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Abstract— Navigating through unknown outdoor environ-
ments requires a robot to be able to see and model the far
field terrain. In recent years this problem of seeing beyond
reliable stereo readings into the far field has gained attention.
Many proposed solutions involve using near field obstacle and
ground plane regions labeled using stereo, to learn models
which classify far field image regions. In this work we offer an
alternative which exploits coherent image regions as determined
by image segmentation to propagate obstacle and ground labels
from the near and mid field to the image far field. Rather
than relying on local features to classify individual pixels we
model and compare appearance across the whole segment. New
labels are determined by proximity in both image space and
appearance space. Since both traversable and non-traversable
surfaces can vary in appearance across the image, our approach
has the advantage that each labeled segment acts as a distinct
appearance model, which allows us to label similar neighbours.
We evaluate our system using a publicly available dataset and
compare its performance to a typical learning-based near-to-far
labeling scheme.

I. INTRODUCTION

Autonomous navigation in unstructured environments re-

quires the ability to distinguish traversable ground plane and

obstacles over which the robot cannot pass. Range data from

laser or stereo systems was exploited by many early systems

to model environment geometry and identify obstacles [1],

[2]. Laser range sensors can fail due to outdoor surface or

lighting conditions, while at typical resolutions and baselines

for mobile platforms, stereo traversability analysis is limited

to near field ranges of 5-10 meters. These limitations led to

the idea of augmenting purely geometric terrain identification

by assuming a local association of traversable and non-

traversable surfaces with their image appearance [3], [4], [5].

More recently the DARPA Learning Applied to Ground

Robots (LAGR) program generated interest in far field terrain

identification [6], due to the myopia [7] of autonomous

systems. Typically these approaches assume a locally smooth

drivable surface can be modeled by fitting a plane to near-

field stereo geometry measurements, and used to label near

field image pixels as obstacle and ground plane. This labeled

data can be used to learn appearance models which are then

applied to the far field [8], [9], [10]. A variety of appearance

features and learners have been applied, but the basic near-

to-far approach has demonstrated that image colour and

appearance reliably reflect terrain type [11], [12], [13], [14].
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In this paper, we propose a segmentation guided label

propagation algorithm for predicting far-field traversability.

As with previous approaches we depend on geometric mod-

eling of the ground plane using calibration and stereo to label

the traversability of near- and mid-field terrain. We treat the

available mid- and far-field stereo labels as seeds from which

class labels are propagated further into the far field. The

propagation occurs along natural regions of image homo-

geneity as extracted by a segmentation procedure. Labels are

allowed to propagate freely inside image segments. Labels

can also propagate across segment boundaries as long as the

segments being propagated to are “close” in both physical

space and appearance to the set of pixels with stereo labels.

The following section specifies the notion of “closeness” and

explains the algorithm in greater detail. Algorithm 1 presents

a formal description of our algorithm.

The use of segmentation to guide the classification process

may be seen as a form of “weak-supervision”, and is partic-

ularly useful when the available stereo labels are sparse.

Fig. 1. Stereo predictions corresponding to traversable ground plane are
highlighted in green and those corresponding to obstacles are displayed in
red. Regions not highlighted are deemed as unknown by stereo.

II. LABEL PROPAGATION APPROACH

Our approach exploits the spatial structure of the data.

We assume that Tobler’s first law of geography which states

“Everything is related to everything else, but near things are

more related than distant things” [15] holds. Furthermore, we

observe that when the class labels available are too sparse
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to accurately model the class, high precision(albeit at the

expense of recall) can still be achieved by predicting the

labels of only those data instances which are “most” similar

to the ones with labels. These observations motivate a conser-

vative approach where we restrict the classification process

to the immediate spatial and appearance neighbourhood of

the labeled data, deeming everything else as unknown.

Segmentation splits an image into a number of mutually

exclusive and exhaustive regions (segments) based on the un-

derlying image structure, thus extracting natural intra-image

boundaries. These boundaries provide a measure of the extent

of underlying image homogeneity and hence the extent to

which labels should be propagated (under the assumption that

one does not want to propagate labels across inhomogeneous

regions). We enforce spatial “closeness” by restricting the

classification process to partially labeled segments and their

immediate neighbors.

A. Algorithm Overview

The first step of the algorithm involves segmenting the

far field region of an image frame into a collection of

segments Ω. These are combined with ground/obstacle pixel

labels from the robot’s stereo system. We will denote the

set of all pixels labeled ground/obstacle by stereo as Sg/So.

