
On the Design of Deformable Input- / State-Lattice Graphs

Martin Rufli Roland Siegwart

Autonomous Systems Lab, Institute for Robotics and Intelligent Systems, ETH Zurich
Tannenstrasse 3, CH-8092 Zurich, Switzerland

martin.rufli@mavt.ethz.ch rsiegwart@ethz.ch

Abstract— In this paper we describe a novel and simple
to implement yet effective lattice design algorithm, which
simultaneously produces input and state-space sampled lattice
graphs. The presented method is an extension to the ideas
suggested by Bicchi et al. on input lattices and is applicable to
systems which can be brought into (2,n) chained form, such as
kinematic models of unicycles, bicycles, differential-drive robots
and car-like vehicles (pulling several trailers).

We further show that a transformation from chained form
to path coordinates allows the resulting lattice to be bent along
any C1 continuous path. We exploit this fact by shaping it
along the skeleton of arbitrary structured environments, such
as the center of road lanes and corridors. In our experiments
in both structured (i.e. on-road) and unstructured (i.e. parking
lot) scenarios, we successfully demonstrate for the first time
the applicability of lattice-based planning approaches to search
queries in arbitrary environments.

Index Terms— Non-holonomic motion planning, deformable
input- / state-lattice

I. INTRODUCTION

Global real-time trajectory planning has traditionally been
achieved by reducing the high-dimensional state-space to a
simpler more approachable one, such as a 2D grid. While
moving obstacles and arbitrary robot shape can be treated
within the reduced-dimensional planning setup (i.e. via fre-
quent re-planning [1], [2] or motion prediction [3], and
conservative obstacle inflation, convolution approaches [1],
[4], respectively), the resulting plan’s violation of (nonholo-
nomic) vehicle constraints either necessitates the addition
of a path smoothing layer, which negates any previously
obtained optimality guarantees, or an exceedingly robust and
consequently slow controller implementation.

Recently it has thus been realized, that by incorporat-
ing vehicle kinematic (and dynamic) constraints into the
planning stage, the load on the path following and con-
troller modules may be reduced dramatically, and impassable
and / or potentially dangerous (dynamic) regions may be
identified and avoided before encountering them directly.
Unfortunately, the incorporation of such constraints increases
the complexity of the motion planning problem dramatically
(for a kinematic car-like vehicle this would amount to
the addition of heading, steering angle, velocity and time
dimensions in addition to 2D position), resulting both in a
substantially larger and more complex search space.

At the same time, applications in dynamic urban environ-
ments demand real-time planning and re-planning capability

Fig. 1. Google maps view of Haldenegg curve, Zurich. Our novel lattice
is bent along the centerline of the right lane. Using this approach, solutions
on the lattice are naturally aligned with the road’s direction.

(i.e. at 10Hz). The tradeoff between higher-dimensional (and
thus more precise) search queries and low execution times
is thus a delicate one, that has led to several environment
and application specific approaches. Primarily we distinguish
between cases where the structure can be deduced from the
environment (such as on-road, and in-door), and cases, where
such structure is largely lacking (off-road, parking lots).

In the former case, Dolgov et al. employ a low-dimension-
al search followed by a smoothing step, where the smoothing
minimizes the orientation mismatch between the path and the
external structure [5]. They argue that the low-dimensional
solution typically returns a motion close to the optimal high-
dimensional one, so that the smoothing step then finds the
local high-dimensional optimum in the vicinity (which is
often the global one). While this approach may work well
in static cases, it fails in dynamic scenes where the low-
dimensional search ignores vital non-convex elements of the
high-dimensional cost map. Howard et al. solve two-point
boundary problems between the current vehicle position
and a point some fixed distance ahead along the structured
environment (such as a road) [1]. In areas where such
structure is lacking, it is difficult to assess whether a potential
goal state lies along the globally optimal trajectory, however.

