
  

  

Abstract—There have been two major streams for the motion 
control of mobile robots. The first is the model-based deliberate 
control and the second is the sensor-based reactive control. 
Since two schemes have complementary advantages and 
disadvantages, one cannot completely replace the other. There 
are a variety of environmental conditions which affect the 
navigation performances. The main idea of this paper is to 
design discrete navigation behaviors and to integrate behaviors 
by an appropriate selection framework. In this paper, we 
propose a behavior selection framework using the GSPN 
(Generalized Stochastic Petri Nets). We have designed two 
navigation behaviors which show completely different 
performances. In order to define behavior selection criteria, two 
kinds of navigation statuses are defined to monitor navigation 
performances of the robot. The proposed navigation strategy is 
simulated using the open source simulator Player/Stage to 
investigate the performances in a variety of conditions. Through 
the simulations, it was made clear that different behaviors show 
remarkably different performances. Moreover, the average 
navigation time of the proposed behavior selection framework is 
significantly decreased than that of any single navigation 
scheme DWA or tracking.  

I. INTRODUCTION 
N the past two decades, a variety of controllers have been 
developed for the autonomous navigation of mobile robots. 

There have been two major streams for the motion control of 
mobile robots. The first is the model-based deliberate control 
and the second is the sensor-based reactive control, as 
introduced in [1]. The model-based navigation schemes 
compute the motion command from the environmental model. 
Although the model-based schemes show optimal 
performances in static environments, it is not recommended 
in highly dynamic environments. The sensor-based reactive 
schemes compute the motion command by using the sensor 
information directly. The reactive schemes are suitable for 
highly dynamic environments. However, the reactive 
schemes have some drawbacks such as local trap situations. 
Since two schemes have complementary advantages and 
disadvantages, one cannot completely replace the other.  

There have been many studies on model-based schemes, 
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sensor-based and the combination of the two, for example, in 
[2]. Brock and Khatib presented the Global Dynamic 
Window Approach [3] which integrates a well-known 
reactive scheme DWA (Dynamic Window Approach) [4] and 
path planner which computes the NF (Navigation Function) 
[5]. Ulrich and Borenstien proposed the VFH*(Vector Field 
Histogram*) in [6]. The VFH* uses a look-ahead verification 
to analyze the sequences of heading direction. The detailed 
overview on the integration approaches using reactive 
schemes was presented in [2]. Although these approaches can 
handle the local minimum problem of the reactive schemes, 
they still have drawbacks as mentioned in [7] and [8]. 
Stachniss and Burgard presented a method which integrates 
path planning with sensor-based collision avoidance in [7]. 

The other approaches exploiting multiple navigation 
techniques are presented in [9]-[11]. Borenstein and Koren 
presented a method to deal with the local minimum and cyclic 
trap state in [9] using the path monitor which monitors the 
movement of a robot. The control schemes presented in [10] 
and [11] are adopted for reflexive navigation behaviors such 
as obstacle avoidance or goal approaching behaviors. The 
presented method in [10] and [11] are highly dependent on 
high-level planner’s ability. Hence, the most challenging 
problem is the design of the interaction model between the 
deliberative layer and reactive layer as introduced in [12].  

The mobile robot control schemes were proposed in [13] 
and [14] using the Petri-Net formalism to deal with 
multi-robot coordination. We proposed a behavior selection 
framework using the GSPN in [15]. The basics of GSPN are 
introduced in [16]. In [16], we designed the framework using 
model-based behavior and wall-following behavior 
considering the localizer reliability. In [17], we proposed a 
selection framework for multiple navigation tasks. In our 
previous works, we exploited a wall-following behavior to 
deal with the localizer failure.  

Our previous works was focused to deal with 
error-recovery. However, the quantitative comparison was 
not sufficiently carried out in our prior works. In this paper, 
we exploit multiple motion controllers and quantitative 
comparison of motion controllers was carried out using the 
multi robot simulator. Moreover, the navigational 
performance was improved by accumulating stochastically 
the previous navigation experiences.  

There are a variety of environmental conditions which 
affect the navigation performances. The main idea of this 
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paper is to design discrete navigation behaviors and to 
integrate behaviors by an appropriate selection framework. 
We have designed two navigation behaviors which show 
completely different performances. In order to define 
behavior selection criteria, two kinds of navigation statuses 
are defined to monitor navigation performances the robot. We 
will present a stochastic modeling method to estimate the 
navigation behavior’s internal states under the consideration 
of the overall performance.  

