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ABSTRACT

Novelty detection is often treated as a one-class classifi-

cation problem: how to segment a data set of examples from

everything else that would be considered novel or abnormal.

Almost all existing novelty detection techniques, however,

suffer from diminished performance when the number of less

relevant, redundant or noisy features increases, as often the

case with high-dimensional feature spaces. Many of these

algorithms are also not suited for online use, a trait that is

highly desirable for many robotic applications. We present

a novelty detection algorithm that is able to address this

sensitivity to high feature dimensionality by utilizing prior

class information within the training set. Additionally, our

anytime algorithm is well suited for online use when a con-

stantly adjusting environmental model is beneficial. We apply

this algorithm to online detection of novel perception system

input on an outdoor mobile robot and argue such abilities

could be key in increasing the real-world applications and

impact of mobile robotics1.

I. INTRODUCTION

Many autonomous unmanned ground vehicles (UGVs)

have advanced to a level where they are competent and

reliable a high percentage of the time in many environments

[1], [2], [3]. Most of these systems, however, are heavily

engineered for the domains they are intended to operate

in. Any deviation from these domains often results in sub-

optimal performance or even complete failure. Given the

cost of such systems and the importance of safety and

reliability in many of the tasks that they are intended

for, even a relatively rare rate of failure is unacceptable.

In many domains that are prime candidates for mobile

robotic applications such as space exploration, transportation,

military reconnaissance, and agricultural tasks, the risk of

catastrophic failure, however small, is a primary reason why

autonomous systems are still under-utilized despite already

demonstrating impressive abilities.

One approach to addressing this limitation is for a UGV

to be able to identify situations that it is likely untrained to

handle before it experiences a major failure. This problem

therefore becomes one of novelty detection: how a robot

can identify when perception system inputs differ from

previous prior inputs seen during training or operation. With

1Most figures in this paper are best viewed in color.

Fig. 1. Sample result from online novelty detection algorithm onboard a
large UGV. Chain-link fence was detected as novel (top and left, novelty
shown in red) with respect to the large variety of terrain and vegetation
previously encountered. After an initial stretch being identified as novel,
subsequent portions of the fence are no longer flagged (right) due to
the algorithm’s online training ability. As with all future similar images,
insets within the top image show a first-person view (left inset) and
the classification of the environment by the perception system into road,
vegetation, and solid obstacle in blue, green and red respectively (right
inset).

this ability, the system can either avoid novel locations to

minimize risk or stop and enlist human help via supervisory

control or tele-operation (see Figure 1).

Two common limitations of novelty detection systems

are particularly relevant to the mobile robotics domain. Au-

tonomous systems often need to learn from their experiences

and continually adjust their models of what is normal and

what is novel. For example, if human feedback were to

confirm that a certain type of environment selected as novel

is actually safe to handle with the existing autonomy system

or demonstrate to the system the proper way to handle the

situation, the model no longer needs to identify such inputs

as novel. Most novelty detection approaches, however, build

a model of the normal set of examples a priori in batch in

order to detect novel examples in the future but are unable
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to update that model online without retraining.

Furthermore, existing novelty detection techniques see di-

minished performance when using high-dimensional feature

spaces, particularly when some features are less relevant,

redundant, or noisy. These qualities are particularly common

in features from many UGV perception systems due to the

variety of sensors and uncertainty about how these features

relate to novelty. For example, a large variety of camera-

based features from color and texture might be computed

for use in various components of the perception system.

While these features are potentially powerful, subsets of

these features often contain redundant irrelevant information.

It is therefore important for novelty detection techniques to

be resilient to such feature properties.

We present an online approach that addresses these com-

mon problems with novelty detection techniques. We ap-

proach the problem of novelty detection as one of online

density estimation where seen examples generate an influ-

ence of familiarity in feature space toward future examples.

