
  

  

Abstract—A simple, under-actuated robotic winch, called the 

“Winch-Bot,” is developed for surface inspection of a large 

object. The Winch-Bot, placed over an object surface, has only 

one actuator for tracing a free geometric path in a vertical 

plane. The cable length is controlled in relation to the direction 

of the cable so that the inspection end-effecter hanging at the 

tip of the cable can follow the path dynamically despite the lack 

of full degrees of freedom. We analyze the tracing dynamics, 

address under what conditions a given geometric path can be 

traced (traceability conditions), and prove under what 

conditions the tracing motion is repetitive. A controller utilizing 

partial feedback linearization is proposed, and simulations are 

used to validate the explored traceability criteria and to 

confirm the controller’s performance improvement. 

I. INTRODUCTION 

HERE is a need for inspecting the surface of a large 

object by moving an instrument along its surface. An 

aircraft body, for instance, needs to be inspected 

occasionally for security and safety. The Winch-Bot, 

consisting of a single-axis winch placed at a fixed point over 

a large object, is a simple, economic solution to those tasks 

where an end-effecter must be moved along a large surface. 

Unlike a gantry crane or a long-arm rigid manipulator, the 

Winch-Bot does not require a large structure or many-

degrees-of-freedom servoed joints. Under-actuated dynamics 

allow the end-effecter to trace a surface continually. 

Several prior works are relevant to the Winch-Bot design 

and control. The aforementioned gantry crane’s dynamics 

have been analyzed to allow for more control of the end-

point’s path including input shaping to dampen residual 

oscillations [1], [2]. Casting robots were investigated so that 

a fixed, rotating arm can excite the oscillations of a 

pendulum which is then extended such that the end effecter 

lands at a desired location [3]. Multi-cable cranes have been 

analyzed whereby controlling six cable lengths, a Stewart 

platform can be controlled to make arbitrary motions and 

rotations [4]. Finally, pseudo-mobile robots (such as a 

simple brachiating robot [5]) aim to move around a 

workspace to work outside their immediate reach when 

needed. Whereas these works are similar in application or 

theory, to our knowledge there is no work on continuous 
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path tracing by a cable-suspended, under-actuated robot. 

In the following, we will use the under-actuated dynamics 

of the system to define path tracing, generate criteria for path 

traceability, and simulate a controller utilizing feedback 

linearization to track various geometric paths and observe 

the results. 

II. CONCEPT 

In principle, an under-actuated robot is unable to track an 

arbitrary time trajectory. It may track a limited class of 

trajectories that conform to the under-actuated dynamics, 

e.g. particular solutions to the dynamic equations, but in 

general it cannot track an arbitrary one. Tracking an 

arbitrary time trajectory requires the same number of 

independent servoed joints as the dimension of the 

trajectory, or to be fully actuated. This requirement, 

however, can be removed if the task is to trace a geometric 

path without specification of tracing speed. For many 

inspection tasks, tracing speed is not an important variable to 

regulate. As long as the speed is lower than a certain limit, 

or within an acceptable range, variation in tracing speed 

does not affect inspection performance. 

Consider a two-dimensional geometric path, as illustrated 

in Fig. 1. Let ( )x s  and ( )y s  be a parametric representation 

of a geometric path, where s  is path length. Path following 

is a standard problem if a robot has two independent servoed 

joints, e.g. a gantry robot with two prismatic joints. The 

challenge is to trace a two-dimensional path, 

 ( ) ( ){ }0, | fx s y s s s s≤ ≤  (1) 

with only one servoed joint, where the tracing speed, /ds dt , 

is unspecified. 
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Fig. 1. Shown are the parameters important in our simple pendulum 

whose length is controlled by a smart winch. 
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The Winch-Bot, originally developed for point-to-point 

positioning tasks [6], can perform this type of tracing task 

for a wide class of path geometries. The Winch-Bot consists 

of one servoed joint, two position sensors, a cable, and an 

end-effecter, e.g. an inspection instrument, as shown in Fig. 

1. The body of the Winch-Bot is fixed at a point over a 

surface, and the cable length r  is controlled by the servoed 

joint, and θ is the angle of the cable taken from the vertical. 

If the cable length is fixed, the system is merely a 

pendulum, tracing a circular path back and forth. It can trace 

other paths when the cable length is controlled in relation to 

the cable angle. To trace a straight horizontal line, for 

example, the cable length must be coordinated with the cable 

angle such that: 

 ( )
cos

h
r θ

θ
= , 

1 1

2 2
π θ π− < <  (2) 

where h  is the distance from the origin O . See Fig. 2. 

