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The transpose of a real matrix A will be represented as

AT . A vector p expressed in the reference frame q will be

identified as pq . A positive definite matrix A will be referred

as A ≻ 0. Vehicle motion will be represented using two

frames: the navigation frame North East Down (NED) and

the body frame.

Assumption n. 1: NED will be assumed as inertial

frame.

Velocity expressed in the body frame b can be decomposed

in the navigation frame using the rotation matrix Rn
b , in

particular:

vn = Rn
b vb

The body frame will be centred in the vehicle Centre of

Buoyancy (COB). The class of vehicle considered is able to

change dynamically the Centre of Gravity (COG) by acting

on a ballast tanks (injecting/ejecting water) and by moving

the internal battery packs along the surge axis. In the case

of the Folaga class vehicles, as it may be expected in other

hybrid vehicles with the same actuation principle, ballast

variation and battery movements are slow compared to other

system dynamics. In particular, the maximum internal mass

rate of change within the Folaga is of 0.020 Kg/s, while

the maximum speed for displacement of the battery pack

is 0.0007 m/s [1]. The Folaga propulsion system is able to

drive the vehicle at a speed of 1-2 m/s. The fact that COG

is moving at slow speed with respect to vehicle speed is

the basis of our approximate analysis in the following: in

particular, in some equations, a quasi-static approximation

will be used, neglecting the velocity of the COG.

III. MODELING THE VEHICLE

To obtain the 6DOF model we are going to consider a

vehicle with a variable mass m(t) placed in the variable

COG (see Fig. 2):

rbg(t) =
Λ + Υ(t)

m(t)
, ṙbg(t) =

Υ̇(t)

m(t)
−

ṁ(t)

m(t)
rbg(t)

where Λ and Υ(t) represent the static and dynamic contri-

bution to the motion of the COG, respectively.

A. Linear Motion

Velocity of the COG with respect to a point o can be

represented as:

vbg = vbo +ωb ∧ rbg, vng = Rn
b v

b
g = Rn

b

(

vbo + ωb ∧ rbg
)

(1)

Assumption n. 2: In the previous equation the term ṙbg
does not appear: as discussed in the previous section, we are

assuming a quasi-static situation in which we can neglect ṙbg
in the kinematic equation. A complete treatment, without this

assumption, can be found in [5].

Taking the derivative of Eq.(1):

v̇bg = v̇bo + ω̇b ∧ rbg + ωb ∧ ṙbg

v̇ng = Rn
b

(

ωb ∧
(

vbo + ωb ∧ rbg
)

+ v̇bo + ω̇b ∧ rbg + ωb ∧ ṙbg
)

Fig. 2. Rigid Body Configuration

Since linear momentum can be expressed as lng = mvng , then

by imposing that the rate of change of lng must be equal to

the external forces we obtain:

dlng

dt
= mv̇ng + ṁvng = Fn

ext, Fn
ext = Rn

bF
b
o

m
[

ωb ∧
(

vbo − rbg ∧ ωb
)

+ v̇bo − rbg ∧ ω̇b + ωb ∧ ṙbg
]

+

+ ṁ
(

vbo − rbg ∧ ωb
)

= Fb
o

which can be rewritten in the following matrix form as:

Fb
o =

(

mI −mS(rbg)
)

(

v̇bo
ω̇b

)

+

+
(

mS(ωb) −mS(ωb)S(rbg)
)

(

vbo
ωb

)

+

+
(

mS(ωb) vbo − S(rbg)ω
b
)

(

ṙbg
ṁ

)

(2)

B. Angular Motion

The angular momentum hb
g can be represented as:

hb
g = hb

o −mrbg ∧ vbg = Ioω
b +mrbg ∧ vbo −mrbg ∧ vbg =

= Ioω
b +mrbg ∧

(

rbg ∧ ωb
)

ḣb
g =İoω

b + Ioω̇
b + ṁrbg ∧

(

rbg ∧ ωb
)

+mṙbg ∧
(

rbg ∧ ωb
)

+

+mrbg ∧
(

ṙbg ∧ ωb
)

+mrbg ∧
(

rbg ∧ ω̇b
)

Since

hn
g = Rn

b h
b
g, ḣn

g = Rn
b

(

ωb ∧ hb
g + ḣb

g

)

then, imposing that rate of change of angular momentum

must be equal to the external moment applied:

dhn
g

dt
= Rn

b

(

ωb ∧ hb
g + ḣb

g

)

