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Abstract— Skid-steered vehicles, by design, must skid in
order to maneuver. The skidding causes the vehicle to behave
discontinuously as well as introduces complications to the obser-
vation of the vehicle’s state, both of which affect a controller’s
performance. This paper addresses estimation of contact state
by applying switched system optimization to estimate skidding
properties of the skid-steered vehicle.

In order to treat the skid-steered vehicle as a switched system,
the vehicle’s ground interaction is modeled using Coulomb
friction, thereby partitioning the system dynamics into four
distinct modes, one for each combination of the forward and
back wheel pairs sticking or skidding. Thus, as the vehicle
maneuvers, the system propagates over some mode sequence,
transitioning between modes over some set of switching times.
This paper presents a technique for estimating a mode sequence
by optimizing a relaxation of an infinite dimensional represen-
tation of switched systems. The switching times themselves may
then be estimated using switching time optimization techniques.

I. INTRODUCTION

The skid-steered vehicle (SSV) is a simple vehicle com-

posed of a body supported by four independently driven

wheels. The generalized forces applied to the vehicle’s left

and right actuators dictates maneuvers. Consequently, the

SSV is highly maneuverable, allowing for zero-point turns.

The high degree of maneuverability can be contrasted with

the limited maneuverability of a car, which must translate

in order to change orientation. The greater maneuverability

comes at a price, however. The SSV’s wheels must skid

laterally against the ground in order to turn and this skid-

ding introduces uncertainties in the vehicle’s position and

orientation during a maneuver due to the irregular nature of

friction.

The literature on SSVs contains several approaches for

dealing with these uncertainties. For instance, [4] constrains

the longitudinal coordinate of the SSV’s instantaneous center

of rotation, much like how a car’s instantaneous center

of rotation is aligned with the rear axle. This is done in

order to restrain the SSV from skidding excessively. Another

approach, [16], extensively analyzes the ground characteristic

by finding the shear stresses of the contact points of each

wheel in order to ascertain the resistive forces with respect

to different types of surfaces.

In another approach, [1] disregards the complexities of

the ground interaction by modeling the SSV with a simple

unicycle model and estimating its configuration by applying
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well established estimation techniques. The authors fuse a

dead-reckoning scheme with an inertial navigation system

(INS) using a Kalman filter to estimate the configuration

trajectories (position and orientation) of the SSV. The dead-

reckoning scheme is designed from a kinematic model with

wheel encoders (i.e. odometry) as inputs. The authors of [1]

note that their approach falters when vehicle characteristics

(e.g. wheel pressure, location of center of mass, ground

characteristics) change slightly, requiring recalibration of

the model. This sensitivity likely stems from applying a

stochastic method intended for linear, or at least smooth

systems, to deal with uncertainty generated from friction,

a highly non-smooth dynamic system.

The authors in [1] further their work in [2] by fusing a

simultaneous localization and map-building scheme (SLAM)

with the dead-reckoning from above. The scheme uses a

laser scan to map the vehicle’s surroundings and match

with previous maps for localization. The downside of map

matching is that the computational cost grows every time new

objects are added. Furthermore, the authors still note that

the dead-reckoning continues to falter with varying vehicle

characteristics, requiring recalibration.

Consequently, due to [1], [2], we expect an intelligent

estimation of skidding characteristics to improve the per-

formance of a controller without the need for expensive

hardware or computationally taxing algorithms. For instance,

[20] presents an adaptive control algorithm to estimate a

coefficient of their pseudo-static friction model in order to

capture the SSV’s interaction with the ground while tracking

a desired trajectory. Another approach, [14] applies a non-

linear sliding mode observer to estimate the SSV’s slip angle

and the slip-ratios of the inner and outer wheels.