When prior class information is available, we show how

using Multiple Discriminant Analysis (MDA) for generating

a reduced dimensional subspace to operate in rather than

other common techniques such as Principal Components

Analysis (PCA) can make the novelty detection system more

robust to issues associated with high-dimensional feature

spaces. In effect, this creates a lower dimensional subspace

that truly captures what makes things novel. Additionally,

our algorithm can be framed as a variant of the NORMA

algorithm, an online kernelized Support Vector Machine

(SVM) optimized through stochastic gradient descent, and

therefore shares its favorable qualities [4]. Along with its

anytime properties, this allows our algorithm to better deal

with the real-time demands of online tasks.

While this work was targeted toward mobile robotics

applications, the approaches here are more generally appli-

cable to any domain which can benefit from online novelty

detection.

The next section presents background on novelty detec-

tion techniques and some example applications. Section III

presents our novelty detection algorithm, followed by an

explanation of how this technique can be applied to mobile

robotics in Section IV, results from field testing on a large

UGV in Section V and concluding remarks in Section VI.

II. NOVELTY DETECTION

Novelty detection techniques (also referred to as anomaly

or outlier detection) have been applied to a wide range of

domains such as detecting structural faults [5], abnormal jet

engine operation [6], computer system intrusion detection

[7], and identifying masses in mammograms [8]. In the

robotics domain some have incorporated novelty detection

systems within inspection robots [9], [10].

Novelty detection is often treated as a one-class classi-

fication problem. In training the system sees a variety of

“normal” examples (and corresponding features) and later the

system tries to identify input that does not fit into the trained

model in order to separate novel from non-novel examples.

Instances of abnormalities or novel situations are often rare

during the training phase so a traditional classifier approach

cannot be used to identify novelty in most cases.

Most novelty detection approaches fall into one of several

categories. Statistical or density estimation techniques model

the “normal” class in order to identify whether a test sample

comes from the same distribution or not. Such approaches

include Parzen window density estimators, nearest neighbor-

based estimators, and Gaussian mixture models [11]. These

techniques often use a lower-dimensional representation of

the data generated through techniques such as PCA.

Other approaches attempt to distinguish the class of in-

stances in the training set from all other possible instances

in the feature space. Schölkopf et al. [12] show how an SVM

can be used for specifically this purpose. A hyper-plane is

constructed to separate the data points from the origin in

feature space by the maximum margin. One application of

this technique was document classification [13]. A noticeable

drawback of this approach is that it makes an inherent

assumption that the feature space origin is a suitable prior

for the novel class. This limitation was addressed by [14]

by attracting the decision boundary toward the center of the

data distribution rather than repelling it from the origin. A

similar approach encloses the data in a sphere of minimal

radius, using kernel functions to deal with non-spherically

distributed data [15]. These techniques all require solutions

to linear or quadratic programs with slack variables to handle

outliers.

Another class of techniques attempts to detect novelty by

compressing the representation of the data and measuring

reconstruction error of the input. The key idea here is that

instances of the original data distribution are expected to

be reconstructed accurately while novel instances are not. A

simple threshold can then be used to detect novel examples.

The simplest method of this type uses a subset of the

eigenvectors generated by PCA to reconstruct the input. An

obvious limitation here is that PCA will perform poorly if

the data is non-linear. This limitation was addressed by using

a kernel PCA based novelty detector [16]. Benefits of more

sophisticated auto-encoders, neural networks that attempt to

reconstruct their inputs through narrow hidden layers, have

been studied as well [17].

Online novelty detection has received significantly less at-

tention than its offline counterpart. Since it is often important

to be able to adjust the model of what is considered novel in

real-time, many of the above techniques are not suitable for

online use as they require significant batch training prior to

operation. While Neto et al. [9] replaced the use of PCA for

novelty detection with an implementation of iterative PCA,

performance was still largely influenced by the initial data

set used for training. Marsland proposed a unique approach

that models the phenomenon of habituation where the brain

learns to ignore repeated stimuli [10]. This is accomplished

through a clustering network called a Grow When Required

(GWR) network. This network keeps track of firing patterns

of nodes and allows the insertion of new nodes to allow

online adaptation.
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Markou and Singh have written a pair of extensive survey

articles detailing many additional novelty detection applica-

tions and techniques [18], [19].