The remaining parts of this paper are organized as follows. 
In section II, we briefly explain the two navigation behaviors 
that are exploited in this paper. In section III, we present the 
behavior selection framework using the GSPN. The 
simulation results are presented in section IV. Finally, the 
concluding remarks are presented in section V. 

II. NAVIGATION BEHAVIORS 

A. The sensor-based behavior Dynamic Window 
Approach 
The sensor-based reactive behavior DWA is exploited to 

deal with highly dynamic environments. However, the DWA 
is not recommended for entering a doorway. In addition, 
U-shaped obstacles may lead a robot to local trap situations.  

Since the DWA is a local motion controller, it is 
recommended to be used together with a global path planner 
for generating way-points. In this paper, we exploit the 
gradient method [19] proposed by Konolige. The waypoints 
are generated by segmenting the gradient path into waypoint 
distance, dw. If there are invisible adjacent waypoints, a 
waypoint is inserted in the invisible region. The visibility 
between each adjacent waypoint is recursively checked until 
there is no invisible adjacent waypoint.  

By using this algorithm for generating waypoints, adjacent 
waypoints can be connected by a straight line. This 
waypoint-generation algorithm is advantageous since the risk 
of the local-minimum problem can be decreased.  

 

B. The model-based behavior Trajectory Tracking 
The model-based behavior trajectory tracking is 

advantageous because it follows the optimal path. However, 
the tracking behavior has limitations as follows. The tracking 
behavior is not recommended in highly dynamic 
environments because it requires frequent re-planning of the 
trajectory because the planned path can be blocked by 
moving obstacles. Moreover, the tracking behavior requires 
high precision of the localizer. 

The tracking behavior is composed of the path-planner, 
trajectory generator and tracking controller. The tracking 
behavior exploits the gradient path planner for generating a 
collision free path. By the use of the Bubble-Bands algorithm 
[20], we generated a Cubic B-Spline curve in order to obtain 
smooth curve which satisfies nonholonomic constraints.  
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The tracking trajectory { , , , , }x y vθ ωΓ =  is computed by 
considering the limit of the radius of curvature of the robot. 
Using (1), we compute the radius of curvature, ( )k s . The 
translational velocity is computed by using (2). We exploit 
Kanayama’s tracking algorithm in [21] for tracking the 
trajectory.  

III. NAVIGATION BEHAVIOR SELECTION FRAMEWORK USING 
GSPNS 

A. Design of a Navigation Framework using GSPNs 
The GSPN is extension of the Stochastic Petri Nets. The 

advantages of the GSPN for modeling a navigation system 
are as follows. The Finite State Automata used in [22] and 
[23] are incapable of describing the concurrency of a system. 
The GSPN describes the concurrency of sub-system’s state 
individually using the token representation. The qualitative 
and quantitative analysis ability is superior to the Finite State 
Automata. The number of places and transitions of GSPN 
increases linearly as introduced in [24].  However, the 
number of states in the Partially Observable Markov Decision 
Process used in [25] increases exponentially. In [15], the 
advantages of the GSPN were presented in detail.  

Fig. 1 shows the designed GSPN model using two 
behaviors that are tracking and DWA. A detailed description 
of places and transitions is presented in Table I. Transitions 
that have constant values of firing rate are shown in Table I. 
For the remaining transitions, the firing rate is updated after 
the completion of each navigation task. By firing the timed 
transition, T0, the navigation task is started. The performance 
evaluation of each behavior using the GSPN is carried out 
when a token exists in the place, P1. The performance 
evaluation is carried out considering the expected navigation 
completion time and failure rate.  

Suppose that the robot is moving in static environment. 
Then, the tracking behavior is preferred because it is 
advantageous to move along the optimal path. If the robot 
encounters highly dynamic environment, the path planner 
frequently updates collision free paths. If the path 
deformation takes place too frequently, then it can be 
concluded that the robot is in a dynamic environment. From 
the viewpoint of environmental status, the planner warning 
state is activated. As a result, the robot possibly switches its 
behavior into DWA to survive in the dynamic environment. 
The transition reactive warning (T7) is fired when the robot 
falls in local trapped situations. This control logic is modeled 
in Fig. 1. 

If the transition planner warning (T5) event is fired when 
the navigation behavior is tracking (P2), the planner status is 
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changed from the planner normal state (P4) to the planner 
warning state (P5). The result of firing T5 is that the current 
navigation behavior tracking is changed into the DWA by 
firing T3.  