Suppose that the end-effecter of mass m  starts at the center 

point C  with initial velocity 0
V . As the end-effecter moves 

horizontally in the x+  direction, it receives a horizontal 

restoring force, /mgx h− , which pushes the end-effecter 

backwards. A simple calculation reveals that the speed of the 

mass becomes zero at the distance max 0 /x V h g= , at which 

point the end-effecter begins to move backwards. If the 

system is loss-less, the mass regains the initial velocity when 

passing the center point C , this time traveling in the x−  

direction. The motion is completely symmetric with respect 

to the center line OC , and the mass moves back and forth 

between max
x  and max

x− . 

This straight line tracing example illustrates that  

• The Winch-Bot can trace a class of paths by 

coordinating its cable length with the cable angle, and 

• Under a loss-less assumption the motion can be 

repetitive.
1
 

 
1 While this assumption may be unrealistic in real applications, the 

degree of energy loss due to air drag is very small compared to the energy 

The objective of the following sections is to assure these 

properties based on a dynamic model. We will: 

• Analyze when a given geometric path is traceable for 

the Winch-Bot (traceability conditions), and 

• Prove that the Winch-Bot motion is repetitive if the path 

is traceable, is geometrically symmetric, and has an 

appropriate initial velocity. 

In the following we will first obtain dynamic equations, 

analyze traceability, prove repetitiveness, and show 

implementation techniques, followed by numerical and 

experimental results. 

III. MODELING AND ANALYSIS 

A. Dynamic Equations 

The governing dynamic equations of the Winch-Bot are 

derived in this section. We assume that the end-effecter is a 

point mass and that the cable is mass-less. We also ignore 

the longitudinal elasticity of the cable and aerodynamic 

effects on the end-effecter and the cable. Experiments using 

a prototype to be discussed in Section IV have justified these 

assumptions. 

Starting with the basic free-body diagram for a point 

mass, one can derive two equations of motion for our fixed- 

point/variable-length cable system, moving in a single plane. 

Let m  be the mass of the end-effecter and T  be the tension 

of the cable. See Fig. 3. Assuming that the cable is taut, we 

can obtain the following equations of motion: 

 ( ) ( ) ( )
2

2
ˆ ˆ ˆcos sin

r a r

d
mg T e mg e m re

dt
θ θ− − =  (3) 

where ˆ
r

e  and â
e  are unit vectors pointing in the radial and 

angular directions, respectively. Expanding the right-hand 

side and taking a time derivative, we get 

 2cos
T

g r r
m

θ θ− = − ���  (4) 

in the radial direction, and 

 sin 2g r rθ θ θ− = +� ���  (5) 

or 

 
2 sin

0
r g

r r

θ
θ θ+ + =

�
�� �  (6) 

                                                                                                   
in the system. Additionally, a non-holonomic controller has been designed 

to correct for these energy errors, but will be presented in future work. 

 
 

Fig. 3. The well-known free-body diagram of a point at the end of a 

rigid cable applies to our system’s design. 

 

 
 

Fig. 2. Tracing a horizontal line is illustrative of many of the Winch-

Bot’s properties. Fig. 2(b) shows that the kinetic energy K  dictates 

the maximum distance the end–effecter travels. 
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in the angular direction. Both (4) and (6) together describe 

the degrees of freedom of the Winch-Bot system.  

B. Continuous Path Tracing 

In order to perform path tracing, we must first address 

conditions under which the Winch-Bot can trace a path. A 

few necessary conditions for a geometric path to be traceable 

can be obtained immediately: 

a)  The path must be twice differentiable with respect to 

path length s . Otherwise, an infinitely large 

acceleration is needed where the first-order derivative is 

discontinuous. 

b)  Path length s  and cable angle θ  must have a one-to-

one correspondence, i.e. s  is a single-valued function of 

θ . As shown in Fig. 4, the end-effecter cannot reach 

some segment of the surface if a single radial line from 

the point O  intersects with the path at multiple points, 

such as points , ,A B C . This implies that the path length 

s  is a monotonically increasing function of θ  (or a 

decreasing function depending on the direction of s ). 