In the latter case, lattice based planner have emerged as
the solution of choice, as they may yield (sub-) optimality
guarantees on the underlying lattice graph at a low compu-

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3071

Fig. 2. Left: Vehicle kinematics in physical form. (x, y) denote the 2D position of the rear- and (xf, yf) of the front-axle center. Heading (θ) is measured
counter-clockwise with respect to the x-axis and steering angle (φ) with respect to the vehicle orientation. The wheelbase of the vehicle is described with l.
Right: Vehicle kinematics in path form. The reference path s is fully defined trough its curvature c(s). (s, d) denote the distance along, and perpendicular
to the path, respectively. θp = θ − θt marks the difference in heading between path and vehicle and φ is the steering angle.

tational cost. Bicchi et al. suggest an input sampled lattice,
which is obtainable for a wide range of vehicle models via
a coordinate transformation into chained form coordinates
[6]. For certain input sets they prove that the transformed
state space spans a lattice. Later, Pivtoraiko et al. developed
an algorithm to generate lattices in state space directly [7].
Their method is more involved but generates a minimal
edge-representation for the chosen state space discretization.
Nonetheless, the globally fixed state-space discretization (in
heading dimension) has so far prohibited the employment of
lattices in structured environments.

This concern is resolved by our main contribution. It has
its foundation in a principled yet simple method for the
simultaneous generation of an input and state lattice that
is applicable to vehicle models which can be brought into
(2,n) chained form (such as the kinematic model of a car). A
coordinate transformation from chained form into so called
path coordinates then allows for the bending of this lattice
along arbitrary C1 continuous paths and thus for the first
time enables its use in structured environments.

The remainder of this paper is organized as follows: in
Sections II & III we review the kinematic model of a car-like
vehicle, and then analyze its reachable set. Section IV details
our novel lattice generation algorithm. Finally, in Section V
we provide a comparison between regular and shaped lat-
tices in hybrid structured-unstructured environments, where
previously lattice planners could not be employed.

II. KINEMATIC MODEL OF A CAR-LIKE VEHICLE

In this section we review the kinematics of a slowly-
steered car-like vehicle consisting of four states that span
the configuration space: 2D position (x, y), heading (θ) and
steering angle (φ). These kinematics may be described in
various equivalent coordinate frames (treated in Sec. II-B &
II-C) to facilitate some of the arguments in Sec. III & IV.

When referring to a system, throughout this paper we
mean it in the context of control theory and modelling [6].

Definition 1. “A system is a quintuple (X,T, U,Ω, A),
where X denotes the configuration set, T an ordered
time set, U a set of admissible (possibly configuration
dependent) input symbols, Ω a set of admissible input
words formed by symbols in U and A a state transition
map A : T × Ω×X → X” [6].

A. Physical Form Coordinate Frame

An easily approachable way of deriving the kinematic rep-
resentation of a (rear-wheel driven) car-like vehicle involves
the four states (x, y, θ, φ) as introduced in Fig. 2, left. We
will henceforth refer to this representation as physical form.
The vehicle is subject to two non-holonomic constraints, one
each for the lumped together front (xf, yf) and rear (x, y)
wheels. They specify that the velocity of each wheel must
never have any lateral component (roll and no-slip condition).

0 = ẋf sin(θ + φ)− ẏf cos(θ + φ)
0 = ẋ sin θ − ẏ cos θ (1)

Furthermore, the front axle coordinate and velocity compo-
nents are related to their rear axle counterparts through the
rigid body assumption (with l the vehicle wheelbase)

xf = x+ l cos θ
yf = y + l sin θ =⇒ ẋf = ẋ− θ̇ l sin θ

ẏf = ẏ + θ̇ l cos θ
(2)

Finally, the means by which we act on the vehicle are
specified via forward speed vcar (throttle) and the front
wheels’ steering velocity φ̇ (through the steering wheel). We
refer to these inputs as

v1 = vcar =
√
ẋ2 + ẏ2

v2 = φ̇
(3)

By combining Eqns. 1-3 and solving for the state variables
[x, y, θ, φ]T , the kinematic state-space representation in phys-
ical form is obtained (System 1).

3072

Fig. 3. 24-directional input and state lattice displayed for several initial conditions. Heading levels are unevenly spaced. Steering angle discretization is
heading dependent. (.)i denotes initial values. Left: (θi, φi) = (0, 0), Center: (θi, φi) = (atan 0.25, 0), Right: (θi, φi) = (atan 0.25,−0.39).