 

 
 

For the performance evaluations, some definitions are 
made as follows: 

/e opt naviv dist t=                           (3) 

/i e optv distλ =                             (4) 

/fail opt failt dist v=                          (5) 
The rates of success and failure of navigation are computed 

as follows. The empirical velocity ev is computed by using (3). 
distopt is the shortest path length and tnavi is the overall time for 
navigation. The empirical velocity refers to the intrinsic 
velocity of each behavior on the basis of experimental results. 
The firing rates of firing of navigational success, 9 10( )λ λ , are 
computed from (4). Equation (4) converts the empirical velocity into 
GSPN’s firing rates(s-1) using the computed shortest path length. We 
should make a criterion to measure the navigation failure 
quantitatively. The navigation failure time tfail is computed by 
using (5). vfail is the failure velocity. If the total navigation 
time is longer than the failure time tfail, the navigation is 
considered to be a failure and the completion time of the 
failed navigation task is recorded as tfail.  
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The failure rates of each behavior are required for updating 
11λ  and 12λ . However, the computation of the navigation 

failure rates for each behavior is not straight forward because 
the GSPN framework exploits multiple navigation behaviors. 
In this paper, we compute the failure rates using (6). The rates 
are normalized by the total navigation time in proportion to 
navigation time of each behavior. tnavi,total is the total 
navigation time. tnavi,tracking is the time used for the tracking 
behavior, and tnavi,dwa is the time used for DWA behavior.  

 

B. Performance Estimation using the GSPN 
The performance estimation for each behavior is carried 

out by computing the throughput of the navigation success 
transitions of that behavior, i.e., T9 (resp., T10) for tracking 
(resp., DWA). The throughput is computed by multiplying the 
firing rate and the probability of the steady state that is related 
to the transition. The method of estimating the performance 
using the throughput is introduced in [15], [16]. The 
throughputs of the navigation behaviors are decreased when 
the probability of the sub-system’s warning states is 
increased. The physical meaning of the throughput is the 
navigation success frequency (s-1). For instance, if the 
throughput of the tracking behavior (T9) is higher than that of 
the DWA behavior (T10), the expected navigation time of 
tracking behavior is shorter than that of the DWA. In 
summary, if the throughput value of T9 is larger than that of 
the throughput of T10, the tracking behavior is selected; 
otherwise, the DWA is selected.  

In this study, we monitor the firing rates of the events, T1 
and T2, which imply the preference of the tracking and DWA 
behavior respectively. The throughput is computed by using 
the firing rates for tracking ( 1λ ) and DWA ( 2λ ) with same 
parameters to compute each behavior’s performance 
estimation. As a result, the performance estimation is carried 
out in a single step through this computational method.  

TABLE I 
Description of Places and Transitions in the GSPN model 

Place Description 
P0 Navigation ready 
P1 Navigation behavior selection 

P2(P3) Tracking / DWA 
P4(P5) Planner normal (warning ) 
P6(P7) Reactive normal (warning ) 
P8(P9) Navigation success ( failure ) 
Timed 

Transition 
Description 

Firing  
Rate 

T0 Start navigation 0λ =1.0 

T1(T2) Tracking(DWA) selected by the performance e
stimation 

1 2( )λ λ

T5(T6) Planner warning ( recovery ) 5 6( )λ λ

T7(T8) Reactive warning (recovery) 7 8( )λ λ

Ta6(Ta8) Planner(reactive)  warning is recovered when t
he navigation behavior is tracking (DWA) 

6 8( )a aλ λ

=1.0 
T9(T10) Navigation completed by tracking (DWA)  9 10( )λ λ

T11(T12) Navigation failure under the tracking (DWA) 11 12( )λ λ

Immediate 
Transition 

Description 

T3(T4) The DWA(Tracking) replaces Tracking(DWA)  
unconditionally due to the planner (reactive) warning 

T13(T14) Navigation complete(failure) to ready 

 
Fig. 1.A GSPN Model with two navigation behaviors and two internal 
statuses. 
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C. State Estimation of the Sub-systems 
We have to design a model for switching the navigation 

behavior’s internal states. If the switching model is not 
appropriately designed, the risk of chattering problem may 
increase. The previous research presented in [25] was based 
on the environmental shapes such as corridor and U-shaped. 
Since our selection model adopts discrete navigation 
behaviors, the navigation behavior’s internal state transition 
model should be designed differently. For example, if the 
DWA behavior is selected, the path-regeneration does not 
take places. As a result, different criteria should be defined 
for estimating each navigation behavior’s internal states. 