The performance of the above-mentioned novelty detec-

tion approaches, however, quickly deteriorates as the number

of less relevant or noisy features grows. The dispropor-

tionately high variance of many of these features make it

difficult for many of these algorithms to capture an adequate

model of the training data and their effects quickly begin to

dominate more relevant features in making predictions. Our

algorithm addresses this crucial limitation in cases where

class information is available within the training set while

still being suitable for online use.

III. APPROACH

A. Formalization

The goal of novelty detection can be stated as follows:

given a training set D = {x}1...N ∈ X where xi =
{x1

i , . . . , x
k
i }, learn a function f : X → {novel, not-novel}.

In the online scenario, each time step t provides an example

xt and a prediction ft(xt) is made.

We perform online novelty detection using the online

density estimation technique shown in Algorithm 1. All

possible functions f are elements of a reproducing kernel

Hilbert space H [20]. All f ∈ H are therefore linear

combinations of kernel functions:

ft(xt) =

t−1
∑

i=1

αik(xi, xt) (1)

We make the assumption that proximity in feature space

is directly related to similarity. Observed examples deemed

as novel are therefore remembered and have an influence of

familiarity on future examples through the kernel function

k(xi, xj). A novelty threshold, γ, and a learning rate, η, are

initially selected. For each example xt, the algorithm accu-

mulates the influence of all previously seen novel examples

(line 5). If this sum does not exceed γ then the example

is identified as novel and is remembered for future novelty

prediction (line 7)2. Non-novel examples are not stored as

they are assumed to have minimal impact on future novelty

computations (even though a coefficient of 0 is assigned

in line 9 for clarity, these examples are not stored). We

suggest simply using the Gaussian kernel with an appropriate

variance σ2:

k(xi, xj) = e−
‖xi−xj‖

2

σ2 (2)

B. Improved Dimensionality Reduction

Especially if the number of features is large, it may

first be necessary to project the high-dimensional input

xt into a lower-dimensional subspace more suitable for

novelty detection using distance metrics. PCA, the most

2While both the novelty threshold, γ, and the learning rate, η, are included
for clarity, they only represent one degree of freedom since the equations
can be simply rescaled to be functionally equivalent with η = 1.

Algorithm 1 Online novelty detection algorithm

1: given: A sequence of features S = (xi)1...T ; a novelty

threshold γ; a learning rate η

2: outputs: A sequence of hypotheses f =
(f1(x1), f2(x2), . . .)

3: initialize: t← 1
4: loop

5: ft(xt)←
∑t−1

i=1
αik(xi, xt)

6: if ft(xt) < γ then

7: αt ← η

8: else

9: αt ← 0
10: end if

11: t← t+ 1
12: end loop

common approach for this purpose among dimensionality

reduction (and novelty detection) techniques, finds a linear

transformation that minimizes the reconstruction error in a

least-squares sense. If subsets of the features are redundant,

noisy or are dominated disproportionally by a subset of the

training set, however, applying techniques such as PCA, or

any unsupervised dimensionality reduction technique for that

matter, may yield disappointing results as precisely the most

relevant directions for differentiation may be discarded in

order to reduce reconstruction error of a less relevant portion

of the feature space.

Rather than optimizing for reconstruction error, discrim-

inant analysis seeks transformations that are efficient for

discriminating between different classes within the data.

Multiple Discriminant Analysis (MDA), a generalization of

Fischer’s linear discriminant for more than two classes, com-

putes the linear transformation that maximizes the separation

between the class means while keeping the class distributions

themselves compact, making it useful for classification tasks

[11].

