
Distributed Pursuit-Evasion with Limited-Visibility Sensors
Via Frontier-based Exploration

Joseph W. Durham, Antonio Franchi, and Francesco Bullo

Abstract— This paper addresses a novel visibility-based
pursuit-evasion problem in which a team of searchers with
limited range sensors must coordinate to clear any evaders
from an unknown planar environment. We present a distributed
algorithm built around guaranteeing complete coverage of
the frontier between cleared and contaminated areas while
expanding the cleared area. Our frontier-based algorithm can
guarantee detection of evaders in unknown, multiply-connected
planar environments which may be non-polygonal. We also
detail a method for storing and updating the global frontier
between cleared and contaminated areas without building a
global map or requiring global localization, which enables
our algorithm to be truly distributed. We demonstrate the
functionality of the algorithm through Player/Stage simulations.

I. INTRODUCTION

This paper deals with a distributed pursuit-evasion problem

for a team of robotic searchers in an unknown environment.

The distributed pursuit-evasion problem, also known as the

clearing problem, involves designing control and commu-

nication protocols such that the searchers will sweep an

environment and detect any intruders which may be present.

The pursuit-evasion problem has received a lot of attention in

recent years because of its applications to safety and security.

In this paper, we describe a distributed environment clearing

algorithm based on the concept of the frontier or boundary

between cleared and contaminated areas. Our algorithm can

guarantee the detection of any intruders or, if there are

insufficient searchers available, will clear as much area as

it can while ensuring no cleared areas are recontaminated.

In the literature on pursuit-evasion problems, many differ-

ent approaches and starting assumptions have been explored.

The study of guaranteeing detection of evaders in planar en-

vironments began with [1]. For a single searcher, [2] studied

a searcher with a limited field of view in a known polygon

while [3] cleared unknown environments without localization

using minimalist sensing. Efficient evader detection, where

one or more searchers are tasked with probabilistically

locating targets which move randomly, is another active

area covered in [4]. Pursuit-evasion on graphs representing

decompositions of known environments is a related topic

which goes back to [5] and includes recent works such as

This work is supported in part by NSF awards CMS-0626457 and IIS-
0904501 and by ARO MURI award W911NF-05-1-0219.

Joseph W. Durham and Francesco Bullo are with the Department of
Mechanical Engineering, University of California, Santa Barbara, CA,
93106 (joey, bullo)@engineering.ucsb.edu

Antonio Franchi is with the Dipartimento di Informatica
e Sistemistica, Università di Roma La Sapienza, Italy
franchi@dis.uniroma1.it

[6] and [7]. In addition, our work draws inspiration from

methods for exploration and deployment of agents based

on the frontier between explored and unexplored areas,

including [8], [9], [10] and [11].

In this paper we present a distributed clearing algorithm

for d−searchers, a searcher model with realistic limited range

visibility sensors. A well-known result from the literature is

that computing the minimum number of searchers required

to clear a general graph is NP-hard [5]. This result was

extended in [12] to searchers with infinite range sensors in

a polygonal environment, and so solving for the minimum

number of d−searchers to clear a non-polygonal environment

is also NP-hard. Instead, we present an efficient, distributed

algorithm which locally minimizes the number of searchers

required, and demonstrate the algorithm’s utility through

simulations using the opensource Player/Stage robot software

system [13].

There are three key contributions of this work. First, our

frontier-based algorithm can guarantee detection of evaders

in unknown, multiply-connected planar environments which

may be non-polygonal. To the best of our knowledge, no

prior work exists which achieves this. Second, we detail a

novel method for storing and updating the global frontier

between cleared and contaminated areas without building

a global map or requiring global localization. Finally, we

develop a method for selecting the next positions for the

searchers which locally optimizes the number of searchers

required and the expected increase in the area cleared.

This paper is organized as follows. Section II provides

definitions and states the problem which we are addressing.

In Section III we examine a centralized version of our

algorithm to clarify some of the details. The decentralized

algorithm is presented in Section IV and then demonstrated

through simulations in V. We conclude with a discussion of

future work in Section VI.

