurement in the x-axis of the body frame.

proposed method lays a foundation for unmanned helicopters
to endurably react against jamming in missions.
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