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Abstract— This paper presents a novel approach to data
fusion for stochastic processes that model spatial data. It
addresses the problem of data fusion in the context of large
scale terrain modeling for a mobile robot. Building a model
of large scale and complex terrain that can adequately handle
uncertainty and incompleteness in a statistically sound manner
is a very challenging problem. To obtain a comprehensive
model of such terrain, typically, multiple sensory modalities
as well as multiple data sets are required. This work uses
Gaussian processes to model large scale terrain. The model
naturally provides a multi-resolution representation of space,
incorporates and handles uncertainties appropriately and copes
with incompleteness of sensory information. Gaussian process
regression techniques are applied to estimate and interpolate
(to fill gaps in unknown areas) elevation information across the
field. In this work, the GP modeling approach is extended to
fuse multiple, multi-modal data sets to obtain a best estimate
of the elevation given the individual data sets. The individual
data sets are treated as different noisy samples of the same
underlying terrain. Experiments performed on sparse GPS
based survey data and dense laser scanner data taken at mine-
sites are reported.

I. INTRODUCTION

Large scale terrain mapping is an essential problem in
a wide range of applications, from space exploration to
mining and more. For autonomous robots to function in
such high-value applications, an efficient, flexible and high-
fidelity representation of space is critical. The key challenges
in realizing this are that of dealing with the problems of
uncertainty, incompleteness and handling highly unstructured
terrain. Uncertainty and incompleteness are virtually ubiq-
uitous in robotics as sensor capabilities are limited. The
problem is magnified in a field robotics scenario due to
sheer scale of the application (for instance, a mining or space
exploration scenario).

State-of-the-art surface mapping methods employ repre-
sentations based on triangular tesselations. This process,
however, does not have a statistically sound way of in-
corporating and managing uncertainty. The assumption of
statistically independent data is a further limitation of many
works that have used these approaches. While there are
several interpolation techniques known, the independence
assumption can lead to simplistic (simple averaging like)
techniques that result in inaccurate modeling of the terrain.
Further, the limited perceptual capabilities of sensors renders
most sensory data incomplete. In [1], a Gaussian process
based terrain modeling approach is proposed that provides
a multi-resolution representation of space, incorporates and
manages uncertainty in a statistically sound way and handles
spatially correlated data in an appropriate manner. This work

builds on the GP modeling approach. It proposes a data
fusion method for data that are modeled using Gaussian
processes. It demonstrates the benefits of the data fusion
approach in the context of overcoming sensor limitations.

Typically, sensory data is incomplete due to the presence
of entities that occlude the sensors view. This is compounded
by the fact that every sensor has a limited perceptual capa-
bility i.e. a limited range and limited applicability (eg. one
sensor may not be usable in a certain area that another sensor
can be accessed with). Thus, most large scale modeling ex-
periments would ideally require multiple sensory snapshots
and multiple sensors to obtain a more complete model. These
sensors may also have different characteristics (accuracies).
The problem is in fusing these multiple and multi-modal
sensory data sets - this is the theme of the paper. Terrain
data can be obtained using numerous sensors including 3D
laser scanners and GPS. 3D laser scanners provide dense
and accurate data whereas a GPS based survey typically
comprises of a relatively sparse set of well chosen points of
interest. The experiments reported in this work use data sets
obtained from both these sensors to develop an integrated
picture of the terrain.

The contribution of this work is a novel approach to
fusing multiple, multi-modal data sets towards obtaining a
comprehensive model of the terrain under consideration. The
fusion technique itself is generic and applicable as a general
Gaussian process fusion methodology. The fusion approach
is based on the underlying principles of the Gaussian process
itself and hence is well founded. Experiments conducted
using real data sets obtained from GPS and laser scanner
based surveys in real application scenarios (mining) are
reported in support of the proposed approach.

II. RELATED WORK

State-of-the-art representations used in applications such
as mining, space exploration and other field robotics sce-
narios as well as in geospatial engineering are typically
limited to elevation maps ([2] and [3]), triangulated irregular
networks (TIN’s) ([4] and [5]), contour models and their
variants or combinations ([6] and [7]). Each of these methods
have their own strengths and preferred application domains.
The former two are more popular in robotics. All of these
representations, in their native form, do not handle spatially
correlated data effectively and do not have a statistically
correct way of incorporating and managing uncertainty.