We argue that when prior class information for the training

set is available, using MDA to construct a lower dimensional

subspace using labeled classes not only optimizes for known

class separability but likely leads to separability between

known classes and novel classes. In cases described earlier

that result in poor performance when using PCA, MDA will

largely ignore features that do not aid in class discrimination,

instead focusing on the strongly differentiating features.

Novelty detection is about encountering new classes, so by

using discriminating ability as the metric for constructing a

subspace, one can capture the combinations of features that

make known classes novel with respect to each other and

likely generalize to previously unseen environments, in effect

capturing what makes things novel. While this algorithm

could be performed using the raw features, from this point

forward xt will refer to the projection of the raw features

into the lower dimensional space rather than the raw features

themselves.

Additionally, labeled prior class data allows one to choose
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an appropriate σ by finding the value that optimizes the ratio

between inter-class contribution to outer-class contribution

for a random subset of examples.

Experimental validation of this theory within the domain

of mobile robotics is presented in Sections IV and V.

C. Framing as Instance of NORMA

The NORMA algorithm is a stochastic gradient descent

algorithm that allows the use of kernel estimators for online

learning tasks [4]. As with our algorithm, f is expressed as a

linear combination of kernels (1). NORMA uses a piecewise

differentiable convex loss function l such that at each step t

we add a new kernel centered at xt with the coefficient:

αt = −ηl
′(xt, yt, ft) (3)

Our algorithm can easily be framed as an online SVM

instance of NORMA using a hinge loss function as follows:

yt = γ (4)

l(xt, yt, ft) = max(0, yt − ft(xt)) (5)

Taking the derivative of (5), we get:

l′(xt, yt, ft) =

{

−1 if ft(xt) < γ

0 otherwise
(6)

As before, the gradient of our loss is non-zero only when

the accumulated contributions from stored examples are less

than the novelty threshold γ, signifying that the example is

novel. From (3) and (6) we then get:

αt =

{

η if ft(xt) < γ

0 otherwise
(7)

This is equivalent to the update steps in lines 7 and 9 of

Algorithm 1, showing that our algorithm can be framed as a

specific instance of the NORMA algorithm.

NORMA produces a variety of useful bounds on the

expected cumulative loss [4]. For novelty detection this

directly relates to the number of examples that are expected

to be flagged as novel. This means we are competitive with

respect to the best f ∈ H in terms of representing our

sample distribution with the fewest number of examples. This

is to our advantage both from a computational perspective,

since memory and prediction costs scale with the number of

remembered examples, as well as performance since we want

to minimize false positives that may be costly to handle.

D. Query Optimization

Without further measures, the potential number of basis

functions stored by Algorithm 1 could grow without bound.

NORMA deals with this issue by decaying all coefficients

αi and dropping terms when their coefficients fall below

some threshold. We found that to prune in this way to an

effective fixed capacity, the decay rate has to be relatively

high which leads to a forgetting effect. The qualitative

effect is that examples that were previously encountered

are re-flagged as novel which would result in unnecessary

human interventions. Instead, we propose a modified anytime

version of our algorithm that better utilizes a fixed buffer

size while ensuring efficient and bounded computation (see

Algorithm 2).

Algorithm 2 Online novelty detection algorithm with query

optimization

1: given: A sequence of features S = (xi)1...T ; a novelty

threshold γ; a learning rate η; a maximum example

storage capacity N

2: outputs: A sequence of hypotheses f =
(f1(x1), f2(x2), . . .)

3: initialize: t← 1; ; n← 0
4: loop

5: i← 1
6: ft(xt)← 0
7: while ft(xt) < γ and i ≤ n do

8: ft(xt)← ft(xt) + αik(xi, xt)
9: i← i+ 1

10: end while

11: if ft(xt) < γ then

12: αn+1 ← η

13: xn+1 ← xt

14: n← n+ 1
15: i← i− 1 // i was incremented one extra time

16: end if

17: optimize sequence: Move (αi, xi) to front

18: if n > N then

19: Delete (αi, xi)i>n

20: n← N

21: end if

22: t← t+ 1
23: end loop

At line 17, if ft(xt) = not-novel, i indexes the example that broke
the novelty threshold. Otherwise, i indexes xt.