This second condition allows us to represent the cable 

length r  as a function of θ : 

 ( )r r θ= . (7) 

Therefore, the first and second order time derivatives of r  

can be given by 

 r r θ′= �� , 
2

r r rθ θ′′ ′= +� ���� , (8) 

where 

 
dr

r
dθ

′= , 
2

2

d r
r

dθ
′′= . (9) 

Substituting these into dynamic equations (4) and (6) yield 

 ( ) 2 cosT mr m r r mgθ θ θ′ ′′= + − +�� �  (10) 

and 

 
22 sin

0
r g

r r

θ
θ θ

′
+ + =�� � . (11) 

The last equation can be solved with initial conditions, 

0 0
,θ θ� , and a time-trajectory of length r . The tension T  can 

then be evaluated by substituting the solution ( )tθ  into the 

first dynamic equation (10). 

One critical condition for the Winch-Bot to be able to 

trace a path is that the tension T  must be non-negative at all 

times. It can pull up the end-effecter mass m  at an 

acceleration that the winch actuator can generate. However, 

it cannot pull down the mass; the downward acceleration is 

limited by gravity. Therefore, we include the following third 

condition for traceability: 

c)  The cable tension T  given by (10) must be non-

negative at all times. 

Based on the dynamic equations (10) and (11), we can 

make the following observations regarding this third 

condition: 

Remark 1: From (10) it follows that, if the end-effecter mass 

moves slowly with small angular velocity and 

acceleration, 1θ� � , 1θ�� � , the gravity term, 

cos 0mg θ > , dominates and keeps the tension positive. 

Remark 2: From (11), as cable length r  increases the 

angular velocity and acceleration tend to decrease,

0θ →� , 0θ →�� , as r →∞ , and thereby the tension is 

kept positive. 

Remark 3: Condition c) is valid given an apparatus with a 

link between end-effecter and winch that can only 

support tension. We can imagine a setup with a stiff, 

solid rod that is extended and retracted, with the mass at 

the end much larger than the mass of the rod. In that 

case, a negative tension could be supported by the rod, 

and therefore the first and second conditions only are 

sufficient for traceability. 

C. Divergence/Convergence of cyclic path tracing 

In a typical pendulum, neglecting damping, the energy in 

the system stays constant and is merely transferred between 

potential and kinetic energy, arriving at the same state in 

which it began after one complete cycle. In the Winch-Bot, a 

motor is adding and removing energy through work done in 

the tension of the cable. While tracing a path, it is not 

intuitive whether the system will return to the initial 

conditions after a complete cycle or whether the energy will 

diverge or converge. In this section we will prove that due to 

the symmetric nature of path tracing, like a typical fixed-

length pendulum, given a path that is geometrically 

symmetric, the state of the system will return to the same 

state after each complete cycle. 

Proposition: 

The dynamic equations given by  

 ( ) 2 cosT mr m r r mgθ θ θ′ ′′= + − +�� �  (12) 

 
22 sinr g

r r

θ
θ θ

′
= − −�� �  (13) 

have a repetitive, periodic solution (which depends on the 

initial velocity alone) that perfectly traces that path while 

performing zero net-work on the system after each period as 

long as the path to be traced is symmetric about 0θ = . 

Additionally, this trajectory can be implemented on the 

Winch-Bot as long as the geometric path is traceable while 

 
 

Fig. 4. The path to be traced must have a one-to-one correspondence 

with the angle of the string. 

1257



  

maintaining strictly-positive tension. In other words, given a 

symmetric path, the total work done by the winch in one part 

of the swing is cancelled by the work done on the winch in 

another, which results in a cyclic trajectory that neither 

diverges nor converges. 

Proof: 

By solving for the work done on the system by the winch, 

we can find the complete energy of the system at all points 

in a cycle. Here we can define work as force× distance, in 

this case there are two: the change in cable length r times the 

cable tension T, and the change in θ  times the moment 

about the origin O  created by gravity. See Fig. 5. Because 

we know that the second term results in a potential energy, 

and we are returning to the same point, we know the net 

change in potential energy is zero and so we can remove that 

term. Because the change in θ  is perpendicular to the 

tension, the only remaining term is the tension and the 

change in cable length. 