= Mn
ext

Mn
ext = Rn

b

(

Mb
o − rbg ∧ Fb

o

)
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which yields to:

ωb ∧
[

Ioω
b +mrbg ∧

(

rbg ∧ ωb
)]

+ İoω
b + Ioω̇

b+

+ ṁrbg ∧
(

rbg ∧ ωb
)

+mṙbg ∧
(

rbg ∧ ωb
)

+

+mrbg ∧
(

ṙbg ∧ ωb
)

+mrbg ∧
(

rbg ∧ ω̇b
)

= Mb
o − rbg ∧ Fb

o

Considering the term:

−rbg ∧ Fb
o =− rbg ∧

{

m
[

ωb ∧
(

vbo − rbg ∧ ωb
)

+v̇bo − rbg ∧ ω̇b + ωb ∧ ṙbg
]

+

+ṁ
(

vbo − rbg ∧ ωb
)}

and since:

−rbg ∧
[

m
(

−rbg ∧ ω̇b
)]

= mrbg ∧
(

rbg ∧ ω̇b
)

−rbg ∧
[

m
(

ωb ∧ ṙbg
)]

=mrbg ∧
(

ṙbg ∧ ωb
)

−rbg ∧
[

ṁ
(

−rbg ∧ ωb
)]

= ṁrbg ∧
(

rbg ∧ ωb
)

−rbg ∧
[

mωb ∧
(

−rbg ∧ ωb
)]

= ωb ∧
[

mrbg ∧
(

rbg ∧ ωb
)]

mṙbg ∧
(

rbg ∧ ωb
)

=−mrbg ∧
(

ωb ∧ ṙbg
)

+

+mωb ∧
(

rbg ∧ ṙbg
)

we can conclude that:

ωb ∧ Ioω
b + İoω

b + Ioω̇
b −mrbg ∧ ωb ∧ ṙbg +mωb ∧ rbg ∧ ṙbg+

+mrbg ∧
(

ωb ∧ vbo
)

+mrbg ∧ v̇bo + ṁrbg ∧ vbo = Mo

The moment of inertia Io can be expressed as:

Io = −mS(rbg)S(r
b
g)

It then follows that:

İo = −ṁS(rbg)S(r
b
g)−mṠ(rbg)S(r

b
g)−mS(rbg)Ṡ(r

b
g)

and since

−mṙbg ∧ rbg ∧ ωb = mrbg ∧ ωb ∧ ṙbg −mωb ∧ rbg ∧ ṙbg

the term İoω
b can be rewritten as:

İoω
b =− ṁS(rbg)S(r

b
g)ω

b −mS(ωb)S(rbg)ṙ
b
g+

+ 2mS(rbg)S(ω
b)ṙbg

and finally, after substitution, we can rewrite the previous

equations in the following matrix form as:

Mo =
(

mS(rbg) −mS2(rbg)
)

(

v̇bo
ω̇b

)

+

+
(

mS(rbg)S(ω
b) −mS(ωb)S2(rbg)

)

(

vbo
ωb

)

+

+
(

mS(rbg)S(ω
b) S(rbg)v

b
o − S2(rbg)ω

b
)

(

ṙbg
ṁ

)

(3)

C. System actuation

We are considering a class of vehicles equipped with a

ballast and a battery pack. We will use the state variables ǫb
to identify the water mass contained in the ballast tank and

ǫbp to idenfity the position of the battery pack with respect to

the body frame. In particular:

m(t) = ms + ǫb(t), Υ(t) = ǫbr
b
b +mpǫ

b
p

where ms is the static mass contribution, rbb is the position

of the ballast tank decomposed in the body frame and mp

is the battery pack mass. With these assumptions, we can

include this terms into the model:

ṙbg =
rbb
m
ǫ̇b +

mp

m
ǫ̇bp −

rbg

m
ǫ̇b

ṁ =ǫ̇b

or in an equivalent matrix form:
(

ṙbg
ṁ

)

=

( mp

m
I 1

m
(rb − rg)

0T 1

)(

ǫ̇bp
ǫ̇b

)

(4)

Now we can merge the previous equations (2),(3),(4) to

obtain the 6DOF model:

MRB(ǫ)ν̇ + CRB(ν, ǫ)ν + T (ν, ǫ)ǫ̇ = τ (5)

where ν =
(

vbo, ω
b
)T

, ǫ =
(

ǫbp, ǫb
)T

and τ =
(

Fb
o ,M

b
o

)

.