Segments which have any overlap with Sg and segments

immediately neighboring such segments make up the set

Candidate Ground Cg and those which overlap So and

segments immediately neighboring them make up Candidate

Obstacle Co. If a segment overlaps (or neighbors) both

ground and obstacle labels then it is deemed ambiguous and

belongs to the set Candidate Ambiguous Camb (See Fig. 1).

All segments in Cg which are closer to model(Sg) than

some threshold dg and those in Co that are closer to

model(So) than some threshold do in some feature space

f , according to some similarity measure D, are labeled as

Ground plane and Obstacle respectively. Finally, segments in

Cg∩Co which are closer to both the stereo ground plane and

the stereo obstacle regions than their respective thresholds,

(in other words, segments which can be labeled as either

Ground plane or Obstacle) are deemed ambiguous and are

classified as unknown. The steps in this process are detailed

in Algorithm 1.

B. Segmentation Algorithms

We compare two segmentation algorithms – the efficient

graph based segmentation algorithm and the mean shift based

segmentation algorithm. The choice of the algorithms was

governed by the need for near real time performance. We

briefly explored a contiguity enhanced version of K-means

[16] image segmentation. However, K-means can prove to

be very slow especially with large values of K as is often

desired in our setting.

1) Efficient Graph based segmentation: The first segmen-

tation algorithm we consider here is the Efficient Graph

Based segmentation algorithm, introduced in [17]. As the

name suggests, this algorithm treats the image as a graph,

with the pixels acting as the vertices. Segmentation is

Algorithm 1 Far Field classification algorithm

1: for all image frames do

2: Extract and Segment the far field region of the image

frame. Let Ω denote the collection of segments thus

produced.

3: Use available stereo labels and Ω to compute Cg and

Co.

4: Compute Camb = Cg ∩Co and recompute Cg = Cg \
Camb; Co = Co \ Camb.

5: for all γ ∈ {o, g} do

6: ∀cγ ∈ Cγ compute distance dcγ
=

D(cγ ,model(Sγ)), where D is a similarity

measure in feature space f and model(Sγ) is a

model1 representing Sγ .

7: Compute similarity threshold dγ .

8: if (dcγ
≤ dγ) then

9: Label cγ as γ.

10: else

11: Label cγ as unknown.

12: end if

13: end for

14: ∀ca ∈ Camb compute dcga
= D(ca,model(Sg)) and

dcoa
= D(ca,model(So)).

15: if (dcga
≤ dg) ∧ (dcoa

≤ do) then

16: Classify ca as unknown.

17: else if (dcga
≤ dg) then

18: Classify ca as ground plane.

19: else if (dcoa
≤ do) then

20: Classify ca as obstacle.

21: else

22: Classify ca as unknown.

23: end if

24: end for

achieved by splitting the image into a collection of connected

components. A minimum spanning tree of the graph is

constructed and all edges below an adaptive data dependent

threshold are removed from the graph.

2) Mean shift segmentation: The mean shift [18] algo-

rithm is a feature space analysis technique popularly used for

image segmentation. The algorithm involves first mean shift

filtering of the image data in some feature space followed by

a hierarchical clustering of the filtered data. In this paper we

have used the open source EDISON [19] implementation of

the mean shift segmentation. The EDISON system converts

the original RGB image into the LUV space. The mean

shift filtering is carried out in a 5 dimensional feature space,

containing the (x, y) image coordinates and the LUV values.

C. Segment proximity measure

Appearance “closeness” is measured in a feature space f ,

which captures the appearance of a segment. Here, we use

colour histograms(on RGB colour space) to represent seg-

ments. Each segment is represented by a 30 bin histogram,

with each colour channel occupying 10 bins. Measuring

segment appearance “closeness” now reduces to computing

histogram similarity. There are several popular distance mea-
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sures available in the literature [20]. In this paper, we use the

sum of minimum bin measure, where the distance between

two segment histograms is defined as:

D(H1,H2) =

Nbins
∑

i=1

I(min{h1(i), h2(i)}) (1)

where i indexes the bins of the histograms of the two

segments. It is implicitly assumed that H1 and H2 have been

normalized by the total number of pixels in the corresponding

segments.