We record the count of the instances of path planning as Np 
in a constant time-interval, Tc, for monitoring the state of the 
tracking behavior. The state of the DWA behavior is 
estimated through monitoring the velocity to a given 
waypoint. The state estimation of DWA behavior is carried 
out by counting the number, Nl, when the velocity is lower 
than Vlow, in the same manner as that of the tracking behavior. 
Although it is easy to obtain Nl, the decision of threshold is 
another significant problem. 

By exploiting the Poisson model [26], the counting process 
can be modeled directly into transition probability because 
the Poisson model explicitly includes the counted numbers. 
Moreover, the Poisson model is approximated to the 
exponential density which used to the timed transition of the 
GSPN by Poisson limit theorem [26]. 

The transition probabilities should be computed by 
considering the overall system states. For a mixed 
probabilistic model of transition states, it is advantageous to 
use the GSPN because the GSPN supports tools for analyzing 
stochastic state probabilities such as the token probability. In 
our GSPN model, the token probability simply means the 
state probability for each sub-system’s internal place because 
each sub-system is modeled to have one token for one 
sub-system. 
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The planner and reactive warning events 
are ~ ( )i cN Poisson Tλ .  The transition threshold value, Nf , is 
computed using (7). Pr{ }iP  is the token probability of Pi, e.g., 
P5 for the planner warning state. The firing conditions for the 
planner and reactive warning events are Np > Nf  and Nl > Nf 
respectively. { }pF i is the cumulative Poisson distribution 

function with frequency jλ , e.g., 4λ for the case of planner 
warning. The analytic cumulative density function of the 
Poisson probability density function includes the Γ -function, 
which entails high computational burden. Hence, in this study, 
we compute the cumulative density function by integrating 
the probability using (8) recursively.  

The Np (Nl) is in proportion with the probability of the 
planner normal (reactive normal) state. In highly dynamic 
environments, the computation result of Np is low because the 
probability of the planner normal state is low. This result 
implies that the tracking behavior can be switched into the 
DWA for small number of Np in highly dynamic 
environments.  

 
arg{ { | } Pr{ 1}}f e j a

t
t F t Pi tλ= ≥ = +                (9) 

{ } 1 ; 0|
0 ; 0

j t

e j
e tF t

t

λ

λ
−⎧ − ≥⎪= ⎨

<⎪⎩
                                    (10) 

The planner and reactive recovery events are fired after the 
time ft is computed using (9) from the time when the 
warning event is fired. The recovery events are ~ ( )it Exp λ− . 

at is required time for adjusting a robot’s heading 
direction. { }eF i is the cumulative density function of the 
exponential probability density with jλ  being computed 
using (10).  

IV. SIMULATION RESULTS 

A. Simulation Settings 
The simulation is carried out using the Player/Stage tool 

[19]. The Player robot client and server are widely used robot 
control interfaces, which abstract the connection between the 
navigation software and the real/simulated robot. The Stage 
simulator simulates a population of mobile robots that work 
in a two-dimensional environment.  

 
Fig. 2(a) shows a practical environment. We generate a 

simplified simulation environment based on Fig. 2(a). Fig. 
2(b) shows a stage environment. The simulated environment 
is 43m wide and, 22m long. The doorway is 1m wide in 
accordance with CAD map of the office building. The 
diameter of the simulated mobile robot is 0.5m and the mobile 
robot is equipped with a SICK laser scanner. The maximum 
translational velocity was set to 0.5m/s. The speed of moving 
obstacles is randomly selected between 0.8~1.4m/s, which 
refers to the average speed of human walking.  

  
(a) 

 
(b) 

Fig. 2. Simulation environment. (a) A real environment, (b) Stage 
world model (obstacles are denoted by blue dots). 
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The empirical velocity, ve, is obtained from 20 replications 
of the navigational results between G1 and G8 in the absence 
of moving obstacles. The empirical velocity is 0.28m/s for 
DWA and 0.35m/s for tracking. The initial frequency of the 
GSPN is set to 1 8~ 0.5λ λ = , then 11 12, 0.01λ λ = .  

 

B. Comparisons of Navigation Behaviors  
The simulation scenario of Case1 is that the mobile robot 

visits goals G1, G2, G3… G7 sequentially start from G7 
without dynamic obstacles. The simulation, Case1, is carried 
out to measure the performance in complex and static 
environments. The simulation scenario of Case2 is that the 
mobile robot between two goal points G1 and G8 with 20 
moving obstacles. The Case2 is carried out to measure the 
performance in dynamic environments. Each simulation is 
carried out 28 times.  

 

 
Fig. 3 shows the simulation results for Case1 and Case2. 