This algorithm takes advantage of the fact that familiarity

contribution to new queries is often dominated by only a few

examples. First, we can easily gain some efficiency by only

processing stored examples until we have reached the novelty

threshold (line 7). The key performance improvement, how-

ever, comes from the sequence optimization in line 17. For

each prediction, the stored example that breaks the novelty

threshold γ, or the new novel example itself, is moved to

the front of the list as it is more likely to impact future

queries. This is a slight variation of the traditional problem

of dynamically maintaining a linear list for search queries for

which the move-to-front approach was proven to be constant-

competitive, meaning no algorithm can beat this approach by

more than a constant factor [21]. This proof can be extended

to show that our move-to-front is also constant-competitive3.

In addition to allowing us to bound the number of stored

examples (line 19) and perform favorably with respect to

NORMA (see Figure 5), this gives our algorithm an anytime

3This proof can be seen in the extended version of this paper at
http://www.ri.cmu.edu/pub files/2010/5/icra 10 withAppendix.pdf.
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Fig. 2. Robot used for novelty detection testing (left) and a high-
level illustration perception system data flow (right). Features for novelty
detection are taken from the steps highlighted in red.

Fig. 3. Example raw engineered features from the UGV’s perception system
used by the novelty detection algorithm. NDVI (normalized difference of
vegetation index) is a useful metric for detecting vegetation.

property by enabling it to quickly classify as much of the

environment as possible as not novel. When this algorithm

is unable to run to completion due to time constraints, it

will fail intelligently by generating false positives but never

potentially dangerous false negatives.

IV. APPLICATION TO MOBILE ROBOTICS

A natural application of our algorithm is to online novelty

detection for a mobile robot. The large UGV shown in Figure

2 that was used throughout our tests is intended for operation

in complex, outdoor environments, performing local sensing

using a combination of ladar and camera sensors [22]. The

perception system assigns traversal costs by analyzing the

color, position, density, and point cloud distributions of the

environment [23], [24]. A large variety of engineered features

that could be useful for this task are computed in real-time

(see Figure 3) and the local environment is segmented into

columns of 20 cm3 voxels in order to capture all potentially

relevant information. Each voxel (tagged with its correspond-

ing features) is passed through a series of classifiers and

combined with additional density-related features to create a

more compact set of intermediate features more suitable for

traversal cost computation. The system then interprets these

features through hand-tuned or learned methods to create a

final traversal cost for that location in the world to be used

for path planning purposes.

To perform novelty detection we used subsets of the initial

raw features as well as the intermediate classification and

density features for each voxel. This vertical voxelization

approach is effective for mobile robots since the presence

of specific features at certain vertical positions are highly

relevant to their impact on traversal cost. For example, solid

objects at wheel height are likely to be small rocks while

Fig. 4. All training examples projected onto the subspace defined by the
first three basis vectors computed by PCA (top) and MDA (bottom). Only
the first four classes were used to construct the subspaces (’other man-
made’ class was withheld as a test class). The MDA-based projection clearly
shows significantly more separation between the new man-made class and
the known classes, implying a more suitable subspace for novelty detection.

similar features higher off of the ground are more likely

to be trees or man-made objects. Similarly, such spatial

information is vital to effective novelty detection. This forced

us to deal with a relatively high-dimensional feature space

(49 features) as well as with the associated issues described

earlier.

We deal with this problem by using MDA with a library

of hand-labeled examples across many environments and

conditions to compute a lower dimensional subspace more

suitable for density estimation as described in the previous

section. Of the available classes, four were used to con-

struct a three-dimensional subspace: road/grass/dirt, rocks,

bushes and barrels.A fifth class of examples corresponding

to various non-barrel man-made objects (various man-made

structures, barriers, vehicles, poles, human-sized plastic fig-

ures, etc.) was withheld for testing purposes.It is important

to note that class labels are only used initially for generating

a lower-dimensional feature space and are unnecessary for

later processing4.