System 1 (Physical Form).
ẋ
ẏ

θ̇

φ̇

 =


cos θ
sin θ

tanφ/l
0

 v1 +


0
0
0
1

 v2

B. Chained Form Coordinate Frame

The (2,4) single chain form (as given in System 2) de-
scribes the kinematics of of a car-like vehicle in an alternate
coordinate frame, whose states x2 and x3 do not exhibit
direct physical meaning. The representation’s usefulness is
mainly predicated on its close to linear structure (which
renders it interesting for controller design), and the existence
of a coordinate transformation to System 1. It was first
introduced by Murray et al. [8] as a tool to steer vehicles.

System 2 (2,4 Chained Form - Continuous Time Notation).

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2 u1

ẋ4 = x3 u1

We readily verify that System 1 may be brought into (2, 4)
chained form using the change of coordinates and input
transformations given in Eqn. 4 [8].

x1 = x
x2 = 1

l sec3 θ tanφ
x3 = tan θ
x4 = y
v1 = u1/ cos θ
v2 = u2 l cos3 θ cos2 φ −

3 u1
l sin θ sin2 φ cos2 θ

(4)

C. Path Coordinate Frame

The third coordinate frame relevant to this paper, com-
monly referred to as path coordinate frame (consult System 3
and Fig. 2, right for a description of the variables used), has
been popular in vehicle control applications (see i.e. [9]). In
this formulation, the problem of stabilizing a robot onto a
reference path s (which is fully defined through its curvature
c(s)) is reduced to the regulation of the states [d, θp, φ]T to
zero, irrespective of the path’s shape.

System 3 (Path Form).
ṡ

ḋ

θ̇p
φ̇

 =


cos θp

1−d c(s)
sin θp

tanφ
l −

c(s) cos θp
1−d c(s)

0

 · v1 +


0
0
0
1

 · v2
The inputs (v1, v2) of System 3 again take the form of
(vcar, φ̇). Similar to the case with physical coordinates, path
coordinates may also be transformed into (2,4) chained form
via the state and input transformations given in Eqn. 5 [9].

x1 = s

x2 = (1−d c(s))2 tanφ
l cos3 θp

− c′(s) d tan θp −
c(s) (1− d c(s)) 1+sin2 θp

cos2 θp

x3 = (1− d c(s)) tan θp
x4 = d

v1 = 1−d c(s)
cos θp

u1

v2 = α2(u2 − α1u1)
α1 = δx2

δs + δx2
δd (1− d c(s)) tan θp +

δx2
δθp

(
tanφ (1−d c(s))

l cos θp
− c(s)

)
α2 = l cos3 θp cos2 φ

(1−d c(s))2

(5)

Note that Eqn. 5 strongly depends on the selected path and its
derivative. c(s) is thus required to be at least C1 continuous.

III. REACHABLE SETS OF THE KINEMATIC
SYSTEMS IN CHAINED AND PHYSICAL FORM

The starting point of this section is constituted by the
work of Bicchi et al. on input lattices [6]: specifically, we
draw on their important findings that the reachable set of the
chained form System 2 is discrete and forms a lattice in state-
space iff the input set fulfills certain conditions (detailled
in Theorem 1). By computing the systems’s reachable set
explicitly, we obtain a relation between the innput set’s
sampling levels and the chained form system’s state-space
discretization (Sec. III-A). Further, by applying the trans-
formation between chained and physical form coordinates
from the preceding section (Eqn. 4), we arrive at a mapping
between discretization levels in physical form state-space and
sampling levels in chained form input space (Sec. III-B). Our
lattice design algorithm (Sec. IV) builds on this result.

3073

Fig. 4. Top Left: Google Street View scene close to Bellevue, Zurich. Bottom Left: corresponding Google Maps image. Impassable areas are shaded
gray. Bottom Center: 2D heuristic map. Color indicates cost to goal. Right: plan from start- (green) to goal-configuration (black). The lattice shape (at
d = 0) is displayed in red. Note that the curvature is set to zero in the parking lot area due of lack of structure in close vicinity. Instead, the direction is
aligned with the dominant orientation of the lot area. The solution on the deformable lattice is represented in blue, the one on the fixed lattice in yellow.

A. Reachability of the Chained Form System 2

Definition 2. The reachable set of a system S at initial
configuration qi is comprised of the set of configurations
q ∈ Q which are attained by incrementally applying a set
of allowable inputs u ∈ U to qi and its successor config-
urations. The reachable set may form a tree (continuous)
or a lattice (discrete) in the state-space of S.