Gaussian processes [8] (GP’s) are powerful non-parametric
learning techniques that can handle these issues. They pro-
duce a scalable multi-resolution model of the large scale
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terrain under consideration. They yield a continuous do-
main representation of the terrain data and hence can be
sampled at any desired resolution. They incorporate and
handle uncertainty in a statistically sound way and represent
spatially correlated data in an appropriate manner. They
model and use the spatial correlation of the given data points
to estimate the elevation values for other unknown points of
interest. In an estimation sense, GP’s provide the best linear
unbiased estimate [9] based on the underlying stochastic
model of the spatial correlation between the data points.
They basically perform an interpolation methodology called
Kriging [10] which is a standard interpolation technique used
in the mining industry. GP’s thus handle both uncertainty and
incompleteness effectively.

Recently, Gaussian processes have been applied in the
context of terrain modeling - see [11] and [1]. The former
work is based on using a non-stationary equivalent of a
stationary squared exponential covariance function [12] and
incorporates kernel adaptation techniques to adequately han-
dle both smooth surfaces as well as inherent (and charac-
teristic) surface discontinuities. It introduces the idea of a
“hyper-GP”, using a stationary kernel, to predict the most
probable length scale parameters to suit the local structure.
It also proposes to model space as an ensemble of GP’s
to reduce computational complexity. The latter work [1],
proposes the use of non-stationary kernels (neural network)
to model large scale discontinuous spatial data. It shows that
using a suitable non-stationary kernel can directly result in
modeling local structure and smoothness. It also proposes
a local approximation methodology to address scalability
issues relating to the application of this approach to large
scale data sets. This approximation technique is based on
an efficient hierarchical representation (KD-tree) of the data.
It also compares performances of GP’s based on stationary
(squared exponential) and non-stationary (neural network)
kernels as well as several other standard interpolation meth-
ods applicable to elevation maps and TIN’s, in the context
of large scale terrain modeling.

This paper builds on the work presented in [1]. It extends
the GP terrain modeling approach to handle multiple multi-
modal data sets. It treats the data-fusion problem as a
problem of combining different noisy data samples of the
common entity being modeled. In the Machine Learning
community, this idea is referred to as heteroscedastic GP’s
([13], [14], [15] and recently, [16]). Both [13] and [16]
are particularly relevant to this work. They model the noise
variance using a separate GP in addition to the GP governing
the noise free output. While Goldberg et al [13] follow
use Markov Chain Monte-Carlo techniques (MCMC) to
estimate the posterior noise variance, Kersting et al [16]
propose a maximum-likelihood approach (faster) using an
EM like iterative optimization procedure to compute the
noise variances. The fusion approach presented in this paper
is based on the concept of heteroscedastic GP’s. It treats
individual terrain data sets as homoscedastic in nature but
different data sets considered together form a heteroscedastic
system.

Two other related works that attempt the problem of data
fusion in the context of Gaussian processes include [17]
and [18]. While the former is based on similar assumptions
to this work, it bears a “hierarchical learning” flavor to it
in that it essentially demonstrates how a GP can be used
to model an expensive process by (a) modeling a GP on
an approximate or cheap process and (b) using the many
input-output data from the approximate process and the few
samples available of the expensive one together in order to
learn a GP for the expensive process. The work [18] attempts
to generalize arbitrary transformations on GP priors through
linear transformations. It hints at how this framework could
be used to introduce heteroscedasticity and how information
from different sources could be fused. However, specifics on
how the fusion can actually be performed are beyond the
scope of the work.