Note that for constant ǫ = ǭ, ǫ̇ = 0T , the model (5) becomes

the same of [7].

IV. BACKSTEPPING CONTROL WITH FUZZY ADAPTATION

By adding the hydrodynamics effects, restoring forces,

disturbance and the kinematics equation, we obtain as result

the final model:

M(ǫ)ν̇ + C(ν, ǫ)ν +D(ν)ν + g(η, ǫ) + T (ν, ǫ)ǫ̇+ d = τ

(6)

η̇ = J(η)ν (7)

where d represents the effect of external disturbances and

model uncertainties, g(η, ǫ) represents the contribution of

gravity and buyoancy, D(ν) is the hydrodynamic damp-

ing and the terms M(ǫ) = MRB(ǫ) + MA, C(ν, ǫ) =
CRB(ν, ǫ) + CA(ν) include the effects of added masses.

Assumption n. 3: det(J(η)) 6= 0, ∀η, in particular, we

are going to choose J(η) as [7] and a roll passively

stabilized vehicle.

To derive the control law, we define the position error η̃ =
η − ηd and:

z1 = η̃ + κ

∫ t

0

η̃dt, κ ≻ 0

ż1 = ˙̃η + κη̃ = J(η)ν − η̇d + κη̃

and the following Lyapunov function:

V1 =
1

2
zT
1
z1

V̇1 = zT
1
(J(η)ν − η̇d + κη̃) (8)
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choosing ν = α+ z2 as virtual input, with

α = J−1(η) (η̇d −K1z1 − κη̃) , K1 ≻ 0

α̇ = J−1(η)
(

η̈d −K1ż1 − κ ˙̃η
)

+

+ ˙(J−1)(η) (η̇d −K1z1 − κη̃)

then the Eq.(8) becomes:

V̇1 = −zT
1
K1z1 + zT

1
J(η)z2 (9)

Since z2 = ν − α and ż2 = ν̇ − α̇ and recalling that

xT
(

Ṁ − 2C
)

x = 0, ∀x 6= 0, then we can define the

following Lyapunov function:

V2 =
1

2
zT
2
M(ǫ)z2 +

1

2

6
∑

i=1

β̃T
i β̃i (10)

where the vectors βi will be defined in the sequel. Taking

the time derivative of Eq.(10) we obtain:

V̇2 = zT
2
M(ǫ) (ν̇ − α̇) +

1

2
zT
2
Ṁ(ǫ)z2 +

6
∑

i=1

β̃T
i
˙̃
βi =

= zT
2
(τ − C(ν, ǫ)ν −D(ν)ν − g(η, ǫ)− T (ν, ǫ)ǫ̇− d+

+C(ν, ǫ)z2 −M(ǫ)α̇) +

6
∑

i=1

β̃T
i
˙̃
βi (11)

Assumption n. 4: Each element di of d =
(

d1, ..., d6
)T

is bounded:

|di| ≤ γi, γi ∈ R, γi > 0,

According to the Universal Approximation Theorem [9] there

exists a fuzzy system F∗

i based on gaussian membership

functions, such that:

|F∗

i − di| ≤ ωi, ωi ∈ R, ωi ≥ 0

A natural choice for the fuzzy system can be [6]:

Fi =

∑L
j=1

µj(z2i)βij
∑L

j=1
µj(xi)

= Q(z2i)
Tβi

µj(z2i; ξj , σj) = exp

[

−

(

z2i − ξj

σj

)2
]

where L is the number of rules and βi ∈ R
L are the

weighting coefficients (”consequent terms” in the Fuzzy

Logic jargon). Based on the previous definition, we can

choose the following control law:

τ =M(ǫ)α̇− C(ν, ǫ)z2 + C(ν, ǫ)ν +D(ν)ν + g(η, ǫ)+

+ T (ν, ǫ)ǫ̇+ F −K2z2 − JT (η)z1, K2 ≻ 0

where F = [F1 , . . . , F6]
T

and we can rewrite the Eq.(11)

as:

V̇2 = −zT
2
K2z2 +

6
∑

i=1

z2i (Fi − di) +
6

∑

i=1

β̃T
i
˙̃
βi − zT

1
J(η)z2

(12)