We represent the SSV’s wheel/ground interaction as a

discrete phenomena, where the wheels discretely transition

between sticking and skidding. Under this representation the

SSV may be modeled as a switched system where optimiza-

tion may be used to ascertain skidding characteristics. A

switched system is one that evolves over multiple distinct

sub-systems by transitioning from one sub-system to another

in a discrete manner [5], [6], [7], [13], [17], [18], [19].

In this paper, we investigate the application of switched

system optimization to estimate whether the SSV’s wheels

are sticking or skidding against the ground. Primarily, we

are concerned with the wheels’ skid states in the lateral

wheel direction. This is because skidding in the longitudinal

direction is a force in the desired direction and can be

modeled as uncertainty in the inputs.

We model the wheel-ground contact of the SSV using

Coulomb friction. Coulomb friction partitions the SSV into
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four sub-systems for the four combinations of the front and

back wheel pairs skidding or sticking against the ground.

Each sub-system evolves over distinct modes of operation.

Thus, as the SSV drives along some path, the system

propagates over some mode sequence (denoted by Ψ), tran-

sitioning between modes over some set of switching times

(denoted by T ). Our goal is to estimate the pair (T ,Ψ).

To this end, the switching times are optimally estimated

using switched system optimization (see [5], [6], [17], [19]).

Generally, these approaches assume the mode sequence is

known ahead of time. However, there has been some work

on estimating mode sequences [6], [17]. In [6], the authors

propose a method for removing modes that exist for short

time intervals as well as a method for injecting modes for a

certain time interval I depending on the sign of the gradient

of that interval, DIJ(T ). In [17], the authors propose a

method for cycling the modes a certain number of times and

removing modes that exist for a short time interval between

steps of a descent algorithm.

In this paper, a novel approach for estimating a mode

sequence is proposed and implemented for the SSV model.

The approach makes use of an infinite dimensional defi-

nition of the switched system that permits relaxation. The

infinite dimensional system uses the control inputs u(t) =
(u1, u2, . . . , uN )(t) to specify which modes are active or

inactive. If the ith mode is active, then ui = 1, and if it is

inactive, then ui = 0. Furthermore, only one mode may be

active at any given time. This definition of the system benefits

from lacking a mode sequence, allowing the mode sequence

to instead be estimated. However, the optimization of this

definition of the system is a constrained infinite dimensional

problem. Therefore, we relax the constraints that only one

mode may be active and that u(t) must be 1 or 0. The optimal

relaxed switched system can be projected back onto the set

of feasible solutions in order to estimate a mode sequence.

One may consider the presented mode estimation approach

as an infinite dimensional multiple hypothesis test where all

hypotheses are compared at once by optimizing the relaxed

control inputs u(t). We avoid standard multiple hypothesis

tests [9] because the number of hypotheses becomes large

as the total number of modes and the expected number

of switches become large (the number of hypotheses is

k = (# of modes)1+(# of switches)). This value assumes the

maximum number of switches is known. Furthermore, ascer-

taining the quality of a hypothesis depends on its associated

switching times. This requires each of the k hypotheses to

be optimized with respect its switching times, a difficulty for

large-scale multiple testing like that in [3] and [15].

This paper is organized as follows: Section II intro-

duces the SSV and decomposes its dynamics into four skid

sub-systems. Section III presents a standard definition of

switched systems and an infinite dimensional one. In this

section, a relaxation on the infinite dimensional definition

is utilized in order to estimate a mode sequence. The final

section, Section IV, contains two examples applying relaxed

switched system mode sequence estimation for an SSV.

II. MODELING THE SKID-STEERED VEHICLE

Fig. 1. The “Flexy Flyer”.

The SSV is composed of four wheels supporting a body.

The wheels are locked in alignment with the body and are

independently driven. This vehicle design restricts the SSV

to maneuvers dictated by differential torques to the left and

right wheel pairs, resulting in lateral skidding. Therefore, in

order to turn, the difference between the torques must be

large enough to break the lateral static friction of the wheels

against the ground. Our SSV is pictured in Fig 1.