The simulation results are listed in Table II. The time of 
navigation failure is measured as tfail to reflect the risk of 
failure. In complex and static environments such as Case1, 
the average navigation time of the tracking behavior is 38% 
shorter than the case of the DWA. However, in a dynamic 
environment, Case2, the performance of the tracking 
behavior is significantly inferior to that of the DWA.  

The performance of the DWA is decreased when the robot 
was entering a narrow doorway. The navigation failure of the 
DWA took place when the robot was stuck in the local 
minimum situation.  In the static environment, the navigation 
failure of the tracking behavior is due to the path planning 
failure by the localization error about 15~20cm around a 
narrow doorway. The performance of the tracking behavior is 
significantly decreased due to the frequent update of the 
path-planning because moving obstacles block the generated 
path. The simulation results of Case1 and Case2 clearly show 
that the navigation schemes show completely different 

performances and both navigation schemes are required in 
practical environments. 

 

C. Simulation results using the proposed navigation 
framework 
The simulation scenario of Case3 is that the mobile robot 

visits goals G1, G2, G3… G7 sequentially start from G7 with 
20 moving obstacles. The Case3 is carried out to measure the 
performance in complex and dynamic environments. 

 

 
Fig. 4 shows the simulation results for Case3. The 

simulation results are summarized in Table III. As shown in 
Fig. 4, the proposed scheme for the selection of navigation 
behavior through the GSPN shows superior performance to a 
single navigation scheme. The average navigation time is 
shorter than the DWA by 43% and tracking by 47%. 
Moreover, the navigation success rate of the proposed 
scheme is 100%, which means that the navigation time for 
carrying out the navigation task is always smaller the failure 
time, tfail. 

 
Fig. 5 shows one instance of the navigation results for 

Case3 from G1 to G2. The mobile robot starts its navigation 
task by using the DWA behavior at the starting position G1, 
because the computed throughput of the DWA (=0.43x10-2) 
is higher than that of the tracking (=0.40x10-2). While the 
robot moving around the lobby, it is surrounded by the 
moving obstacles at point A and the reactive warning event is 
fired. As a result, the behavior is changed to tracking. By 
using the tracking behavior, the robot moves about 1.2m. 
There are several obstacles in the lobby area. As a result, the 
planner warning event is fired at point B. Then, the DWA 

 
Fig. 5. GSPN Trajectory from G1 to G2 of simulation Case3. 

TABLE III 
Navigation Results for Case3.  

Behavior Mean Time(s) Std. Dev.(s) 

DWA 207.3 128.2 
Tracking 223.1 92.4 
GSPN 117.8 28.0 

 
Fig. 4. Simulation results of the Case3.  

TABLE II 
Navigation Results for Case1 and Case2. 

  DWA Tracking 

Case1 
Mean Time(s) 185.7 115.8 
Std. Dev. 126.7 78.3 
Success (%) 82 89 

Case2 
Mean Time(s) 105.8 282.37 
Std. Dev. 16.3 58.8 
Success (%) 100 90 

  
Fig. 3. Simulation results of the Case1 and Case2. 
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behavior is selected by computing the navigation behavior’s 
performance. The computed throughputs of the DWA 
(=0.51x10-2) is higher than that of the tracking (=0.46x10-2). 
Around the doorway, the reactive warning event is fired at 
point C. Finally, the mobile robot carries out its remaining 
navigation task in 18s by using tracking. Since the computed 
recovery time was 63.41s, the reactive recovery event does 
not fire. 

 
Fig. 6 shows the variation of the firing rates, 1λ and 2λ , in 

Case1 and Case3. The firing rates 1λ and 2λ imply the 
preference of the tracking and DWA behavior respectively. 
When a navigation task was completed, the firing rates 

1λ and 2λ are updated by using the each behavior’s selection 
rate of the completed navigation task. As shown in Fig. 6, 1λ  
is significantly larger than 2λ  after the execution of eight 
navigation tasks in a static environment, Case1. This result 
implies that the tracking behavior is mostly selected in 
environments of the type, the Case1. 

V. CONCLUSION 
In this paper, we proposed a behavior selection framework 

using the GSPN. We carried out the performance estimation 
of two navigation behaviors DWA and tracking. The 
simulation results make it clear that the navigation schemes 
show complementary advantages and disadvantages. The 
average navigation time of the proposed behavior selection 
framework is shorter than that of the DWA about 43% and the 
tracking about 47%. Moreover, the navigation success rate of 
the proposed scheme is 100%. The simulation results show 
that our behavior selection framework is more efficient and 
robust than using any single navigation scheme. 
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