D. Data Modeling

We model each class as a mixture of components, where

each component is the histogram(30 bins) of a contiguous

stereo labeled region. The ground plane class is modeled as

a mixture of histograms of contiguous regions made up of

the pixels belonging to set Sg while the obstacle class is

modeled as a mixture of histograms of regions made up of

the elements of So. Figure 2 provides a pictorial depiction of

the class modeling. Formally, our model may be expressed

as a mixture model:

Hs =

K
∑

k=1

ηskHk (2)

where k is the number of components and ηs =
{ηs1, ηs2...ηsk} represents the mixing weights of the differ-

ent components. It is important to note that the histogram

mixture is indexed by s ∈ Ω. This implies that we can have a

different model representing the same class depending on the

particular s being classified. The histogram mixtures differ

by having different component histograms mix according to

input dependent mixing proportions ηsk, where ηsk ≥ 0
and

∑K
k=1

ηsk = 1. Furthermore, our model employs semi

parametric histograms as opposed to parametric models (such

as Gaussian) for modeling the components. This allows us to

abstain from making assumptions about the data generation

process.

Ideally, the mixing weights would be learnt through a

Expectation Maximization algorithm. However, such an it-

erative algorithm would have to be run for each segment

which is not desirable for a near real time algorithm. Instead,

we take a simpler route and assign the mixing weights

in a heuristic fashion. We experiment with three different

schemes for assigning the mixing weights ηs. The first model

which will be referred to as the Global model assumes that

all components are equally important and thus allots equal

weights to all components.

η
global
sk =

1

K
; k = 1..K ∀s ∈ Ω (3)

At the other end of the spectrum we have the Local model.

In this model only the nearest component to s has a weight

of 1, with all other components set to zero.

ηlocal
sk =

{

1 if k is the (spatially) nearest component to s

0 otherwise
(4)

Finally, we have the Semi-Local model, which is a com-

promise between the local and the global models. The local

model gives absolute importance to the closest component,

while completely disregarding all other components. The

global model on the other hand does not take spatial proxim-

ity into account at all. The semi-local model reconciles the

two models by fitting an exponential distribution2 on ηs. The

weight of a component decays exponentially with its spatial

distance δ from the segment to be classified.

ηsemilocal
sk =

1

δsk
∑K

k=1

1

δsk

; k = 1..K ∀s ∈ Ω (5)

Fig. 2. Data modeling illustration.

E. Threshold Selection

The final issue of interest in the algorithm is that of

determining the appropriate thresholds dg and do. We select

these values by segmenting the mid field region of each

image frame. Segments which transgress class boundaries

(as determined by stereo labels) are split such that each

segment belongs solely to one class. Next, the histogram

distance between all segments of the same class is computed.

Further, the mean (d̄) and standard deviation (σ) of the intra

class distances is computed. Finally, the distance threshold

is computed as:

dth = d̄ − σ (6)

where dth corresponds to either dg or do.

We compute the thresholds over the mid field region

because the availability of stereo labels here is considerably

larger than in the far field, thereby making the above intra

class distance statistics meaningful. The motivation behind

choosing this threshold is that images smooth out in the far

field. This smoothing causes there to be less discriminability

2In our experiments, we set the rate parameter of the distribution λ to 1.
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(less intra class distance) amongst segments in the far field

as opposed to segments in the mid field. In practice, we have

found that the scheme described above works quite well.

III. EXPERIMENTAL SETUP

The experiments presented in this section are designed

to explore the three main components of the approach: the

segmentation algorithm, the proximity weighting model and

the overall far field propagation method. We examine the

system’s performance under a range of parameters for both

Mean Shift and graph-based segmentation and consider how

the image datasets affect the performance of each segmenter.

In order to evaluate the performance of our far-field labeling

system we compare it to available ground/obstacle labels

from Stereo and to a near-to-far Support Vector Machine

(SVM) labeling approach [21][11], which uses Stereo labeled

pixels from the mid field to learn to classify far field pixels.

A. Data

We tested our algorithm on six data sets, with each data

set containing 100 image frames extracted from the log

files recorded during live robot test runs in the DARPA

LAGR program. The data sets were carefully chosen to

represent different terrain and lighting conditions. The terrain

varies greatly over the data sets, with ground plane varying

from mulch to dirt and obstacles varying from foliage to

trees and hay bales. Overall, three scenarios are considered

(DS1,DS2,DS3). Each scenario is associated with two dis-

tinct data sets taken under different lighting conditions (A

and B). Representative frames from the six data sets are

shown in Figure 3.