II. PROBLEM FORMULATION

We are given a team of n robotic searchers with limited

sensing and communication capabilities and finite memory,

all initially placed at the same position in the free space of

an unknown but limited planar environment. Let Q be the

free space of the environment, which must be connected but

can have holes and may be non-polygonal. The searchers

are tasked with detecting evaders which can be arbitrarily

small (even a single point) and can move arbitrarily fast, but

continuously, through Q. The trajectories and initial positions

of the evaders are unknown. We further require that the

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3562

S

∂S

∂Sd

L

L

L

∂S

L

Fig. 1. On the left, four obstacles surround a d−searcher and lie within the
dashed circular region representing the area perceivable by the searcher’s
sensor without occlusions. The right image shows the boundary ∂S of the
sensor footprint for this position, with dashed oriented arcs for the free
boundary L and solid arcs for the local obstacle boundary.

control protocol for each searcher uses a constant amount

of memory with respect to the size of Q.

The robot model we use, the d−searcher, is a holonomic

(i.e., omnidirectional drive) mobile robot that can rotate and

translate continuously at bounded speed through Q. Our

model gets its name from the attached distance sensor which

has a maximum range of d > 0 and an angular aperture of

2π. The sensor cannot penetrate obstacles but is capable of

detecting any evaders visible to it.

Let S denote the footprint of the sensor when a robot is in

a generic configuration, as shown in Fig. 1. The footprint is a

local obstacle free region and we say that a point is guarded
by a robot if it belongs to the footprint of the sensor of

that robot. The oriented boundary of the sensor footprint,

∂S of S, is a closed arc partitioned into two sets: (1) the

local obstacle boundary (all the points where the sensor has

perceived an obstacle), and (2) the free boundary, denoted

with L, which consists of all the remaining points. Notice

that while S is always a simply connected region, L is not, in

general, a connected set. We refer to the connected subsets

of L as free arcs. The orientation of ∂S is defined in a

counter-clockwise manner, such that a point moving along

the boundary would have the internal part of S on the left.

The free arcs constituting L inherit the orientation of ∂S and

are an open subset of the topological manifold ∂S, with their

endpoints on obstacles. The local obstacle boundary arcs, on

the other hand, are closed in ∂S.

The perception of the sensor at a given point is the tuple

{S, ∂S,L}, i.e., a footprint S, surrounded by boundary ∂S,

and the set of free boundary arcs L of ∂S. For notation and

explanation, we will also have use for the union of a number

of perceptions from different points in Q, which we refer to

as the inspected region I . Since our algorithm does not allow

recontamination, I also represents the cleared area. We wish

to emphasize that our algorithm will not compute or store I ,

but will instead use only the frontier sections of the boundary

of I . Though I will be connected, it may not be simply

connected, meaning that ∂I is a set of a closed oriented

curves. As with ∂S, ∂I is partitioned into two sets: (1) the

obstacle boundary, and (2) the set of remaining oriented arcs,

called the frontier boundary, and denoted F .

Finally, we require that a pair of robots are guaranteed

to be able to communicate if their two sensor footprints

intersect. We further assume that two communicating robots

can compute their relative poses, as a result of a mutual

localization procedure [14]. The availability of any sort of

global localization is not assumed.

With these definitions we can now state the goal of

our algorithm: control the team of n searchers in order to

maintain complete coverage of frontier F while expanding

as much as possible the area of the cleared region, I , subject

to limited communication and memory constraints.

III. THE MULTI-ROBOT CLEARING ALGORITHM

For clarity, we have chosen to split the presentation of our

clearing algorithm into two stages. In this Section we pretend

that a central controller is commanding the searchers in order

to describe the fundamental algorithm steps and the data

structures involved. In Section IV we detail the distributed

implementation of the algorithm.

The team of n searchers is divided into two classes, the

frontier-guards and the followers:

• Frontier-guard: Each frontier-guard is assigned to a

unique position v ∈ Q called the guard’s viewpoint,
which can move during the evolution of the algorithm.

The frontier-guard must quickly reach its viewpoint

and report a perception, i.e. the tuple {S, ∂S,L}. In

order to detect evaders each frontier-guard must also

continuously monitor its sensor.

• Follower: Each follower is assigned to follow a frontier-

guard, and this assignment can change as the algorithm

progresses. Each follower is only required to passively

follow its frontier-guard.

As needed, the clearing algorithm will switch frontier-guards

to followers, and vice-versa.

At the beginning of the algorithm all n searchers are

clustered around a point in Q. One robot is selected as

the initial frontier-guard and assigned its initial position as

a starting viewpoint. All other robots are set as followers

of this guard. The frontier-guard will then record the first

perception, which initializes the main data stored during the

evolution of the algorithm.