The complete differential work term can be written as 

 Work T rδ δ= − , (14) 

and around one complete cycle we can perform a closed-

loop integration to find 

 ( ),Work T drθ θ= − ∫ �
� . (15) 

Substituting the results from Eq. (12) and dr r dθ′= , we 

write Work as 

 ( )2 2 cosmr r r mr mr g dθ θ θ θ ′ ′′ ′ ′− + − + ∫ �� �
� . (16) 

This can be abbreviated as 

 2 cosA B C dθ θ θ θ − ⋅ + ⋅ + ⋅ ∫ �� �
�  (17) 

where 

 ( )

2
,

,

A mr

B r r mr

C mr g

′=

′′ ′= −

′=

 (18) 

This loop integral starts from a 1
θ  and monotonically 

increases to 2
θ , then reverses back monotonically to 1

θ (as 

shown in Section III-B-b). Because of this, we can separate 

the loop integral into two line integrals, one for the 

monotonically increasing portion of time, namely: 

 

2

1

2 cosWork A B C d
θ

θ θ θθ
θ θ θ θ − = + + ∫ �� �  (19) 

and one for the monotonically decreasing portion, where we 

substitute θ−  for θ : 

 

( ) ( ) ( )
1

2

2

cosA B C d
θ

θ θ θθ
θ θ θ θ

− − −

 + ⋅ − + ⋅ − + −  ∫ �� �  (20) 

Combining these and swapping the limits of integration, we 

get  

 

( ) ( ) ( )

2

1

2

1

2

2

cos

cos

Work A B C d

A B C d

θ

θ θ θθ

θ

θ θ θθ

θ θ θ θ

θ θ θ θ
− − −

 − = + + 

 − ⋅ − + ⋅ − + −
  

∫

∫

�� �

�� �

. (21) 

We can now solve for the coefficients from (18) and find 

 ( )
( )

2

2

2

2

dr
A m mr A

d

d r dr
B r m r r mr

dd

dr
C m g mr g C

d

θ θ

θ θ θ

θ θ

θ

θθ

θ

−

− − −

−

 
′= = = 

− 

 
′′ ′ = − = − −

  −− 

 
′= = − = − 

− 

. (22) 

Clearly, A is an even function, and C is odd, but B isn’t 

obvious. So now we substitute and can rewrite (21) and 

cancel most of the terms, finding 

 

( )2 2
m r r

Work

′ ′−

− =
( )

( )

2
r r mr

r r

θ θ

θ

θ
−

′+ −

′′ ′′+ −

��

�

( )

2

cos cos

mr θ

θ θ

′

+ −

�

2

1

d

mr g

θ

θ
θ

 
 
 
 
 
 
 

′  

∫ . (23) 

Therefore as long as r r
θ θ−

=
 
(and thus symmetric), 

 0loopWork = , 

Q.E.D. 

Here we have solved for a sufficient criterion for 

repetitive tracing, but not necessary. There may be other 

ways to maintain repetitiveness, such as a non-holonomic 

controller which strays from the path to be traced and does 

net work, but such a controller will be discussed in future 

work. 

IV. IMPLEMENTATION 

A. Partial Feedback Linearization 

In implementation, it is our goal to define a controller for 

u  that forces the system’s closed-loop dynamics to trace a 

geometric path. This requires the cable length to have time 

trajectories of desired
r , desired

r� , and desired
r��  where these are 

found from the definition of the path to be traced. 

Specifically,  

 ( )desired
r r θ=  (24)  

 
desired

dr
r

d
θ

θ
= ��  (25)  

  
2

2

2desired

d r dr
r

dd
θ θ

θθ
= +� ���� . (26)  

We will use partial feedback linearization to force the 

acceleration of the cable length to be that of the desired 

 
 

Fig. 5. The only net work over a cycle would be performed by the 

Tension because the gravity is a conservative force. 
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trajectory such that perfect tracing will occur. First we 

define error terms 
desired

r r r= −� , 
desired

r r r= −�� � � , and 

desired
r r r= −��� �� �� . Replacing /T m  by input u  in our dynamic 

equation (4) yields 

 
2cosr g r uθ θ= + −��� . (27)  

By defining our input as 

 ( ) 2 cosdesired d pu r K r K r r gθ θ=− − − + +� ��� � �  (28)  

(where 
,d pK K  are negative constant) and then substituting it 

into our plant dynamics, we show that the nonlinear terms 

cancel leaving the final equation of the cable length, 

 0
d p

r K r K r+ + =�� �� � � . (29)  

This system has two poles in the left half-plane and 

therefore 0r →� , and thus our cable length dynamics 

converge to the desired dynamics. 