We evaluated the performance of the competing algorithms

by comparing their predictions with pixel level hand labeled

ground truth data made available by Procopio et al. [22].

Each pixel of an image frame is labeled as one of three

classes - Ground plane, Obstacle or Unknown. We compute

our performance metrics only over the pixels in the far field

region. This provides for a fair comparison of the far field

performance of the competing algorithms.

B. Performance Metrics

To measure the performance of the competing algorithms

we borrow popular information retrieval metrics of precision

and recall.

Precision is the ratio of the number of relevant objects in

a retrieved set to the total retrieved set. Informally, precision

may be thought of as a measure of the noise in the retrieval

process. It is calculated as:

Precision =
TP

(TP + FP )
(7)

where TP(true positives) is the number of far field pixels

correctly classified as GroundPlane or Obstacle and FP is

the number of far field pixels mis-classified as GroundPlane

or Obstacle.

Recall is the ratio of the number of relevant objects in a

retrieved set to the total number of relevant objects.Intuitively

(a) DS1A (b) DS1B

(c) DS2A (d) DS2B

(e) DS3A (f) DS3B

Fig. 3. Example frames from the six image data sets.

it is a measure of the exhaustiveness of the retrieval process.

Recall is calculated using:

Recall =
TP

(TP + FN)
(8)

where FN is the number of far field pixels which are

classified as unknown, but belong to either the Ground

or Obstacle class in the ground truth data. Finally, for

convenient comparison of the different algorithms we use

the F1 measure which is just the harmonic mean of precision

and recall. This value is computed as follows:

F1 =
2 × Precision × Recall

(Precision + Recall)
(9)

C. Comparison Systems

a) Stereo Labels: Stereo labels are the baseline we

compare against. This comparison is a basic sanity check

which establishes whether there is any benefit to using the

proposed algorithm in a real world scenario (Fig. 4(a)).

b) Support Vector Machines: The most common ap-

proach to far field terrain labeling is currently a near-to-far

learning approach, where near or mid-field Stereo labeled

samples are used to train models for labeling far-field pixels.

We compare our approach to both linear and Gaussian

SVMs (Figs. 4(e) and 4(f)). Both Linear [21] and Gaussian

SVMs have been used for far field predictions in the past.

Furthermore, Gaussian SVMs were found to be particularly

well suited for this problem [11]. We use the one model per
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image (ONEMI) paradigm, in which a SVM model is trained

for each image of a data set. The features used are colour

histograms computed in a 3× 3 window around the training

pixel. We briefly experimented with other window sizes, but

the results were to a large extent invariant to the choice of

window size.

To make the sparsity assumption hold, the SVMs were

trained only on mid and far-field stereo labels. This training

scenario also provides a fair comparison between the SVM

and our proposed algorithm, which also uses only mid and

far field stereo labels. The liblinear [23] implementation

for the linear SVM was used with L2-regularized logistic

regression solver. The Libsvm [24] implementation of the

Gaussian SVM was used, and the γ parameter was deter-

mined via cross validation. The SVMs were forced to output

probabilities using Platt scaling[25] as implemented in the

libsvm package. Predictions where the SVM was < 0.55
confident about either class were classified as unknown. This

probability cut off was determined empirically.

IV. RESULTS

We begin this section, by illustrating the performance of

our algorithm on an image from data set DS1A. Figure 4

displays the far field predictions using Gaussian and Linear

SVMs and our proposed algorithm. As is evident from the

illustration, our algorithm is able to successfully build on

sparse stereo labels, to find significant far field structure.

Both segmentation strategies improve upon the initial stereo

predictions. The SVM predictions however produce worse

fragmented results. In this particular case, the labels of either

class display similar colour, resulting in large amounts of

confusion in the SVM predictions. Since, the SVM ignores

all context information beyond the pixels used to compute the

histogram features, it has no way of disambiguating pixels

with similar colour content. On the other hand, our algo-

rithm explicitly leverages neighbourhood information and

by fusing this contextual information with colour histogram

information it is able to disambiguate ambiguous regions.

In Figure 4, the effect of “lack of context” is clear, with the

SVMs producing noisy speckled classifications as opposed

to the smooth classifications produced by our algorithm.

To quantitatively demonstrate system performance using

the data sets, we present performance plots in figures 5

through 7. As is evident from the figures, our algorithm,

using any of the three models, significantly outperforms the

base line stereo predictions on all six data sets. Additionally,

we also outperform the Gaussian and the Linear SVM on all

data sets. These performance gains are even more significant

when we consider that they are over the far field and

correspond to a substantial distance in the real world.