The representation of the SSV we present is the same

as that in [11]. Considering the SSV as a rigid body, the

vehicle’s configuration is x(t) = (X,Y, �)(t). The Cartesian

coordinates, X and Y specify the center of geometry relative

to the world frame. The orientation, �, is the heading of

the vehicle where � increases counter-clockwise and � = 0
only occurs when the heading is aligned with the X-axis

of the world frame. We disregard wheel rotations at the

loss of losing the impact of the rotational inertias due to

the spinning of the wheels. If the mass of the body is

significantly greater than the mass of the wheels, this trade

off of fidelity for computation is not a bad one. However,

the wheel torques must now be transformed forces (i.e.,

using the Ad(⋅) operator [12]) to the center of mass of

the vehicle. The inertia tensor for the simplified model is

G = mdx ⊗ dx + mdy ⊗ dy + Jd� ⊗ d�, where m is the

mass of the vehicle and J is the moment of inertia around

the vehicle’s center of mass.

Fig. 2. Slip-steered vehicle with frame at its center of geometry.
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As for the wheel/ground interaction, we use a Coulomb

friction model. Coulomb friction partitions the SSV into a

switched system, where switched systems are described in

the next section. Assuming the geometry of the wheels as

seen in Fig 2, Coulomb friction generates four distinct sub-

systems that are combinations of the front and back wheels

sticking or skidding with respect to the ground. Sticking

is enforced using non-holonomic constraints. The four sub-

systems are:

front wheels back wheels

� =

⎧
⎨
⎩

1:

2:

3:

4:

sticking laterally

sticking laterally

skidding laterally

skidding laterally

sticking laterally

skidding laterally

sticking laterally

skidding laterally

Hence, Σ = {1, 2, 3, 4}. The sub-systems � = 2 and

� = 3 occur when the back or front wheels respectively

are “fish tailing”. This occurs when the instantaneous center

of rotation is aligned with the front wheels (� = 2) or the

back wheels (� = 3).

The equations of motion for each � ∈ Σ are found

using the constrained Euler-Lagrange equations (see [12]).

Depending on the value of �, the proper non-holonomic con-

straints are enforced. This model is similar to the way [10]

generates the dynamics of a SSV with the only dissimilarity

of how friction enters into the equations.

The equations of motion for � = 1 and � = 4 are

shown. Although we also compute the equations for � = 2, 3,

we do not reproduce them here because of their algebraic

complexity.

f�=1 :

⎧
⎨
⎩

Ẍ = (F1+F2+F3+F4) cos �(t)−c1Ẋ(t)
mB+4mw

Ÿ = (F1+F2+F3+F4) sin �(t)−c1Ẏ (t)
mB+4mw

�̈ = 0

f�=4 :

⎧
⎨
⎩

Ẍ = (F1+F2+F3+F4) cos �(t)−c4Ẋ(t)
mB+4mw

+ g�K sin �(t)[− sin �(t)Ẋ(t)+cos �(t)Ẏ (t)]
mB+4mw

Ÿ = (F1+F2+F3+F4) sin �(t)−c4Ẏ (t)
mB+4mw

− g�K cos �(t)[− sin �(t)Ẋ(t)+cos �(t)Ẏ (t)]
mB+4mw

�̈ = 12b(F1−F2−F3+F4)+12a2g(mB+4mw)�K �̇(t)
4mw(12a2+12b2+w2

w
+3w2

r
)+mB(B2

l
+B2

w
)

where mB is the mass of the body, mw is the mass

of a wheel, g is gravity, �K is the coefficient of kinetic

friction, F1, F2, F3, and F4 are the respective transformed

wheel torques, and c1 and c4 are the respective damping

coefficients.

One may be concerned with �K showing in the equations

of motion for when � = 4 (and � = 2, 3). The coefficient of

kinetic friction designates the loss of energy during a turn due

to lateral friction. Therefore, �K may be a general estimation

of the wheel-ground friction. Section IV provides evidence

that our approach performs well with disturbances to �K .