Whenever a frontier-guard records its perception from a

viewpoint, a new step k of the algorithm starts and the

perception is classified as {Sk, ∂Sk,Lk} and called the k-

th perception. We denote the total inspected region at step

k as Ik := ∪k
i=1Si. Again, the algorithm does not use

or store Ik or the obstacle portion of ∂Ik; one important

innovation of this work is that it stores and updates only Fk,

the oriented frontier arcs of Ik. Since the obstacle boundary

of the inspected region Ik is impossible for either searchers

or evaders to cross, there are only two ways an evader can

enter Ik: (1) by being inside of Sk\Ik−1 at the instant in

which the k-th perception is performed, or (2) by crossing

Fk. In this first case detection of the evader is immediate,

the focus of our algorithm is thus on maintaining complete

coverage of Fk and updating it when a new perception is

added.

3563

After each perception {Sk, ∂Sk,Lk} is recorded, the fol-

lowing actions are performed:

1) Compute Fk from Fk−1 and {Sk, ∂Sk,Lk} as detailed

in Sec. III-A.

2) Compute the next set of viewpoints Vk+1, which ensure

that Fk remains guarded and that Ik+1 will be a strict

superset of Ik, as detailed in Sec. III-B.

3) Assign each v ∈ Vk+1 to a nearby searcher and set the

searcher to be a frontier-guard.

4) Assign remaining searchers a frontier-guard to follow.

5) Compute paths for all frontier-guards to reach their

assigned viewpoint.

As we will explain in Section III-B, all the points of Fk

will remain guarded by the frontier-guards during the path

following. This fact guarantees that at every instant each

point of Fk is guarded by at least one frontier-guard and

thus Ik will remain clear. We refer to this feature as the

frontier guarding property.
Assuming that n ≥ max{|Vk| | for all k}, the algorithm

will terminate at the first step kf where Fkf
= ∅. At this

point, ∂Ikf
will consist entirely of obstacle arcs and Ikf

will

completely cover Q. Therefore, for every evader e in Q there

exists at least one time step ke during which it (1) crosses

Fke−1 for ke ∈ {2, . . . , kf}, or (2) belongs to Ske
\Ike−1 for

ke ∈ {1, . . . , kf}. We can conclude, by means of the frontier

guarding property, that every evader is detected before the

algorithm terminates.

A. Updating the global frontier without a global map
On the first step, F1 is initialized as the free boundary of the

first perception L1; on each subsequent step k, the algorithm

needs to compute the new frontier Fk, i.e., the non-obstacle

boundary of the inspected region Ik = Ik−1 ∪ Sk. The set

Fk can be partitioned into two subsets, (1) the set FExt
k−1 of

arcs from the prior frontier Fk−1 which do not belong to the

closure of Sk, and (2) the set LExt
k of arcs from Lk which are

not on the interior of Ik = ∪k
i=1Si. While the computation

of FExt
k−1 from Fk−1 and {Sk, ∂Sk,Lk} is immediate, in this

section we describe a new method to compute LExt
k by using

only the oriented arcs of Fk−1 and {Sk, ∂Sk,Lk}.
In all previous work including [11], LExt

k has been com-

puted using Sk and Ik−1. The disadvantages of this prior

procedure for updating F are that computing Ik−1 requires

global localization and storing it requires non-constant size

per robot with respect to the size of environment Q.
Our new three-step method for computing LExt

k is based

around the intersections of the oriented arcs of Fk−1 and

∂Sk. As we will discuss in Section IV, this method requires

only temporary mutual localization between pairs of agents

to compute Fk and a constant amount of memory per robot

to store it regardless of the size of Q. Let L�
k denote the

set of points belonging to the intersection between the arcs

of Lk and the arcs of Fk−1, and L̄�
k the remaining points

of Lk. The points of LExt
k can be either on the boundary of

or exterior to Ik−1, the boundary points belong to L�
k while

the exterior ones belong to L̄�
k. The following crucial result

states that an arc in Lk can only switch from being on the

interior or exterior of Ik−1 at an intersection point in L�
k.