In general, we achieve better performance in data sets

displaying no lighting variations than those with lighting

variations. This is hardly surprising, since lighting changes

result in higher intra class variations, especially in the

absence of colour constancy. Our colour histogram feature

space is built on top of the non-normalized RGB colour

space, which fuses brightness and colour content together,

(a) Image Far Field

(b) Human Labeled Ground Truth

(c) Graph Based Segmentation

(d) Mean Shift Segmentation

(e) Linear SVM

(f) Gaussian SVM

Fig. 4. Far Field predictive performance of various algorithms on an image
from DS1A. Green regions correspond to ground plane, red to obstacles and
black to unknown.

making it vulnerable to confounding colour differences and

brightness differences.

A. Global, Local or SemiLocal model

This section analyzes the effectiveness of the three pro-

posed proximity weighting algorithms: the global, local and

the semi-local models. In order to experimentally ascertain

the effectiveness of these models, we average out the per-

formance of each model across all the parameter values, for

each of the six data sets. The resulting F1 measure values

are displayed as box plots in figures 5 through 7. The plots

in red depict results of the three models using graph based

segmentation while those in green correspond to the mean

shift algorithm. Blue box plots represent the algorithms being

compared against.

In data sets DS1A through DS2B the three models pro-

duce statistically indistinguishable results (at 95% confidence

level). This similarity in performance is hardly surprising

when we explore the structure of the stereo labels in these

data sets. In a large majority of the image frames in these

data sets, the stereo labels of either class form one large

contiguous region, instead of several smaller fragmented
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regions (see figure 4(a)). Under such circumstances, both the

global and the semi-local models behave as the local model.

In data sets DS3A and DS3B however, the stereo labels

are more fragmented. Both data sets have fairly uniform

within-class colour content. However, DS3B exhibits darker

lighting conditions . Figure 7(a) shows that the global and

the semi-local models outperform the local model in DS3A.

This reinforces our intuition that in cases where the intra

class variance is low, a global data model aids the classi-

fication process. DS3B, which exhibits less vivid colours

and poorer class discriminability, causes the global model

to perform worse than the semi-local or local models. This

effect is particularly visible when the models use graph based

segmentation.

In general, it appears that the choice of the proximity

model depends on the data set. We expect the local model to

perform well for data sets with higher intra class variance,

while the global model is expected to work better with

comparatively smaller intra class variance. The semi local

model should work best for cases with an intermediate

amount of intra class variance. The experiments presented

in this section though, remain somewhat inconclusive and

fail to fully corroborate the above intuitions, primarily due

to the lack of fragmented stereo labeled regions in the first

four data sets.
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Fig. 5. F1 measure of competing algorithms across datasets DS1A
and DS1B. The F1 values for each model have been averaged over all
segmentation parameter settings.
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Fig. 6. F1 measure of competing algorithms across datasets DS2A
and DS2B. The F1 values for each model have been averaged over all
segmentation parameter settings.
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Fig. 7. F1 measure of competing algorithms across datasets DS3A
and DS3B. The F1 values for each model have been averaged over all
segmentation parameter settings.

B. Analysis of segmentation results

In this sub-section we compare the two approaches to

image segmentation utilized by our proposed algorithm. The

primary points of investigation are: the performance of the

segmentation algorithms and the sensitivity of the results to

the segmentation parameter settings.

To answer these question the segmentation algorithms

described in section II-B are compared against one an-

other. To make the comparisons tangible, we make certain

simplifying assumptions and fix certain parameters. The

graph based segmentation’s implementation is controlled

by two parameters [17] the minimum number of pixels in

a segment min and a parameter m which controls how

aggressively pixels are merged into a segment. As suggested

in [26], in our experiments we tie these two parameters

together min = m = K and vary K over the range

{50, 100, 150, 200, 250, 300, 350}. The mean shift algorithm

[18] has three tunable parameters, the spatial bandwidth (hs),

the colour bandwidth (hr) and the smallest significant feature

size (M ). In the experiments presented here we fix hs = 7;

we found the produced segmentation to be fairly insensitive

to spatial bandwidth. Furthermore, we found that fixing hr =
7 and varying M = K = {50, 100, 150, 200, 250, 300, 350}
produces segmentations which are best comparable to the

ones produced by the graph based segmentation. Fixing the

colour bandwidth hr results in more stable segmentations,

reducing fluctuations in segmentation granularity. Our incli-

nation toward fairly high values of hr and M are necessary

to discard the effects of small variations present in the kind

of complex images that are dealt with in this paper. From

here on, we refer to the tunable parameter of the mean shift

algorithm, simply as K.