Figure 4 shows the projection of all five classes onto

the first three basis vectors computed by PCA and MDA

4For many robust autonomy systems including ours, such data is required
regardless for perception system development (for example, for training and
validation of onboard classifier systems).
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Fig. 5. ROC curves showing the false positive rate vs. the true positive
rate for novelty detection under various configurations while varying γ,
the threshold for novelty. A random 1500-example subset of each training
category was used as the familiar set with respect to which novelty was
detected in a held-out test set coming from the same training categories (to
detect false-positives) as well as the man-made category (to test for true-
positives). Performance using lower-dimensionality spaces created through
MDA and PCA (shown in Figure 4) are shown in solid red and dotted red,
respectively. When storage for only 150 examples is available, performances
under the query optimization approach described in Algorithm 2 as well
as the NORMA truncation approached described in [4] are shown in
solid and dotted blue, respectively. For all tests, the learning rate, η, was
set to 1, and σ

2 was computed to be 0.9 as described earlier. Novelty
detection performance using the MDA-based space was shown to uniformly
outperform the PCA-based space and the query optimization approach
for dealing with limited memory was shown to uniformly outperform the
suggested NORMA approach.

using the first four classes5. The MDA projections clearly

show better separation between the new set of man-made

examples and the original four classes. As expected, the

most overlap occurs with the barrel class as barrels share

common properties with other man-made objects such as

smooth surfaces, colors, etc. Since we would desire these

new examples to be identified as novel relative to the rest

of the classes, this separation implies that this is a more

suitable subspace for use as a similarity metric within a

novelty detection system. This benefit is clearly visible in

the ROC curves in Figure 5.

Because our algorithm is efficient for online use, the

novelty model can start uninitialized or can be seeded with

a sampling of examples used during training so that it can

identify areas that are novel and potentially unsafe to handle

with the current perception system.

V. EXPERIMENTAL RESULTS

Our novelty detection algorithm (with query optimization)

was tested using our large UGV on an a natural outdoor envi-

ronment to evaluate its online novelty detection performance

(the algorithm ran in real-time on logged data). The test

environment traversed by the robot consisted of combinations

of road, grass and dirt, a large variety of vegetation, a series

of small barrels, several ditches, large heavily-sloped piles

of rocks and a long chain-link fence.

5All features were initially rescaled to zero-mean, unit-variance.

Fig. 6. Shortly after initialization with no prior novelty model, various
small vegetation was detected as novel (identified in red).

We projected all examples into the three-dimensional sub-

space generated by MDA as described in the previous section

from the first four hand-labeled classes (examples from the

man-made objects category were not used). To best exhibit

the online novelty detection abilities of our algorithm, the

model was initialized to contain no prior examples. As the

environment was explored, perception system features were

averaged into 0.8 cm2 grid locations for use as online batches

of examples. Those that were identified as novel relative

to the current model (composed of everything previously

identified as novel) were incorporated into the model as

described earlier.

The vehicle’s initial environment consisted of fairly open

terrain with some light scattered vegetation scattered on

both sides. As expected, instances of such vegetation were

detected as novel the first few times they were seen (see

Figure 6).

The vehicle then encountered areas of much denser, larger

vegetation. Initially, a majority of such vegetation was iden-

tified as novel with respect to previous inputs (see Figure

7). As the vehicle continued navigating through similar

vegetation, the model adapted and no longer identified such

stimuli as novel (see Figure 8). Figure 9 demonstrates this

learning process through a series of overhead images of this

initial environment, identifying all future locations that are

novel with respect to the current model. Output is shown

at three points in time: near the beginning of navigation,

just before initial encounters with dense vegetation and after

sensing a small amount of dense vegetation. It is clearly

visible how the system adapts quickly, causing future similar

instances to no longer be flagged as novel.