Nevertheless, we plan to include online estimation of this

parameter in future work.

Modeling the SSV as we have in this section alleviates

the necessity for some complicated model of the stick/skid

transitions, which would require extensive knowledge of the

ground characteristics. Instead, with our model, the estima-

tion of these transitions is based solely on an optimization

over the full configuration of the vehicle.

III. THE SWITCHED SYSTEM AND MODE SEQUENCE

ESTIMATION

A switched system is defined by how the system’s modes

of operation evolve over time. We present two equivalent

definitions of the state trajectories, x(t) : ℝ 7→ ℝ
n.

A. Two Definitions of the Switched System

The first is the standard definition [5], [6], [13], [17], [19]:

ẋ(t) = f
(
x(t), T ,Ψ, t

)

=

{
fi

(
x(t), t

)
, where Ti−1 ≤ t < Ti

for i = 1, . . . , N
subject to: x(T0) = x0

(1)

where N is the number of modes in the mode sequence

Ψ, T = {T1, T2, . . . , TN−1} ∈ ℝ
N−1 is a monotonically

increasing set of switching times, T0 is the initial time, TN

is the final time, x0 is the initial state, and fi : ℝ
n × ℝ 7→

ℝ
n is the ith mode of operation in the sequence Ψ. This

definition assumes Ψ is known and therefore, optimizing a

switched system utilizing this definition may only be over

the switching times. For many systems, the mode sequence

is not clear. We present an alternate definition which lacks a

mode sequence.

The second definition uses the constrained infinite dimen-

sional control input u(t) : ℝ 7→ ℝ
N̂ in order to specify

which modes are active or inactive. If the ith mode is active,

then ui = 1, and if it is inactive, then ui = 0. The second

definition of the switched system is:

ẋ(t) = f
(
x(t), u(t), t

)

= u1(t)f�=1

(
x(t), t

)
+ u2(t)f�=2

(
x(t), t

)

+ ⋅ ⋅ ⋅+ u
N̂
(t)f

�=N̂

(
x(t), t

)

subject to: x(T0) = x0

(2)

where N̂ is the size of Σ and the control inputs, u(t), are

constrained as follows:

1)

N̂∑

i=1

ui(t) = 1

2) u1(t), u2(t), . . . uN̂
(t) ∈ {0, 1}

(3)

The second definition lacks a mode sequence, an assumed pa-

rameter of the first definition. Therefore, the mode sequence

can instead be determined as part of an optimization.

B. Mode Sequence Estimation

Switching time optimization generally assumes a mode

sequence is known [5], [6], [17], [19]. This section removes

the assumption by presenting an approach to estimate a mode

sequence.

We recall the second definition of the switched system, Eq

(2), and the constraints on the control inputs u(t), Eq (3).
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The first constraint on u is satisfied by setting one of the

inputs to be one minus the summation of all other inputs:

u
N̂
(t) = 1−

N̂−1∑

i=1

ui(t).

As for the second constraint, let us remove it. This is the

relaxation. Now, instead of modes being active or inactive,

all modes are now active to some degree where the extent of

activity is specified by u(⋅). Let û(t) designate the relaxed

control inputs. Then, the relaxed switched system is specified

by the evolution of the relaxed state trajectory, x̂(t) : ℝ 7→
ℝ

n:

˙̂x(t) = f̂
(
x̂(t), û(t), t

)

= û1(t)f�=1

(
x̂(t), t

)
+ ⋅ ⋅ ⋅+ û

N̂−1(t)f�=N̂−1

(
x̂(t), t

)

+
(
1−

N̂−1∑

i=1

ûi(t)
)
f
�=N̂

(
x̂(t), t

)

subject to: x̂(T0) = x0.
(4)

The optimization of the relaxed switched system is over û(t):

argmin
û

J(û).

where J(û) is

J(û) =

TN∫

T0

ℓ
(
x̂(�), ℎ(�)

)
d� +m

(
x̂(TN ), ℎ(TN )

)
. (5)

Minimizing J(û) over û is an infinite dimensional op-

timization problem constrained to Eq (4). The optimization

can be accomplished with the trajectory functional optimiza-

tion approach using a projection operator, shown in [8].