Our objective is to classify image far-field as accurately

as possible and not necessarily to produce the best possible

segmentation along the way. A segmentation is only as good

as the final prediction it produces. Hence, we simply use the

far-field prediction performance to evaluate the performance

of a segmentation algorithm. The segmentation stability is

assessed by evaluating how the performance and the number

of segments varies by varying the segmentation parameters.

Figure 8 illustrates the segmentations produced by the two

algorithms on representative image frames from each of the

3 environments.
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(a) Graph Based DS1A

(b) Mean Shift DS1A

(c) Graph Based DS2A

(d) Mean Shift DS2A

(e) Graph Based DS3A

(f) Mean Shift DS3A

Fig. 8. Typical segmentations produced by the two segmentation algo-
rithms on the first “A” datasets. Parameters were chosen such that each
segmentation algorithm produces approximately equal number of segments

1) Segmentation parameter sensitivity analysis: Increas-

ing value of K, causes the segmentation resolution to

progress from fine to coarse for either segmentation algo-

rithm. This progression is more rapid in the case of the

graph based segmentation algorithm, which covers a wider

gamut of segmentation resolution in the explored parameter

space. Optimal predictive performance is achieved when the

segmentation is neither too fine nor coarse. In the graph

based algorithm’s case this optimal segmentation resolution

is achieved over the K = [100, 150] range. The mean shift

segmentation achieves optimality at K = [300, 350] (with

hr and hs fixed at 7). Interestingly, for most (except DS1A)

datasets the number of segments produced by the mean shift

algorithm at its optimal K values of [300, 350], is in the

same range as the number of segments produced by the

graph based algorithm at it’s optimal parameter settings of

K = [100, 150].

2) Comparison of Segmentation performance across

datasets: For each dataset, at each parameter setting the

algorithm’s performance is averaged over the global, local

and semi local models. Our analysis leads us to conclude that

either segmentation produces optimal predictive performance

at a certain range of its K values, which corresponds to

a segmentation resolution where the image is neither over

nor under segmented. For the graph based case this optimal

range is achieved by setting K = [100, 150], while for the

mean shift algorithm this range is [300, 350]. The actual

number of segments produced at these ranges varies across

datasets, depending on dataset complexity. This indicates that

the optimal segmentation resolution is dataset dependent.

It might be beneficial to use the mean shift algorithm for

datasets exhibiting low far field colour variation and the

graph based segmentation for the ones exhibiting higher

amounts of far field variation.

Finally, Figure 9 presents the optimal performance

achieved by the proposed algorithm. Graph based segmenta-

tion was used and the results were averaged over parameter

settings of K = [100, 150]. Here, we plot the performance

of our algorithm averaged over the local, global and semi

local models, across the 100 frames of the data sets, which

further illustrates the superior performance of our algorithm.
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Fig. 9. Optimal performance for each data set across constituent frames.
The legend displays mean F1 values. Bold indicates that the performance
is statistically better than stereo, as determined by a paired t-test at 95%
confidence interval. Asterisk next to an algorithm indicates that it produces
the best results amongst all competing algorithms (again as determined by
a paired t-test at 95% confidence).
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V. CONCLUSION AND FUTURE WORK.

In this paper we present a novel segmentation guided

far field classification algorithm. We find our algorithm to

be particularly attractive when available stereo labels are

sparse and poorly sampled. We find our algorithm to be

robust under such conditions. This robustness stems from

having imposed strong spatial constraints on the classifi-

cation process. Although, imposing such constraints may

reduce recall rates in some settings, we are able to achieve

high precision, which we deem to be more important for

far field classification purposes. One approach to boosting

recall rates, would be to explore the tension between the

spatial and feature proximities, to identify the extent to

which the strength of the imposed spatial constraints might

be relaxed without significantly impacting precision. This is

a planned extension to the current piece of work. Another

area of future work lies in incorporating temporal context in

addition to spatial context in the classification process. We

have noticed that at times the availability of stereo labels

varies drastically across the dataset, resulting in variance

in the far field classification performance. We believe by

incorporating temporal context in our algorithm such intra

dataset variance can be minimized.
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