The contribution of this work is a novel method of fusing
multiple multi-modal large scale terrain data sets into an
integrated model. The approach is similar to the idea of
heteroscedastic GP’s as presented in [13] and [16]. However,
this work builds up on the ideas proposed in [1], it does
not use a separate GP to model noise and does not rely on
computationally expensive MCMC based approaches. The
approach is tailored towards handling large data sets (∼1
million data points per data set) and thus relies heavily on
the local approximation methods. Experiments conducted on
multiple multi-modal data sets taken from real application
scenarios (mine sites) are reported and findings discussed.
Note that this work develops only the fusion methodology.
The registration of individual data sets to a common refer-
ence frame is assumed given for this work.

III. APPROACH

A. Problem Definition

Fig. 1. The overall process of learning and using Gaussian processes
to model terrain. Data from any sensor along with noise estimates are
provided as the input to the process. The modeling step then learns the
appropriate Gaussian process model (hyper-parameters of the kernel) and
the result of the modeling step are the GP hyperparameters together with
the training/evaluation data. These are then used to perform GP regression
to estimate the elevation data across any grid of points, of the users interest.
The application step produces a 2.5D elevation map of the terrain as well
as an associated uncertainty for each point.

Gaussian process fusion in the context of combining
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multiple data sets for large-scale terrain modeling can be
understood as follows. Given multiple sensors (GPS, laser,
etc.) that provide terrain data sets, each spanning a certain
area and comprising of a set of points (x, y, z) in 3D
space, the objective of this work is to develop a single
multi-resolution probabilistic representation of the terrain.
This will enable better handling of typical individual sensor
limitations such as incompleteness due to occlusions and
limited perceptual capability (range and applicability). The
prior work [1] detailed the basic step of modeling a single
data set from a single sensor using Gaussian processes and
applying it to estimate terrain elevation in an area/resolution
of interest. This is summarized in Figure 1.

B. Fusing multiple data sets

The fusion methodology is based on two underlying ideas
1) Data from the same entity can be modeled using a

single set of GP hyperparameters with just the noise
parameter varying between data sets. Thus, the data
sets are considered as different noisy samples of a
common terrain that has to be modeled.

2) The fusion problem is treated as a standard GP re-
gression/estimation problem with data having different
noise parameters. The formulation is similar to the
heteroscedastic GP formulation described in [13] and
[16].

Given multiple data sets (possibly multi-modal) of the ter-
rain being modeled, the objective is to estimate the elevation
at a point given all prior data sets as well as the respective
GP’s (hyperparameters) that are used to model them. This
can be specified as

E[ f∗(x∗) ] , var(f∗(x∗)) | Xi , GPi , x∗ , (1)

where Xi are the given data sets, GPi are their respective GP
model hyperparameters and i varies from 1 to the number
of data sets available.

The joint distribution of any finite number of random
variables of a GP is Gaussian. Thus, the joint distribution
of the training outputs z and test outputs f∗ given this prior
can be specified by[

z
f∗

]
∼ N

(
0 ,

[
K(X,X) + Σ K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
, (2)

where
z = [ z1 , z2 , z3 , ... , zn ]′

is the output elevation values of the selected training data
from the individual data sets,

X = [ X1 , X2 , X3 , ... , Xn ]

are the input location values of the selected training data
from the respective individual data sets and

Σ = diag[ σ2
1{1 ... N1} , σ

2
2{1 ... N2} , σ

2
n{1 ... Nn} ]

is a diagonal noise matrix where each noise term is repeated
as many times as the number of training data taken from the
corresponding data set, denoted by N1 , N2 , . . . , Nn. The

experiments performed in this paper use the neural network
kernel, although, any kernel ([8]) may be used so long as the
same kernel is used for modeling each of the individual data
sets. For N training points and N∗ test points, K(X,X∗)
denotes the N × N∗ matrix of covariances evaluated at all
pairs of training and test points. K(X,X), K(X∗, X∗) and
K(X∗, X) can be similarly defined.

f̄∗ = K(X∗, X) [K(X,X) + Σ]−1 z (3)

cov(f∗) = K(X∗, X∗) − K(X∗, X)[K(X,X)+Σ]−1K(X,X∗)
(4)

The mean and variance of the elevation estimate can thus
be obtained by applying Equations 3 and 4, incorporating
multiple data sets in the component terms as shown before.
This estimate is the conditional estimate at a desired point
given the multiple and possibly multi-modal data sets and
their respective GP models. The data sets may thus be fused
to generate integrated and comprehensive terrain models.