Theorem 1. The reachable set of System 2 is discrete
and forms a lattice in state-space iff the input set U , with
u = [u1, u2]T ∈ U piecewise constant, is selected as

U = {diag(λ)Ws, s ∈ S} ⊂ R2

with W ∈ Q2x2 an invertible matrix, λ ∈ R2 and S ⊂ Z2.

Compiled from [6], Theorem 9, Defs. 4 & 8.

The reachable set of System 2 may therefore only form
a lattice, if all control inputs [u1, u2]T assume piecewise
constant values. Hence, we may restate System 2 in discrete,
exact unit-time sampled notation [6].

System 4 (2,4 Chained Form - Discrete Time Notation).

x+
1 = x1 + u1

x+
2 = x2 + u2

x+
3 = x3 + x2u1 + u1u2

2

x+
4 = x4 + x3u1 + x2u

2
1

2 + u2
1u2
6

Incremental step size in the reachable set of System 4 turns
out to be a function of the greatest common divisor of all
u ∈ U , which we denote as ud. We may thus specify ud =
[u1d, u2d]T directly by selecting λ, W , and S

λ =
[
u1d
u2d

]
, W =

[
1 0
0 1

]
, S = Z2,

so that ud is itself part of the set U . The reachable set of
System 4 is then easily computed (Eqn. 6).

B. Reachability of the Physical Form System 1

Through Eqn. 4 we are able to relate the reachable set in
chained form (Eqn. 6)

x1

x2

x3

x4

 ∈

X1

X2

X3

X4

 ⊂


k1 u1d
k2 u2d
k3

u1d u2d
2

k4
u2

1d u2d

6

∀ki ∈ Z (6)

to the much more complex reachable set in physical coordi-
nates, given by Eqn. 7.

x
y
θ
φ

 ∈

X
Y
T
P

 ⊂


k1 u1d

k4
u2

1d u2d

6
atan(k3

u1d u2d
2)

atan(k2 u2d l cos3 θ)

 (7)

Unfortunately, the transformation between physical coor-
dinates and chained form (Eqn. 4) is subject to some
restrictions: for uniformly sampled x3 in chained form
(System 2), the heading discretization in physical coordi-
nates (System 1) becomes denser towards ±π/2, where the
transformation is not defined due to a singularity. Previous
work with chained form systems has therefore been limited
to problems where the heading could be constrained to the
interval (−π/2, π/2), as in autonomous vehicle parking ap-
plications [10], [11]. For generic motion planning problems,
such a restriction cannot be imposed, however.

In order to overcome this issue, and thus expand the
reachable set of Eqn. 7 to heading levels outside the interval
(−π/2, π/2), we introduce a second physical form coordi-
nate system, rotated counter-clockwise by π/2 with respect
to the original one. Variables in the rotated frame are denoted
with (.)rot. The challenge then lies in merging the two distinct
reachable sets via mutually reachable states. For the heading
levels, this is enforced via Eqn. 8 for some m,n ∈ Z.

θ
!= π

2 − θrot ⇒ atan(m u1du2d
2) != π

2 − atan(n u1du2d
2) (8)

3074

Lemma 2. atanκ+ atan(1/κ) = π/2 ∀κ > 0
Proof : d atanκ

dκ + d atan(1/κ)
d κ = 1

κ2+1 −
1

(κ−2+1)κ2 ≡ 0
π/2 is obtained through insertion.

By rearranging Eqn. 8 appropriately, the same structure as
in Lemma 2 is obtained. We conclude that ∀θ 6= 0, θ ∈ T
iff nu1du2d

2 = 2
mu1du2d

for some m,n ∈ Z and artificially
construct a merged reachable set which is comprised of states
that are mutually reachable from both coordinate frames
only. It follows from Eqn. 7 that the number of heading levels
in this merged reachable set is a function of u1d u2d = ucomb.