⇔
l

J

p
p

ppppppppppppp

p

p p⇔
p

f

J

l′

Fig. 2. Example classification of the neighborhood J of a point p ∈ L�
k

where arcs l ∈ Lk and f ∈ Fk−1 intersect. In the middle, the partitions
of J induced by l and f are represented separately. The white regions on
the right side of the oriented arcs indicate the exterior, and the patterned
regions on the left indicate the interior. The single neighborhood at right
shows the fusion of the two partitions of J . The bold part of l, denoted
with l′, is classified as belonging to frontier Fk because it lies between a
white and a patterned region. Note that in this case p ∈ l′.

Fig. 3. The classification of the points of arc l ∈ Lk in the neighborhood
of all possible types of intersections with arc f ∈ Fk−1. Arc l is drawn
solid, while f is dashed. Each row shows a different intersection type,
with columns for the various reciprocal orientations of l and f . The first
row shows isolated crossings, the second shows isolated tangents, the third
shows joinings, and the fourth row shows segments where l and f overlap.
The bold portions of l are classified as belonging to the new frontier LExt

k
as they lie between a white and a patterned region.

Lemma 1. Let l be an arc in Q which does not intersect
Fk−1. If any point of l belongs to the exterior of Ik−1, then
all of l belongs to the exterior of Ik−1. If any point of l
belongs to the interior of Ik−1, then all of l belongs to the
interior of Ik−1.

The first step of the method is to classify the neighborhood

on ∂Sk of each intersection point p ∈ L�
k as either internal to

Ik−1 or not. An example of this neighborhood classification

is shown in Fig. 2. The neighborhood classifications for all

possible intersection cases are depicted in Fig. 3.

The second step of the method is to classify the ends of

each arc l ∈ Lk in the neighborhood of the endpoints of the

adjacent obstacle arcs. These neighborhoods can be classified

using the following Lemma:

Lemma 2. Let o denote a local obstacle arc of ∂Sk, let lL
and lR ∈ L̄�

k denote the ends of the free arc segments on the
left and right of o, respectively, in the neighborhood of the
endpoints of o. Let Eo ⊂ o be the set of endpoints of any
frontier arcs of Fk−1 which either begin or end on o, and

3564

which are, in the neighborhood of o, fully contained in the
closure of Sk. Then:
• If Eo = ∅, then either lL and lR are both internal to

Ik−1 or neither are.
• If Eo �= ∅, then lL is internal to Ik−1 if the closest1

e ∈ Eo represents the beginning frontier arc, and not
internal otherwise. The opposite holds for lR.

The third and final step is to propagate the classification

from the neighborhoods to all points of the arcs of Lk. This

propagation again exploits Lemma 1. Notice that, so long as

the selection of viewpoints guarantees that either L�
k �= ∅ or

at least one local obstacle arc o has a non-empty Eo, this

third step is well defined.

Combined, these three steps determine which segments of

the k-th free boundary Lk are not in the interior of Ik−1 and

thus should be included in frontier Fk.

B. Viewpoint planner

Our approach to viewpoint planning is similar to the ex-

ploration algorithm in [11]. The properties of our viewpoint

planning method are laid out in the following Proposition.

Proposition 1. Given Fk and the set of prior viewpoints Vk,
the viewpoint planner will select the smallest set of view-
points Vk+1 ∈ Ik which satisfy the following constraints:

1) Area(Ik+1) will be strictly greater than Area(Ik), and
2) Fk is contained in the closure of ∪v∈Vk+1S(v).

Within these constraints, the viewpoint planner will maximize
the expected area exposed, Area(Ik+1)− Area(Ik).

Remark The viewpoint planner we present here is for circu-

lar sensor footprints of radius d. For more general footprints,

such as a limited field-of-view, our clearing algorithm could

also be applied provided a viewpoint selection method was

developed which met the conditions of Proposition 1.

With the distributed application in mind, we simplify the

planning of Vk+1 by constructing it from Vk. Let vk be the

viewpoint of the k-th perception. As detailed in Section III-

A, Fk can be partitioned into two sets: FExt
k−1 (a subset of

the prior frontier), and LExt
k (a subset of ∂Sk). Let F Int

k−1 be

the portion of Fk−1 which is inside the closure of Sk. The

procedure for constructing Vk+1 is as follows:

1) Remove vk.

2) Remove any v ∈ Vk which was assigned to guard an

obsolete portion of the frontier in F Int
k−1.

3) Add a set of new viewpoints V ′ to cover and expand

the new frontier segments LExt
k .