B. Prototyping 

Whereas the idea of a single-axis winch controlling the 

length of a cable seems simple, the implementation had 

some problems to overcome. One such problem was how to 

measure the cable angle without introducing measurement 

dynamics, while obtaining a high enough measurement 

frequency to facilitate taking the time derivative 

mathematically for use in closed-loop control. In our 

prototype, this was done by casting a shadow of the cable 

onto an array of 1280 optical sensors spaced 63.5 µm apart 

read by a high-speed FPGA. With this, a complete 

measurement of the angle could be obtained at a frequency 

of approximately 1 kHz, fast enough to take a time 

derivative mathematically. 

Another problem was the elasticity of the cable causing 

unwanted dynamics. The cable we used was thin Kevlar 

string, which has a high stiffness, thus virtually eliminating 

the dynamic effects due to the elasticity of the cable. 

The end-effecter was a 25 mm diameter steel sphere 

directly attached to the cable. The sphere had a much larger 

mass than the entirety of the Kevlar string, and so our 

lumped mass model is kept accurate. Our final 

implementation can be seen in Fig. 6. 

V. SIMULATION AND EXPERIMENTATION 

Using MATLAB’s differential equation solver, we were 

able to simulate this system to a high degree of accuracy. 

We used this to study some of the feasibility requirements 

discussed in Section III. We will focus on criteria b) and c). 

b)  Path length s  and cable angle θ  must have a one-to-

one correspondence. 

Shown in Fig. 7 is a particular path that is defined by the 

curve ( )1/ 2 cos 5 2y x= ⋅ +  that has a one-to-one 

correspondence within a range max
θ θ< , but beyond which 

the path is not reachable. When the initial conditions are low 

enough such that the range of motion never reaches the  
 

Fig. 6. Our Winch-Bot prototype included a rotating stage to 

investigate 3D motions, but ultimately was never used. These are the 

main components of the prototype. 

 
 

Fig. 8. Tracing a wave with initial conditions over a threshold results 

in tensions that become negative, as shown in Fig. 8(b). 

 

 
Fig. 7. While a path may be tracable in particular areas, there may be 

zones which invalidate the tracing, as shown here. 
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untraceable areas, the path can be successfully traced. 

c) The cable tension T  must be non-negative at all times. 

By using a similar path to be traced as was done in the 

previous simulation, we see that large changes in cable 

length will cause the tension to become negative in areas 

where the mass must be forced downward faster than gravity 

can provide. Fig. 8 is an example of a path that the Winch-

Bot would be unable to trace. As can be seen in Fig. 8(b), 

the tension drops below zero cyclically. This is because 

immediately after time 
0

t  the end-effecter, with initial 

velocity 
0

V , is to move downward to trace the path. Here, 

path tracing demands acceleration downward greater than 

that of gravity, and so tension must be negative to drive the 

system along the path. As the end-effecter stops, reverses, 

and returns to this same area, it is now moving upward so 

quickly that path tracing demands downward acceleration 

greater than that of gravity, thus the negative tension. 

In addition to the feasibility examples, we simulated the 

partial feedback linearization controller described in Section 

IV. We simulated a system with a target geometric path 

defined by the diagonal line 1/ 2 2y x= ⋅ − , as shown in Fig. 

9. It was started at 0θ = with 0θ >� , and with a cable length 

r  = 1 m such that it starts away from the path to be traced. 

These simulation results are shown in Fig. 9 and Fig. 10. 

On our prototype Winch-Bot, we implemented a 

simplified controller with low gains to trace the geometry of 

a curve simulating a wing surface, shown in Fig. 11. Fig. 

11(b) shows the resulting distance errors of the tracing. 

VI. CONCLUSION 

By properly defining and studying the properties of 

arbitrary path tracing, we’ve shown that despite the Winch-

Bot having only a single degree-of-freedom, we can trace an 

arbitrary geometric path in space by sacrificing the ability to 

control the time trajectory of the tracing. This is still very 

useful in the planned applications, and so we developed a 

controller to trace these geometric paths. Upon simulation, 

we validated our theoretical understanding of the feasibility 

of certain geometric paths, and were able to show our 

controller succeeds in converging toward our desired path to 

trace. 
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Fig. 9. With 500, 250d pK K= =  and starting with initial length of 1 m 

and initial angular velocity of 2.25 rad/sec, this system converges to 

the desired path, a line at a diagonal to gravity define above. 

 

 
 

Fig. 10. With an angular limit cycle of a misshapen egg, the phase 

diagram above differs greatly from the traditional pendulum. Fig. 

10(b) shows that the string length error quickly converges to zero.  

 
 

Fig. 11. Using an implemented controller with low gain, we were able 

to show path tracing of a wing-like surface. 
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