A similar argument holds for the number of mutual
steering angles φ: likewise to heading, the discretization in
steering angle φ is more densely sampled towards θ = ±π/2,
and thus becomes configuration dependent. In cases where
steering angle saturation needs to be considered, it is thus of
interest to compute the minimal number of discrete values
obtainable over all heading levels. By inserting the largest
attainable steering angle φmax into Eqn. 4:

φmax

!
≥ atan (x2 l cos3 θ), (9)

it can be shown that this number always occurs at θ = 0.

IV. DEFORMABLE INPUT- / STATE-LATTICE
DESIGN PROCEDURE

Now that we have introduced all essential auxiliary parts,
let us focus on the development of our main contribution, an
algorithm for the simple yet effective design of deformable
input- and state-sampled lattice graphs. The procedure draws
heavily from the preceding sections: it builds on the work
of Bicchi et al. [6] on input sampled lattices for chained
form systems (Theorem 1) and on Eqn. 7 which relates the
reachable set in physical coordinates to the design parameters
ud in chained form. Essentially, we add an additional layer
on top of the approach of Bicchi et al. [6], so that their
algorithm allows us to build a lattice in physical form
coordinates based on physical form specifications directly.

A. Lattice Design Algorithm

In Bicchi’s method [6], a lattice spanning the four-
dimensional chained form configuration space is constructed
by specifying a two-dimensional input set U only. The
approach is thus clearly overconstrained with respect to the
obtainable state space discretization: in fact we are restricted
to the direct specification of two states’ discretization levels
in chained form only. The resolution of the remaining two
states emerges from the design procedure.

For practical reasons, we are typically interested in spec-
ifying a discretization in physical coordinates directly, how-
ever. To this end we apply Eqn. 7 to specify U based on a
desired physical form state-space discretization. This forms
the starting point of our lattice design algorithm.

As a means of illustration, we specify a discretization
in heading (θ) and steering angle (φ) directly, although any
other combination of two states is equally feasible. (x, y)-
discretization then emerges from the design procedure, and
needs to be verified a posteriori.

ucomb # Head. Heading Discr. Lvls in 1st Octant

2 8 {0, atan 1}
1 16 {0, atan 1

2
, atan 1}

1/2 24 {0, atan 1
4

, atan 1
2

, atan 1}
1/3 32 {0, atan 1

6
, atan 1

3
, atan 1

2
, atan 1}

TABLE I
HEADING LEVELS AS A FUNCTION OF THE PARAMETER ucomb

Algorithm 1 (Input- and State-Lattice Design).

1) Gather vehicle specific information, notably vehicle
wheelbase (l) and maximal steering angle (φmax).

2) Decide on a desired number of heading levels θ in
physical coordinates and consult Table I or Eqn. 8 to
obtain the corresponding value of ucomb = u1d u2d.

3) Decide on a minimal number of steering angle
levels. As shown above, this value will be encoun-
tered at θ = nπ/2, ∀n ∈ Z. Through Eqn. 9, a
discretization in x2, and thus in u2 is obtained.

4) The discretization of x1 is obtained by inserting u2

into ucomb and solving for u1. The discretization in
x4 results from Eqn. 6.

5) For each initial chained form state of the chosen dis-
cretization [x1i, x2i, x3i, x4i]T ∈ [X1,X2,X3,X4]T

(with (x1i, x4i) = (0, 0) due to translational invari-
ance), apply all inputs u ∈ U that are part of the
input sampling to arrive at a set of configuration
dependent outgoing edges. They form the lattice.

6) Remove edges from the lattice which start or end at
heading / steering angle levels, that are not part of
both the original and the rotated coordinate frame.

Via Algorithm 1 we designed a 24-directional lattice with
at least seven discrete steering angles (occurring at θ = 0),
and an (x,y)-discretization of 1

12m for a 2008 Toyota Prius
(l = 2.7 m, φmax = 0.6 rad, displayed in Fig. 3).

Despite the apparent focus on car-like vehicles, it should
be noted that the theory developed in this paper equally
applies to all other systems which can be transformed into
(2,n) chained form. A sufficient algorithm is described in [8].

B. Geometrical Properties of the Lattice

Our lattice design procedure requires piecewise constant
inputs (u1, u2) in chained form. Thus x1 assumes piecewise
linear and x4 piecewise cubic values. By referring to the
transformation between chained form and physical form
coordinates (Eqn. 4), we observe an equivalence between
(x1, x4) and (x, y). It follows trivially that lattice segments
in physical coordinates are composed of piecewise cubic
polynomials.

y(x) = ax3 + bx2 + cx+ d

Remarkably, Algorithm 1 manages to generate lattice seg-
ments which satisfy the six constraints (difference in 2D
position, initial and final heading and curvature) imposed
through System 2 by using cubic polynomials alone.