C. Mathematical Properties

1) Batch estimator: Equations 3 and 4 provide the batch
fusion estimator, ie. they provide the conditional mean and
variance in elevation given all the data sets taken together.

2) Decrease in uncertainty: It can be shown that the
formalism adopted in this paper guarantees that with the
addition of data sets (any number, from any sensor), the
uncertainty in the fused elevation estimate cannot increase. If
the new or incoming data set has relevant information for the
prediction at a query point in the first data set, the posterior
uncertainty will decrease; if there is no relevant information
(assume, for instance, no points are selected from successive
data sets for a particular query point), the uncertainty will
remain same.

The detailed derivation is not included here due to paucity
of space, however, it is based on the following idea - with-
out loss of generality, the difference between the posterior
uncertainty using a single data set to that obtained using two
data sets can be shown to be a positive semi-definite matrix.
This change in uncertainty will be based on the “information-
gain” provided by points of the successive data sets to the
prediction at a query point using the first data set. For two
data sets, this is specified by

α21 =

[
K−111 K12K̃

−1K21K
−1
11 −K−111 K12K̃

−1

−K̃−1K21K
−1
11 K̃−1

]
(5)

where K̃ = K22 − K21K
−1
11 K12, K11 = K(X1, X1) +σ2

1I
represents the covariance matrix of the training data selected
(for a query point) from the first data set. K12 = K(X1, X2),
K21 = K(X2, X1) and K22 = K(X2, X2) + σ2

2I can be
similarly defined. This term is always positive semi-definite
guaranteeing that the uncertainty will either remain the same
or decrease but never increase. This condition is used in
the experiments (Section IV) to verify if the fusion actually
occurs.
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3) Recursive estimator:

E(f∗|X1, X2) =
E(f∗|X1) + [K(X∗, X1),K(X∗, X2)]α21 [z1, z2]′

(6)

cov(f∗|X1, X2) =

cov(f∗|X1) − [K(X∗, X1),K(X∗, X2)]α21

[
K(X1, X∗)
K(X2, X∗)

]
(7)

The information gain term (Equation 5) can be used to
derive the conditional mean and variance in a recursive
form, respectively specified by Equations 6 and 7. This form
enables a recursive fusion process wherein the previous best
estimate (and its uncertainty) together with the information
gain from the new data can be used to derive the new fused
elevation estimate and its uncertainty. Equation 7 also shows
that the uncertainty will not increase with the addition of
new data.

D. Learning the hyperparameters
Learning of hyperparameters is based on the maximum

marginal likelihood framework demonstrated in [1]. Only
one set of hyperparameters are used with the noise parameter
alone varying across data sets. These hyperparameters may
be obtained by selecting training data from each of the data
sets and doing a “joint learning” exercise. This method is
computationally expensive and is limited by the computa-
tional resources available.

Fig. 2. The fusion process: For a first data set - a full GP learning procedure
is done as in [1]. Thereafter for every successive data set of the same entity,
the hyperparameters of the first GP are fixed and only the noise parameter
is adjusted to model the individual data sets. The end result is a single set of
GP hyperparameters along with a set of noise parameters corresponding to
each of the data sets. The estimation (GP application) process estimates the
expected elevation at a query point given the different noisy data obtained
from the respective data sets, in its vicinity.

An alternative approach to GP-hyperparameter learning in
the context of this paper is shown in Figure 2. Here, the

first data set in consideration is modeled using standard GP
modeling procedure described in [1]. Thereafter, for each
other data set, a constrained optimization method is adopted
where the hyperparameters obtained before are re-used, the
noise hyperparameter alone being modified in order to model
the successive data sets. The ordering of the data sets is
irrelevant. This approach is akin to modeling successive data
sets in terms of the existing data set and then fusing them
using Equations 3 and 4. The advantages of this approach
include the bounding of the computational complexity and
the ability to run the optimization operations in parallel. The
former is particularly important in the context of this work.