We will now describe how to choose V ′ around viewpoint

vk when LExt
k �= ∅.

A free arc l ∈ Lk is considered relevant for viewpoint

planning if it contains one or more frontier arc fragments

from LExt
k . A relevant free arc may contain one or more

frontier arc fragments, and each frontier arc fragment will

1With respect to the distance on the arc o.

be entirely contained in one relevant free arc. Let LRel
k ⊆ Lk

denote the set of relevant free arcs around vk.

The goal of this local viewpoint planning can then be

restated as partitioning the frontier points of each lRel ∈
LRel

k among the fewest possible new viewpoints V ′ while

maximizing the expected exposed area beyond LExt
k .

The first step in our method for local viewpoint planning

is to determine how many new viewpoints will be needed to

cover each lRel ∈ LRel
k . As shown in Fig. 1, each lRel will be

comprised of straight radial segments and circular segments

with radius d. The possible configurations are: single radial;

single curved; curved with radial on one side; or curved

with radial segments on both sides. The following Lemma

simplifies the determination of when a radial segment is

covered by a viewpoint.

Lemma 3. Let v′ ∈ Sk be a potential new viewpoint, and
r ∈ LRel

k be a radial free arc segment. Let p be the far
endpoint of r and v′p be the line segment between v′ and p.
If dist (v′, p) < d and v′p only intersects ∂S at p, then open
set r will be contained inside of S (v′).

There are two notable consequences of Lemma 3. First,

for any lRel with only a radial segment, one viewpoint is

sufficient. Second, for any lRel which contains both curved

and radial segments, we only need to partition the curved

segment: the viewpoint which covers an endpoint of the

curved segment will also cover any attached radial segment.

To assist in selecting V ′ we introduce parameter dmin ∈
(0, d], the minimum distance between vk and any v ∈ V ′. As

will become clear, dmin encodes a trade-off in the algorithm:

smaller values of dmin reduce |V ′| and thereby reduce the

number of searchers required; larger values of dmin increase

the expected area exposed and thereby reduce the number of

iterations required to clear Q.

Let δ (lRel) be the angular width of lRel measured counter-

clockwise from the angle of the right-most frontier point on

lRel to the angle of the left-most frontier point on lRel.

A single new viewpoint at least dmin from vk can then

cover an angular width of at most α (dmin) given by

α (dmin) = 2 arccos (dmin/2d) ∈ [2π/3, π) .

The number of viewpoints η necessary to cover lRel is then

determined by the following Lemma:

Lemma 4. For any lRel ∈ LRel
k , η viewpoints will be required

where 1 ≤ η ≤ 3. In particular:
• if δ (lRel) ≤ 2π

3 , η = 1,
• if 2π

3 < δ (lRel) < π, 1 ≤ η ≤ 2,
• if π ≤ δ (lRel) < 2π, 2 ≤ η ≤ 3, and
• if δ (lRel) = 2π, η = 3.

For η > 1, the angular width of lRel is then partitioned

such that the first viewpoint covers [0, δ (lRel) /η], and each

subsequent viewpoint covers the next equally sized slice.

Once we know how many v′ are needed to cover each

lRel, the final step is to optimize the placement of each v′

to maximize the expected area it will expose. For every v′

there are two points, p1 and p2 ∈ lRel which must be covered:

3565

for a single radial segement, p1 and p2 are the endpoints of

the segment; for any other configuration, p1 and p2 are the

endpoints of the partition of the curved arc in lRel assigned

to v′. Let Sk(p1) and Sk(p2) be the subsets of Sk which are

known to be visible from p1 and p2, respectively. We then

choose v′ as a point in Sk(p1)∩Sk(p2) which minimizes the

sum of the distances to each frontier point in the partition of

lRel assigned to v′.
By construction, this method of selecting V ′ guarantees

that LExt
k ∈ ∪v′∈V ′S(v′). The following Lemma states that

it also ensures that Area (Ik+1)−Area (Ik) > 0:

Lemma 5. For each v′ ∈ V ′, S(v′) will cover some new
area A ∈ Q where Area (A) > 0 and Area (A ∩ Ik) = 0.

IV. THE DISTRIBUTED CLEARING ALGORITHM

For the distributed clearing algorithm the communication

graph is in general disconnected, necessitating a couple

changes from the centralized description. First, the global

frontier must be stored and updated in a distributed manner.