3075

Fig. 5. Top Left: Google Street View scene of Central, Zurich. Bottom Left: corresponding Google Maps image. Impassable areas are shaded gray.
Bottom Center: 2D heuristic map. Color indicates cost to goal. Note, that moving along the left lane is costlier. Right: plan from start- (green) to
goal-configuration (black). A vehicle with break-down (shaded red) needs to be overtaken. The lattice shape (at d = 0) is displayed in red, the optimal
solution on the deformable lattice in blue, and on the globally fixed lattice in yellow.

C. Lattice Deformation along Path c(s)

It is well known that lattice graphs are ill suited to
applications in structured environments, as their heading
discretization remains globally fixed. Rather small heading
discretization levels are thus required to avoid the typical
swerves in directions that are not part of the lattice. These
additional heading levels affect search speed dramatically.

The concept of path coordinates (as compiled in Sec. II) is
easily misappropriated to solve the above mentioned issue,
however. Lattice segments (constructed with Algorithm 1)
may be transformed from chained form into path coordinates
via Eqn. 5, and the specification of a reference path c(s). The
key point is then to shape c(s) along the local structure of
the environment. Notably, this result allows us for the first
time to freely align the orientation of the graph’s heading
levels with the environment (provided such information can
be extracted). In structured environments, sensible choices
include the center lines along road lanes and corridors.
In unstructured environments, the scene’s local principal
directions could be chosen. Once designated, the reference
path c(s) then constructs the lattice segments with d ≡ 0.
Segments with d 6= 0 are constructed so that d remains
perpendicular on the path (illustrated in Fig. 2, right).

As a consequence to the liberty in choosing c(s), several
auxiliary steps need to be performed during graph search in
order to ensure compliance with vehicle constraints, however.
• During edge expansion, every successor edge is required

to be checked for maximal curvature violation (corre-
sponding to the maximal allowed steering angle φmax).
If a violation occurs, the edge may not be expanded.

• During expansion, any edges with distance from path
d(s) > 1/c(s) may not be expanded (degenerate case).

• Due to distortion effects c(s) imposes on lattice edges,
cost-map cells traversed by edges cannot be precom-
puted. Their calculation in real-time is thus required.

V. EXPERIMENTAL RESULTS

In this section we apply our novel deformable lattice to
two difficult outdoor environments: the Zurich Bellevue scene
contains both structured (road) and unstructured (parking lot)
parts, the Central scene is comprised of a curved double
lane segment, where a lane change needs to be performed
due to an immobile car (see Fig. 5). Both scenes have been
prepared manually from Google Maps images: static obstacle
areas are shaded dark, lane-centers are marked in red. In both
scenarios we compare our deformable lattice to the same
lattice with globally fixed heading discretization. We employ
an adapted version of the A* graph search algorithm to return
minimal cost paths on the lattice graph. The underlying cost
function attains low values on driveable terrain with slowly
growing values towards the road boundaries. Obstacle areas
are assigned infinite cost, and are thus impassable.

A. Bellevue Environment

Fig. 4 shows an overview of a scene close to Bellevue,
Zurich and describes the different steps taken before plan-
ning: masking of obstacles and untraversable areas, genera-
tion of a 2D heuristic, labeling of unstructured environments
(the parking lot is shaded in red) and centerline extraction.
In blue color, the solution obtained via our novel deformable
lattice is displayed. During on-road operation, we shape the
lattice along the center of the lane. Once the parking lot
is reached, it is shaped along the lot’s dominant direction.
On the road segment, the solution follows the lane center
perfectly, as no obstacles need to be avoided. In the parking
lot, it eventually departs the lattice centerline to park the
vehicle safely in the designated spot. Contrary to that,
the solution obtained with the globally anchored lattice (in
yellow color) produces an excessively curved path which is
typically not well aligned with nearby structures.