E. Point selection strategy
The prior work [1] was concerned with the GP model-

ing of a single terrain data set. It used a KD-tree based
“moving window”/nearest neighbor approximation in the GP
application/inference stage. The work described in this paper
attempts to fuse information from the first data set with
multiple other data sets. This involves the selection of a
relevant subset of points from the second and successive data
sets for the GP regression process. While the default option
of using the same KD-tree approximation on every other data
set exists, this work attempted to perform a more systematic
analysis of point selection methods from successive data sets.
The following methods were tested -

1) Initial point selection
a) The default KD-tree based local approximation

that selects the n nearest neighbors to the query
point.

b) The distance between the query point and all n
points from the first data set used for prediction
is computed. For successive data sets, all points
within the maximum value of the distance are
used.

c) Similar approach to 1b but the median value
of the distance was used. The median (and not
mean) was chosen as it was thought to be less
sensitive to exceptional cases.

2) Distance based filtering - This is applied only to ap-
proach 1a from the initial point selection. The objective
was to filter out points from successive data sets which
were not in the same neighborhood as the points from
the first data set. This would occur when there are
inaccuracies in registration or when sensors with very
different characteristics (resolution, noise) are used.
The following two options were tested:

a) The distance between the query point and all n
points from the first data set used for prediction
is computed. For successive data sets, only the
subset of the n nearest neighbors that lie within
the maximum value of the distance are used.

b) Similar approach to 2a but the median value of
the distance was used.

3) Entropy based filtering - An entropy based selection
method would choose only points that would signifi-
cantly reduce the uncertainty in the resulting elevation
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estimate (maximum decrease in entropy or maximum
information gain [19]). The following two options were
tested:

a) Single-shot entropy computation - This computes
the entropy reduction for each point considered
individually, taken with the points from the first
data set. Subsequently, points which reduce en-
tropy most (empirically set threshold) are chosen.
The number of points does not exceed the number
of points chosen from the first data set - n.

b) Incremental entropy computation - This computes
entropy reduction incrementally. In each cycle,
points from the first data set as well as points
selected from previous cycles are taken together
with all other (not yet selected) points individ-
ually. The point which reduces entropy most is
then selected for the current cycle. In this way,
the final set of points together reduce entropy the
most.

Entropy reduction was computed as the log of the ratio
of the posterior uncertainty of a query point after including
a certain training/evaluation point, to its uncertainty without
including the training/evaluation point in consideration. It is a
measure of the information content in the training/evaluation
point in consideration, in relation to performing GP regres-
sion at a particular query point. The entropy change of the
qth point of the pth data set is specified by Equation 8

Ipq = log
(
k(x∗|X1, Xp,q)

k(x∗|X1)

)
, (8)

where k(x∗|X) is the posterior uncertainty (of the estimate
obtained from GP regression) of query point x∗, obtained
from Equation 4 as

k(x∗|X) = k(x∗, x∗)− k(x∗, X)[K(X,X) + Σ]−1k(X,x∗)

Thirteen relevant combinations of these methods (1a only,
1a + 2a, 1a + 2b, 1a + 3a, 1a + 3b, 1a + 2a + 3a, 1a +
2a + 3b, 1a + 2b + 3a, 1a + 2b + 3b, 1b + 3a, 1b + 3b,
1c + 3a, 1c + 3b) were tested in the context of fusing (a) a
sparse data set with a dense one, (b) a dense data set with a
sparse one and (c) two dense data sets. The data sets were
real mining data sets (also used in Section IV) taken with
GPS (sparse) and RIEGL laser scanner (dense) sensors of a
mine pit. Paucity of space necessitates only mentioning the
final conclusions.