Alternatively, any other optimal control technique may be

employed.

Once the optimal û★ is found, a mode sequence may be

generated by projecting the corresponding optimal system

onto the set of feasible solutions. At any given time, the pro-

jection sets the most active mode (i.e. the one corresponding

to the greatest û) as the single active mode and sets the rest as

inactive, thereby satisfying the constraints on u once more.

The estimated mode sequence, Ψ, is thus the sequence of

most active modes. Also, the collection of times for which

the most active modes transition may be used as the initial

switching times, T0 . The pair (T0 ,Ψ) are initial parameters

for switching time optimization.

IV. EXAMPLES

We present two examples simulated in Mathematica. For

both examples, the SSV has dimensions a = 0.16m, b =
0.28m, Bl = 0.8m, and Bw = 0.6m, and masses mB = 70kg

and mw = 2.5kg (refer to Fig 1 and Eq (1)). The coefficient

of kinetic friction is assumed to have a mean of 0.8, so �K

is set to 0.8.

A. Example 1

The SSV is driven with the wheel torques shown in Fig

3 and initial state x(0) = 0. Initially, none of the wheels

are skidding laterally (i.e. initially � = 1). At some time

shortly after t = 5s, the difference in torques becomes large

enough to break the lateral static friction holding it in sub-

system � = 1 and the vehicle begins to turn left. During

the turn, it is not clear which sub-system the SSV switches

into, but let us assume the vehicle switches into the all

wheels skidding laterally sub-system, � = 4. At some time

after t = 10.5s, the vehicle returns to � = 1 due to the 0

torque difference no longer injecting energy into the wheel’s

lateral direction and because of the energy dissipation from

skidding. Therefore, let us assume for this example that the

desired mode sequence is Ψd = (1, 4, 1), where the system

transitions over desired switching times T d = (5, 11)T .

Right Wheels

Left Wheels

F

F

0 2 4 6 8 10 12 14

0

5

10

15

20

25

30

t HtimeL

Fig. 3. The applied torques to the left and right wheels over the time
interval.

Normally, the measured trajectories, ℎ(t), are measured

from data collected by sensors such as a GPS. For now,

we simulate ℎ(t), but in future work we will test the mode

estimation on the SSV pictured in Fig 1 using sensors.

For this example, we assume our SSV model is perfect.

We simulate ℎ(t) with the desired mode sequence, Ψd =
(1, 4, 1), and the desired switching times T d = (5, 11)T .

For the cost function, we use a quadratic performance

index. Therefore, Eq (5) has ℓ(⋅, ⋅) and m(⋅, ⋅) equal to

ℓ
(
x̂(�), ℎ(�)

)
= 1

2

(
x̂(�)− ℎ(�)

)T

Q
(
x̂(�)− ℎ(�)

)

+ 1
2

(
û(�)− ûd(�)

)T

R
(
û(�)− ûd(�)

)

and

m
(
x̂(TN ), ℎ(TN )

)
= 1

2

(
x̂(TN )− ℎ(TN )

)T

P

⋅
(
x̂(TN )− ℎ(TN )

)

where Q and P are symmetric semi-positive definite (i.e.

QT = Q ≥ 0, PT = P ≥ 0), R is symmetric positive

definite (i.e. RT = R > 0), ud are the desired control inputs

and x̂(t) is the relaxed state trajectory, which is the solution
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to

˙̂x(t) = f̂
(
x̂(t), û(t), t

)

= û1(t)f�=1

(
x̂(t), t

)
+ û2(t)f�=2

(
x̂(t), t

)

+û3(t)f�=3

(
x̂(t), t

)
+
(
1−

3∑

i=1

ûi(t)
)
f�=4

(
x̂(t), t

)

subject to: x̂(T0) = x0.