3076

B. Central Environment

Fig. 5 provides an overview for the experiment at Central,
Zurich. This scenario exemplifies how our deformable lattice
performs on-road, where the preferred lane needs to be
departed (in the present case due to a vehicle with break-
down, shaded red in Fig. 5, right). The robot is thus required
to move to the left lane, overtake the stationnary vehicle
and then eventually return to the right lane. The time of
change, and the duration spent on the left lane is not chosen
by the lattice shaping a priori, but rather by the graph search
through a minimal cost solution. In the same environment,
we performed a search using the globally fixed lattice. The
result is a meandering path, which just barely manages to
remain within the lane boundaries.

C. Discussion

With the Bellevue and Central experiments we confirmed
that in curved structured environments, and in narrow envi-
ronments where the orientation is not well aligned to a lattice
heading, globally anchored lattices perform poorly: failure
to compute a solution or, in case of success, excessively
curved paths tend to emerge. By contrast, we were able
to demonstrate that deformable lattices can not only be
employed in unstructured environments, but in virtually any
scenario (provided that, through i.e. distance transforms,
the local structure or general orientation can be gathered),
as they allow for the dynamic adaptation of the heading
dimension during search. Compared to an anchored lat-
tice, superior performance can thus be achieved with far
fewer discrete heading levels, thereby reducing the graph’s
branching factor and increasing search speed. We believe
it to be the first time, that high-dimensional graph search
on a state lattice was employed as a universally applicable
planning algorithm. Through our contribution the need for a
higher-level reasoning and switching module thus vanishes.
By removing the superfluous host of disparate, environment
specific planning solutions, the navigation system becomes
simpler, more robust and easier to optimize and operate.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel algorithm to generate
input- / state-lattices comprised of cubic splines with a user
specified discretization in state space. The method is appli-

cable to vehicles whose kinematic model is mathematically
equivalent to the (2,n) chained form, and thus includes unicy-
cles, bicycles, differential-drive robots and cars. Furthermore
we presented a solution to bend such lattices along any
C1 smooth path, thereby allowing us to align the heading
discretization of the lattice dynamically along the skeleton
of arbitrary structured environments. We then demonstrated
for the first time the applicability of this planning approach
to both structured and unstructured environments.

In the future, we would like to investigate whether our
lattice design approach could be extended to dynamic vehicle
models and non-planar environments.

ACKNOWLEDGMENT

This work has been partially supported by the Swiss
National Science Foundation NCCR ’MC3’ and by the
European Project ’EUROPA’ under contract number FP7-
231888.

REFERENCES

[1] D. Ferguson, T. Howard, and M. Likhachev. Motion Planning in Urban
Environments: Part I. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2008.

[2] T. Howard D. Ferguson and M. Likhachev. Motion Planning in Urban
Environments: Part II. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2008.

[3] A. Kushleyev and M. Likhachev. Time-bounded lattice for efficient
planning in dynamic environments. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2009.

[4] M. Likhachev and D. Ferguson. Planning long dynamically-feasible
maneuvers for autonomous vehicles. In Proceedings of the Robotics:
Science and Systems Conference (RSS), 2008.

[5] D. Dolgov and S. Thrun. Detection of principal directions in unknown
environments for autonomous navigation. In Proceedings of the
Robotics: Science and Systems Conference (RSS), 2008.

[6] A. Bicchi, A. Marigo, and B. Piccoli. On the reachability of quantized
control systems. IEEE Transactions on Automatic Control, 4(47):546–
563, April 2002.

[7] R. A. Knepper M. Pivtoraiko and A. Kelly. Differentially constrained
mobile robot motion planning in state lattices. Journal of Field
Robotics, 26(1):308–333, March 2009.

[8] R. Murray and S. S. Sastry. Nonholonomic motion planning: Steering
using sinusoids. IEEE Transactions on Automatic Control, 38:700–
716, 1993.

[9] A. De Luca, G. Oriolo, and C. Samson. Feedback control of a
nonholonomic car-like robot. Springer, Berlin, 1998.

[10] S. Pancanti, L. Pallottino, D. Salvadorini, and A. Bicchi. Motion
planning through symbols and lattices. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2004.

[11] M. Rufli. Driver-in-the-loop path control for a non-holonomic vehicle.
Bachelor Thesis, ETH Zurich, 2006.

3077