No significant gain in prediction accuracy was achieved
by using approaches 1b or 1c, but computational complex-
ity significantly increased. Distance based filtering reduced
prediction error as some of the nearest neighbors from
successive data sets were not situated within the local region
spanned by the points from the first data set. Using very
distant points lead to smoothing and an increase in error.
Both 2a and 2b performed similarly with the latter producing
only marginally better results due to a more conservative
rejection of neighboring data points. The experiments in this
work use 2a to enable a balance between point selection and

the resulting prediction error. Both entropy based selection
methods also resulted in improved performance. Approach
3b was too expensive even with respect to 3a for it to be
applied to large scale experiments. While a combination of
1a, 2a (or 2b) and 3a proved effective in terms of prediction
accuracy, the gain obtained was not justified by the increase
in computational complexity (and time) as a result of using
3a. This was particularly apparent when sampling the GP
model at a desired resolution; typically, this would involve
performing GP regression for as many as one million points
to get the final elevation map. Thus, the final choice for
point selection for this work was a combination of a nearest
neighbor point selection (1a) together with a distance based
filtering step (2a).

F. Heteroscedastic Prediction

Equations 3 and 4 provide the mean elevation estimate
and uncertainty (covariance) of GP sampled at points X∗
assuming no noise in the query points. If the predictions
need to be made at query points that are as uncertain as the
data at hand, Equation 4 will be modified to

cov(f∗) = K(X∗, X∗) +R(X∗)−
K(X∗, X)[K(X,X) + Σ]−1K(X,X∗)

(9)
Here R(X∗) represents the noise or uncertainty of the
query points themselves. Typically this is not known. For
heteroscedastic GP regression, estimation of the noise hy-
perparameters of the data points as well as the query points
is a key issue. The works [13] and [16] deal with the problem
by maintaining two GP’s - one to estimate the quantity of
interest given the expected values of the noise parameters
(in addition to the data sets and GP hyperparameters) and
the other GP to estimate the noise hyperparameters given the
data points and query points. The former is a straightforward
application of Equations 3 and 9. The latter GP is the key
issue as it provides the noise values to the former GP. Both
[13] and [16] make an intuitive approximation - the noise
values obtained from the second GP are approximated by
their expected values. This work adopts the same idea but
implements it differently. As the query points can be assumed
to be as noisy as the training data and the fact that this
work adopts a local approximation methodology towards GP
regression [1], the query points are assigned a noise value
that is the expected value of the noise terms of data taken
from the individual data sets. The individual noise terms are
learnt as before (through either joint learning or constrained
optimization). Thus,

R(x∗) =
Σn

i=1Niσ
2
i

Σn
i=1Ni

where x∗ εX∗ is a query point, Ni are the number of training
data points chosen from the ith data set (through the point
selection step, Section III-E) and σ2

i is the noise variance of
the (homoscedastic) GP modeling the individual data sets. An
inverse distance based weighted average of the noise values
could also be used in this context.
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IV. EXPERIMENTS

Fig. 3. GPS data: GPS based survey taken at Mt. Tom Price. It is a sparse
data set consisting of 34,530 points spread over 1437.2 m x 1879.5 m x
380.5 m

Fig. 4. Laser data 1: RIEGL Laser scanner based dense scan taken at
Mt. Tom Price. It consists of over 850,000 points spread over 2146.6 m x
2302.1 m x 464.3 m

Three kinds of experiments were performed: (1) using
simulated data (fusing different noisy samples from a sine
wave), (2) fusing multiple uni-sensor (RIEGL laser scanner)
data sets of a mine pit and finally, (3) fusing multiple multi-
sensor (RIEGL laser scanner and GPS survey) of a large
mine pit. Due to paucity of space, only the last experiment
is reported here.

Three data sets of the same area and of different charac-
teristics were acquired from Mt. Tom Price mine in Western
Australia. The first was a dense wide area (2146.6 m x 2302.1
m x 464.3 m) RIEGL laser scan comprising of over 850,000
points. The second was sparse GPS Survey having only about
34,530 points spread over 1437.2 m x 1879.5 m x 380.5 m.
The third data set was a dense (about 400,000 points) RIEGL
laser scan spread over a relatively smaller area as compared

Fig. 5. Laser data 2: RIEGL Laser scanner based dense scan taken at
Mt. Tom Price. It consists of about 400,000 points spread over 1416.6 m x
2003.4 m x 497.8 m

Fig. 6. The three (GPS survey and two laser scans) data sets overlaid on
one another for a clearer picture of the site in consideration. The points
in blue represent Laser scan 1 (Figure 4), the points in red represent the
second laser scan (Figure 5) and finally, the points in green represent the
GPS survey data (Figure 3).

to the first scan (1416.6 m x 2003.4 m x 497.8 m). Figure 3,
4 and 5 respectively depict the data sets. Figure 6 depicts the
three data sets overlaid on each other to clarify the overall
picture of the terrain in consideration.