Second, viewpoint planning must be performed locally by

the frontier-guards. Furthermore, the distributed algorithm

cannot rely on a global localization system. Finally, while the

centralized version is synchronous, in the distributed setting

it is possible for perceptions from disconnected searchers to

be recorded at the same time.
We distribute the global frontier by having each frontier-

guard store its local frontier segments and update them

through communication with its neighboring frontier-guards.

This distributed storage and updating can always be achieved,

since (1) by the frontier guarding property, each global fron-

tier point is guarded by a frontier-guard; (2) the classification

of Lk requires only those frontier segments which intersect

it, and by assumption two robots whose footprints intersect

are in communication and are mutually localized (e.g., by

the method described in [14], or by scan matching).
Once the local frontier for a frontier guard has been

classified, viewpoint planning relies only on the local in-

formation. In addition, the execution of the path between

viewpoints can be done without global localization; since

both viewpoints lie inside the local perception, either local

odometry of reasonable accuracy or a registration of the

footprints taken from the two viewpoints will suffice. In

fact, frontier updating is also based only on current relative

positions, not the absolute position. The distributed algorithm

can, therefore, continue to clear an environment even if the

searchers cannot determine where they started.
The two classes of searchers from the centralized algo-

rithm are each split in two, yielding four possible states:

• Expand: When a searcher is assigned a new viewpoint

to move to, it enters the expand state until it reaches

the viewpoint and records a perception.

• Frontier-guard: Each frontier-guard i will remain sta-

tionary at its viewpoint and has complete control over

its local frontier segments, Fk,i. It must communicate

with neighboring frontier-guards to keep Fk,i updated,

plan new viewpoints to cover and expand Fk,i, and then

dispatch a followers to the new viewpoints.

• Follow: Followers passively follow and respond to com-

mands from their frontier-guard.

• Wander: Wanderers are followers who have not found a

frontier guard to follow. When a frontier-guard has no

more local frontier to guard, it and its former followers

must wander until they locate a frontier-guard to follow.

The four-state state machine and the distributed algorithm

are explained in Fig. 4 and 5. The key subroutines are:

• UpdateNeighbFrontier/Frontier: These two

functions perform a localized version of the frontier

update method in Section III-A. Searcher i first acquires

its neighbors’ current frontier segments, classifies Lk,i

using these segments, and then informs its neighbors if

any of their frontier segments lie within Sk,i.

• ViewPointPlan: This function follows the viewpoint

planning method in Section III-B. It determines how

many viewpoints are needed based on the number and

angular width of the relevant free arcs. Then, the single

best new viewpoint is chosen from Sk,i.

• PathToViewPoint: Determines the shortest path

from the old viewpoint to the new viewpoint inside Sk,i,

which will be a straight line if Sk,i is star-shaped.

• SearchForLeader: This function does a random

walk with two additional behaviors. If a wanderer en-

counters a frontier-guard or expander, then it switches to

following this leader. If two wanderers come in contact,

they may join together to form a wandering blob.

The behavior of the frontier-guards in this distributed

clearing algorithm guarantees the frontier guarding property

from Section III. When expander i reaches its viewpoint and

makes a perception, it then enters the stationary frontier-

guard state. So long as i remains a frontier-guard, it will

maintain complete coverage of the frontier segments in Fk,i.

Searcher i will only leave the frontier-guard state if either

Fk,i is erased by a new neighbor, or if i determines that one

new viewpoint is sufficient to cover Fk,i and that the path

to the viewpoint also maintains coverage of Fk,i.

The combination of the frontier guarding property and

Lemma 5 guarantees that the distributed algorithm will

successfully clear all of Q, assuming there are sufficient

searchers available. When the task is completed, all searchers

will be in the Wander state. If all-to-one communication is

available (i.e., if all robots can communicate back to a central

security center), then detecting task completion is trivial. In

the most general case, the searchers will have to determine

the task is complete by querying the other searchers. In the

absence of global localization or other means of assuring

rendezvous, our proposal is that robots in the Wander state

clump together when they encounter each other to form

wandering blobs. Eventually, through the random walks of

these growing blobs, all searchers will be joined into a single

blob and task completion can be easily detected.