We choose ûd to be ûd = (1, 0, 0)T . This choice places

preference on the most active sub-system being � = 1. We

did this because � = 1 is the only sub-system that can exist

without losing energy from skidding. All other sub-systems

will eventually decay to � = 1 if the vehicle is driven with

zero wheel torque difference.

Letting the state vector be x(t) = (Ẋ,X, Ẏ , Y, �̇, �)T (t),
we choose Q = diag(70, 70, 70, 70, 70, 70), R =
diag(1, 1, 1) and compute P such that it is approximately

compatible with Q and R.

The cost function is minimized using the trajectory func-

tional optimization approach shown in [8]. This results in the

optimal control inputs shown in Fig 4. Clearly, û1 specifies

that � = 1 is the most active mode initially. At t = 4.9871s,

� = 4 becomes the most active mode and at t = 10.9975s,

� = 1 returns to being the most active. Therefore, the

estimated mode sequence is Ψ = (1, 4, 1) with switching

times T = (4.9871, 10.9975)T . The estimated Ψ is the

desired mode sequence, Ψd, and the estimated switching

times closely approximate T d = (5, 11)T .

Σ=1: Σ=2:

Σ=3: Σ=4:

Σ=1 Σ=4 Σ=1

0 2 4 6 8 10 12 14

-0.5

0.0

0.5

1.0

Time

C
o

n
tr

o
l

In
p

u
ts
Hu
Ht
LL

Fig. 4. The optimal relaxed control inputs for Example 1. Each control
input corresponds to a sub-system �. The sequence of greatest control inputs
corresponds to a mode sequence of Ψ = (1, 4, 1). These modes transition
at times T = (4.9871, 10.9975)T

B. Example 2

In contrast to Example 1, Example 2 includes model and

sensor disturbances, but otherwise, it uses the same system,

wheel torques, Ψd = (1, 4, 1) and T d = (5, 11)T . The

following is how we generate the perturbed measured trajec-

tories, denoted ℎ(t), due to model and sensor disturbances.

First, we assume the ground is imperfect and therefore, the

coefficient of friction, �K , is not constant. The imperfections

are modeled as a random walk entering additively to the

coefficient of friction. This alters ẋ = f�=i for i = 2, 3, 4

such that �K becomes �K ← �K +� where � is a pseudo-

Gaussian signal with a mean of 0 and a standard deviation of

0.5, but where � differs from a pure Gaussian signal in that

�K + � is not allowed to be less than 0. This disturbance

results in measured configuration trajectories ℎ1(t).

Second, let us suppose we have a lone GPS sensor which,

of course, imperfectly senses the configuration of the vehicle.

The GPS we will use on the SSV in Fig 1 is Garmin’s

GPS 16x HVS. It has a positional accuracy of < 3 meters

when WAAS is enabled, a velocity accuracy of < 0.1 knots

rms (i.e. < 0.0514 m/s rms) and a sample rate of 1Hz. The

sample rate restricts us to 16 data points. Since the positional

accuracy is the absolute position from the latitude/longitude

coordinate (0,0), and we only need the (X,Y ) offset from

the initial reading, the accuracy of (X,Y ) should be better

than < 3 meters. Instead of “guessing” what this accuracy is

and basing the disturbance model from that, we instead base

the disturbance from the velocity accuracy and integrate to

find the positional disturbance.