Proceeding through the environment, the vehicle then

encounters a series of plastic barrels (see Figure 10). As

desired, the first several appear as novel with respect to

the large variety of vegetation previously seen while later

barrels are no longer novel due to their strong similarity

to the initially seen barrels. Similarly, a long stretch of a

chain-link fence is identified as novel late in the course (see

Figure 1). Again, the initial portions of the fence triggered

the novelty detection algorithm while later portions were no

longer novel due to the algorithm’s adaptation. The value of

such an approach is apparent when considering the UGV

perception system’s interpretation of the fence compared

to more familiar vegetation (see Figure 11). Additional

examples of novel instances identified during traversal appear
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Fig. 7. Initial encounter with larger and denser vegetation results in a
significant amount of detected novelty (identified in red).

Fig. 8. Similar vegetation as that shown in Figure 7 encountered a short
time later. Notice how almost all vegetation is no longer novel due to
similarity to previous stimuli.

Fig. 9. Novelty of all future perception input using current novelty model
on vegetation-heavy terrain shown in Figures 6, 7 and 8 at three points
throughout traversal. Robot’s past and future path is shown in light and
dark green respectively and novelty of terrain is indicated by a gradient
from yellow (moderately novelty) to red (high novelty). Robot is initialized
without a prior novelty model.

Fig. 10. Series of barrels encountered later in the course. The initial barrels
are detected as novel (red shade) even after significant exposure to a large
variety of vegetation (top and left). Later barrels are no longer identified as
novel due to online training.

Fig. 11. The perception system’s interpretation of the chain-link fence
from Figure 1 (left) and the dense bushes from Figure 7 (right). Lower and
higher traversal cost regions appear in darker and brighter shades of white
respectively, with areas that are considered impassable appearing in purple.
Even though the fence is significantly more hazardous to the vehicle than
any of the vegetation, it is not in the perception system’s experience base
and its traversal cost is therefore significantly underestimated.

in Figure 12.

Overall, the novelty detection algorithm was able to iden-

tify all major unique objects (vegetation, barrels, fence, etc.)

with a relatively small amount of false positives due to

effective adaptation to the environment. When PCA was used

to create the feature subspace, errors increased due to the lack

of separability between classes. As with any algorithm, the

success of this approach is heavily dependent on the quality

of features.

Computation time comparisons between the two algo-

rithms on this course highlight the effectiveness of query

optimization (see Figure 13). While the average computation

time required per novelty query using Algorithm 1 grows

with the number of stored examples, Algorithm 2 experiences

temporary spikes in computation time as novel areas are
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Fig. 12. Additional examples of novel instances identified during later
traversal (red shade): first encounter with a ditch (left) and a large, heavily-
sloped pile of rocks (right).

Fig. 13. Average computation in milliseconds per novelty query on 3.2

GHz CPU for Algorithm 1 (dashed red line) and Algorithm 2 (solid blue
line) over the previous 5 seconds throughout navigation. Computational
complexity of Algorithm 2 remains bounded due to the order optimization
step (line 17). These timings do not include feature computation and
projection costs as they are identical under both algorithms.

encountered but query optimization allows the algorithm to

quickly adapt its ordering of examples in order to maintain

a bounded computation throughout navigation and allow

effective anytime novelty prediction.

VI. CONCLUSION

Our algorithm addresses two significant limitations of

most novelty detection approaches. By using MDA for

supervised dimensionality reduction rather than unsupervised

techniques such as PCA, this algorithm operates on a sub-

space that is more conducive to viewing novelty as a distance

metric and is therefore more resistant to many of the issues

associated with high-dimensional feature spaces. Addition-

ally, this algorithm’s adaptive abilities, computational bounds

and anytime properties make it a logical choice for many

online novelty detection tasks. As robotic systems continue

to improve, such approaches can help capitalize on their

abilities by acting as a safeguard against the inevitable

dangers of unfamiliar situations.
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