V. SIMULATIONS

To demonstrate the utility of the proposed distributed

clearing algorithm, we implemented it in the open-source

Player/Stage robot software system [13] using the Multirobot

3566

Procedure Expand
Data: frontier,path
foreach follower in followers do1

Send(follower,“follow”,path);2

Move(path);3
{S, ∂S,L} ← Perceive();4
neighbFront ← UpdateNeighbFront();5
frontier ← Frontier({S, ∂S,L},frontier,neighbFront);6
DoBehavior(“Frontier-Guard”,S,frontier);7

Procedure Frontier-Guard
Data: S,frontier
if frontier is empty then1

Send(followers,“wander”);2
DoBehavior(“Wander”);3

(bestVP,NumVPs) ← ViewPointPlan(S,frontier);4
path ← PathToViewPoint(S,bestVP);5
if NumVPs == 1 then6

DoBehavior(“Expand”,frontier,path);7

else8
if followers has at least one follower then9

follower ← PopFollower(followers);10
Send(follower,“expand”,path);11
WaitForFollower(follower);12

else13
while no new neighbor and no followers do14

Sleep();15

DoBehavior(“Frontier-Guard”,S,frontier);16

Procedure Follow
Receive(Leader,message,path);1
switch message do2

case “follow”3
Move(path);4

case “expand”5
DoBehavior(“Expand”,∅,path);6

case “wander”7
DoBehavior(“Wander”);8

Procedure Wander
SearchForLeader();1
if leader found then2

DoBehavior(“Follow”);3

if all searchers wandering then4
exit5

Fig. 4. Details of the actions taken by searchers in each of the four possible
searcher roles: Expand, Frontier-guard, Follow, and Wander.

Expand

Frontier-
Guard

Follow

Wander

Fig. 5. State machine diagram for the distributed clearing algorithm.

Fig. 6. A simulation of three circular robots sweeping an environment
with holes to locate the triangular evaders, with images ordered left-to-right
and then top-to-bottom. The discretized boundary of each frontier-guard’s
current footprint, ∂S, is shown using colored squares where dark-red is
used for local frontier segments.

0 5 10 15
0%

20%

40%

60%

80%

100%

Iteration Number

Pe
rc

en
t A

re
a

C
le

ar
ed

 0

 30

 60

 90

 120

 150

Fr
on

tie
r

C
el

ls
 P

er
 G

ua
rd

Fig. 7. For the simulation in Fig. 6, the percentage of the total free space
cleared at each iteration is plotted with blue squares against the left axis,
while the average frontier cells stored per frontier-guard is plotted with
green circles against the right axis.

Integrated Platform [15]. Perceptions are implemented as

local occupancy grids, with oriented frontier arcs handled as

ordered sequences of cells. Each robot stores only its most

recent perception and its local frontier.

Three simulations of the algorithm in action are shown

in the video included with the submission of this paper and

are described in this Section. The first simulation features

three searchers clearing an environment with two large holes

and three evaders. The progression in Fig. 6 begins at the

top-left, where the robots start expanding from a corner of

the map. The second screenshot shows the searcher clearing

the lower passage waiting for help to cover one of its two

frontier segments. Once the central vertical passage is cleared

by another searcher, the trio continue on to complete their

sweep. Fig. 7 shows the total percentage of the free space

cleared by the robots for each iteration (where a new iteration

begins with each recorded perception), as well as the number

of frontier cells stored per frontier-guard.

In the second simulation, six searchers track down five

evaders in a larger multiply-connected environment. Two

screenshots are shown in Fig. 8, where the robots begin in

3567

Fig. 8. Two screenshots from a simulation of six circular robots clearing
an environment containing five triangular evaders.

0 5 10 15 20 25 30 35
0%

20%

40%

60%

80%

100%

Iteration Number

Pe
rc

en
t A

re
a

C
le

ar
ed

 0

 30

 60

 90

 120

 150

Fr
on

tie
r

C
el

ls
 P

er
 G

ua
rd

Fig. 9. For the simulation in Fig. 8, the percentage of the total free space
cleared at each iteration is plotted with blue squares against the left axis,
while the average frontier cells stored per frontier-guard is plotted with
green circles against the right axis.

a corner of the map before spreading out to cover the free

space. Notice that in the second image there are two groups

of searchers which are separated and cannot communicate

with each other. Fig. 9 shows the total area cleared and

the frontier cells stored over the iterations of the algorithm.

This plot shows that the number of frontier cells stored per

frontier-guard is independent of the area cleared.