The objective was to demonstrate the benefits of GP data
fusion using these data sets. The sparse GPS data is first
modeled alone, then fused with the first laser data set and
then the pair are fused with the third laser data set. The
same test is repeated starting with the dense wide area scan
and then fusing the two other data sets. In both cases the
root mean squared error (RMSE) and average change of
uncertainty of a randomly selected set of test points different
from the training/evaluation data is evaluated after each step
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of the fusion process. The results of the fusion process are
summarized in Tables I and II. The former describes results
of the GPS-Laser fusion process whereas the latter describes
the Laser-GPS fusion process. Figures 7 and 8 depict the
surface map and uncertainty estimates obtained after fusing
the GPS data with the two laser scanner data sets.

As shown in Table I and II, the uncertainty decreases with
each successive fusion step. Thus, the required condition for
fusion occurs. In Table I, the uncertainty reduction is more
significant when the sparse GPS data is fused with the first
dense laser scan; when the second dense laser scan is also
fused, the gain in information is less than before - this is
intuitive and expected. Further, it is observed that the RMSE
also reduces with each fusion step. This clearly justifies the
benefits of data fusion in such a context. In Table II, the
RMSE of laser data 1 improves with the fusion of the GPS
data because of the latter’s more uniform spread. But the
gain in uncertainty is more significant with the inclusion
of Laser data 2 in the fusion process. This is because of
the much higher density information provided by the laser
scanner data set, albeit in a smaller area as compared to the
first laser scanner data. Even in Table II, both the uncertainty
and RMSE decrease with each successive fusion step. This
clearly demonstrates the occurrence and benefits of data
fusion in the context.

Note that as mentioned in Section III-D, the order in which
the data sets are fused is irrelevant. The idea behind the
experiments performed was to form an “intial state” based
on any one data set and progrssively improve knowledge of
that particular state using each other data set. The RMSE’s
obtained in each case depend on the points selected from
the first data set - this obviously varies with different “first”
data sets and hence the different values for the RMSE’s in
Tables I and II. However, to demonstrate the data fusion,
the same set of points are evaluated after each fusion step
to show a progressive improvement in the knowledge of
the elevation of these points. Note also that this work only
considers noise in the observations or output data and focuses
on the data fusion problem. Noise in the input data (x, y)
may be incorporated as demonstrated in works such as [20].

Fig. 8. Uncertainty (in meters) of the predicted elevation map obtained
from the GP fusion of the GPS data and the two laser scanner data sets.
Fringe areas that are not well supported by the individual data sets observe
high prediction uncertainty.

V. CONCLUSION

Gaussian processes were used to model complex, large
scale terrain. This work proposed a novel approach to
fusing multiple, multi-modal data sets to obtain a com-
prehensive model of the terrain under consideration. The
fusion technique itself is generic and applicable as a general
Gaussian process fusion methodology. It is based on the
underlying principles of Gaussian processes and hence is
well founded. The approach proposed and demonstrated in
this work treated the fusion problem as a standard Gaussian
process regression problem using different noisy samples
of the terrain to be modeled. Experiments conducted using
real data sets obtained from GPS and Laser scanner based
surveys in real application scenarios (mining) demonstrate
the viability of the proposed technique. The resulting model
obtained naturally provides a multi-resolution representation
of large scale terrain, effectively handles both uncertainty
and incompleteness in a statistically sound way, provides
a powerful basis to handle correlated spatial data in an
appropriate manner and finally, provides a statistically correct
means of overcoming the limited perceptual capabilities of
sensors used in large scale field robotics scenarios.
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