The velocity components, (Ẋ, Ẏ )(t), of ℎ1(t) are sampled

at 1Hz. Each sample is perturbed with a random magnitude

generated from a uniform distribution of numbers from

the interval (−0.0514, 0.0514) and a uniformly distributed

random angle. The samples are interpolated with splines and

integrated to find (X,Y )(t). The orientation and turning

velocity is numerically calculated from (X,Y )(t), fulfilling

the composition of ℎ(t). Figure 5 compares the perturbed

and unperturbed measured trajectories, ℎ(t) and ℎ(t).

t

Unperturbed
Perturbed
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0
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XHtL

Y
Ht
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HXHtL,YHtLL

t

0.0 0.5 1.0

0.0

0.2

0.4
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0.8
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XHtL

Y
Ht
L

HXHtL,YHtLL
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0.0

0.5

1.0

1.5

t

Θ
Ht
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0.0
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t

Θ
Ht
L

ΘHtL

Fig. 5. Comparison of the perturbed ℎ(t) with the unperturbed ℎ(t).

With a set of perturbed measured trajectories, the opti-

mization techniques may now be applied to find the mode

sequence and optimal switching times that correspond to

ℎ(t). Using the same cost function, with the same Q, R and

P as in Example 2, we first conduct the relaxed switched

system optimization. The resulting optimal relaxed control

input, û★(t), is in Fig 6. These control inputs correspond to

a mode sequence of Ψ = (1, 4, 2, 4, 1) and switching times

T = (5.0987, 8.0416, 8.7065, 11.4723)T .
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Σ=1: Σ=2:
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Fig. 6. The optimal relaxed control inputs for Example 2. Each control
input corresponds to a sub-system �. The sequence of greatest control
inputs corresponds to a mode sequence of Ψ = (1, 4, 2, 4, 1). These modes
transition at times T = (5.0987, 8.0416, 8.7065, 11.4723)T
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Fig. 7. (left) X-Y plot of the simulated trajectories corresponding to the

optimal switching times compared with the measured trajectories ℎ(t) and

(right) plot of the performance metric ℓ
(

x(t))
)

.

The sub-system � = 2 exists for only 0.6649s. Further-

more, it is only slightly the most active sub-system for its

short time period. An obvious option is to implement a

heuristic with the purpose of removing modes from the mode

sequence that exhibit similar behavior to � = 2. This line

of reasoning is also presented in [6]. Removal of the � = 2
mode results in correct estimation of Ψd.

In order to demonstrate that the mode estimation may be

used in conjunction with a switching time optimization rou-

tine, we use the estimated pair, (T ,Ψ), as initial parameters.

Algorithms for switching time optimization are in [5], [6],

[19]. We choose a cost function

J(T ,Ψ) =

TN∫

T0

1

2

(
x(�)− ℎ(�)

)T

Q
(
x(�)− ℎ(�)

)
d�

+ 1
2

(
x(TN )− ℎ(TN )

)T

P
(
x(TN )− ℎ(TN )

)

where Q = diag(1, 1, 1, 1, 1, 1) and P =
diag(1, 10, 1, 10, 1, 1). Switching time optimization shall

now be conducted. After the second step of descent of

switching time optimization, the � = 2 sub-system exists for

less than 0.1 seconds, so we remove it, leaving Ψ = (1, 4, 1).
With this removal, the switching time optimization converges

to optimal solution T ★ = (4.8537, 10.9376)T . These optimal

switching times are approximately T d = (5, 11)T despite

the large variance of friction, the slow sample rate of the

GPS and the GPS sensor error. Fig 7 compares the X-Y

trajectories computed using the optimal switching times

with the measured trajectories ℎ(t) as well as showing the

performance metric ℓ
(
x(t))

)
for the optimized system.

V. CONCLUSION

This paper models the interaction of the SSV’s wheels

with the ground as Coulomb friction in order to partition

the SSV into a switched system. Doing this simplifies the

representation of maneuvers of the SSV to the pair (T ,Ψ).
This paper presents an approach for estimating a mode

sequence. The approach optimizes a relaxed infinite dimen-

sional representation of switched systems and projects the

optimal solution back onto the set of feasible solutions.

Examples demonstrate that the presented mode estimation

performs well despite model and sensor disturbances.
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