The third and final simulation consists of twelve searchers

expanding in a vast empty environment. Using only the

local viewpoint optimizations discussed in Section III-B, the

paths taken and the final configuration shown in Fig. 10

closely approximate the globally optimal trajectories where

the searchers fan out until they are equally spaced on the

circumference of a large circle with their sensor footprints

just touching.

VI. FUTURE WORK

There are a number of interesting future directions for this

work. First, the specification of a general viewpoint planner

for sensors with a limited field-of-view would extend the

algorithm to a much broader class of hardware. The devel-

opment of bounds on the number of d−searchers required to

clear an environment would also be a significant contribu-

tion. Another extension would be to guarantee a connected

communication graph for the searchers at all times, perhaps

including a connection back to the initial starting point.

Fig. 10. Final configuration of 12 robots clearing as much area as the can
in an empty environment, with tracks showing the paths of each robot.

Finally, the frontier concept could also be applied to three-

dimensional environments.

REFERENCES

[1] I. Suzuki and M. Yamashita, “Searching for a mobile intruder in a
polygonal region,” SIAM Journal on Computing, vol. 21, no. 2, pp.
863–888, 1992.

[2] B. P. Gerkey, S. Thrun, and G. Gordon, “Visibility-based pursuit-
evasion with limited field of view,” International Journal of Robotics
Research, vol. 25, no. 4, pp. 299–315, 2006.

[3] S. Sachs, S. Rajko, and S. M. LaValle, “Visibility-based pursuit-
evasion in an unknown planar environment,” International Journal of
Robotics Research, vol. 23, no. 1, pp. 3–26, 2004.

[4] G. Hollinger, S. Singh, J. Djugash, and A. Kehagias, “Efficient multi-
robot search for a moving target,” International Journal of Robotics
Research, vol. 28, no. 2, pp. 201–219, 2009.

[5] T. D. Parsons, “Pursuit-evasion in a graph,” in Theory and Applications
of Graphs, ser. Lecture Notes in Mathematics, Y. Alavi and D. Lick,
Eds. Springer, 1978, vol. 642, pp. 426–441.

[6] M. Adler, H. Räcke, N. Sivadasan, C. Sohler, and B.Vöcking, “Ran-
domized pursuit-evasion in graphs,” Combinatorics, Probability and
Computing, vol. 12, no. 3, pp. 225–244, 2003.

[7] A. Kolling and S. Carpin, “Multi-robot surveillance: an improved
algorithm for the graph-clear problem,” in 2008 IEEE Int. Conf. on
Robotics and Automation, Pasadena, CA, May 2008, pp. 2360–2365.

[8] B. Yamauchi, “Frontier-based exploration using multiple robots,” in
2nd Int. Conf. on Autonomous Agents, Minneapolis, MN, May 1998,
pp. 47–53.

[9] A. Howard, M. J. Matarić, and G. S. Sukhatme, “An incremental
self-deployment algorithm for mobile sensor networks,” Autonomous
Robots, vol. 13, no. 2, pp. 113–126, 2002.

[10] A. Ganguli, J. Cortes, and F. Bullo, “Distributed deployment of
asynchronous guards in art galleries,” in 2006 American Control
Conference, Minneapolis, MN, Jun. 2006, pp. 1416–1421.

[11] A. Franchi, L. Freda, G. Oriolo, and M. Vendittelli, “The sensor-based
random graph method for cooperative robot exploration,” IEEE/ASME
Transactions on Mechatronics, vol. 14, no. 2, pp. 163–175, 2009.

[12] L. J. Guibas, J.-C. Latombe, S. M. Lavalle, D. Lin, and R. Motwani,
“A visibility-based pursuit-evasion problem,” International Journal of
Computational Geometry & Applications, vol. 9, no. 4/5, pp. 471–494,
1999.

[13] B. Gerkey and contributors, “The Player/Stage Project,”
http://playerstage.sourceforge.net, July 2009,
version 2.13.

[14] A. Franchi, G. Oriolo, and P. Stegagno, “Mutual localization in a multi-
robot system with anonymous relative position measures,” in 2009
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, St. Louis,
MO, Oct. 2009, pp. 3974–3980.

[15] A. Franchi and P. Stegagno, “Multirobot Integrated Platform,”
http://www.dis.uniroma1.it/ labrob/software/MIP/,
Aug. 2009.

3568