Defining β̃i = βi − β∗

i the Eq.(12) becomes:

V̇2 = −zT
2
K2z2 +

6
∑

i=1

z2i
(

Q(z2i)
Tβ∗

i − di
)

+

+
6

∑

i=1

β̃T
i

(

˙̃
βi +Q(z2i)z2i

)

− zT
1
J(η)z2 (13)

Choosing the updating law:

˙̃
βi = −Q(z2i)z2i (14)

we obtain:

V̇2 = −zT
2
K2z2 +

6
∑

i=1

z2i
(

Q(z2i)
Tβ∗

i − di
)

− zT
1
J(η)z2

≤ −zT
2
K2z2 +

6
∑

i=1

|z2i||Q(z2i)
Tβ∗

i − di| − zT
1
J(η)z2

≤ −zT
2
K2z2 +

6
∑

i=1

|z2i|ωi − zT
1
J(η)z2 (15)

Combining Eq.(9),(15) we conclude that:

V̇ = V̇1 + V̇2 ≤ −zT
1
K1z1 − zT

2
K2z2 +

6
∑

i=1

|z2i|ωi

Since the following inequalities hold:

6
∑

i=1

|z2i|ωi ≤ ϕ‖z2‖ ≤ ϕ‖z‖

−zT
1
K1z1 − zT

2
K2z2 ≤ −̺‖z‖2

where ϕ = 6maxi ωi and ̺ = mini λi(diag(K1,K2)), then

it follows that:

V̇ ≤ ‖z‖ (ϕ− ̺‖z‖) (16)

which is negative definite in z for all:

‖z‖ >
ϕ

̺
(17)

Condition (17) proofs the uniform ultimate boundedness

of the trajectory error. Note that, increasing the controller

gain (̺) or as the norm of the fuzzy approximation error

(ϕ) decreases, the region of ultimate boundedness shrinks

towards the origin.

V. SIMULATION

The controller defined in the previous section is now tested

against a complete dynamic model, in order to evaluate the

robustness of the controller with respect to model mismatch

and external disturbances. Physical parameters for the Folaga

vehicle have been used. With respect to the control law, we

assume to know the mass and COG rate of variation and

to neglect the high order derivative. However these effects

will be included in the generalized external disturbance d.

In order to simulate the controller presented in the previous

section, we need to control the ǫ-subsystem and to access its

state. For this purpose, it is possible to realize a controller
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Fig. 3. Trajectory of the vehicle during the proposed sampling operation

τ -dependent (control allocation) or alternatively, use an ex-

ternal controller connected directly to the depth and pitch

error. In the following simulation we are going to follow the

second policy, applying for both ǫp and ǫb subsystems a PI

control. The following disturbance fc is applied to simulate

the sea current:

f b
c = Rb

nR
n
wf

w
c (18)

and in addiction, to simulate the real vehicle, the neglected

dynamics are included in the rigid-body equation, in partic-

ular defining:

fm = m
(

ωb ∧ ṙg + r̈g
)

+ ṁṙg (19)

and combining the Eq.(18) and (19) we obtain:

d = Fc + Fm (20)

where Fm =
[

fm, rbg ∧ fm
]T

and Fc =
[

fc, r
b
g ∧ fc

]T
. The

purpose of this simulation is to sample data over different

reference points. In particular, the vehicle moves towards a

given position in geographical coordinates and depth, then

is kept idle while performing environmental sampling, and

finally re-surfaces moving on the vertical axis only. In details,

reference is generated using sigmoidal functions:

σi(t) =
[

1 + e−ρit
]

−1

, t ∈ R, ρ ∈ R, t ≥ 0, ρi ≥ 0

In particular, defining ηd(t) = RTσ(t) , with σ = col(σi(t))
and R a real matrix of proper dimension, and computing the

time derivative, it is possible to choose ρi in order to provide

a bound in terms of velocity. Results of this simulation are

presented in Fig. 3,4,5,6,7 and 8. The results show that during

the vehicle motion the ǫ-subsystem, which is controlled by an

external PI, will affect the model structure and will provide

an unmeasurable disturbance. This problem will be handled

by the adaptive control by changing the fuzzy consequent

terms βi.
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d
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Fig. 4. Evolution of the position and velocity errors. As result of the control
law selection, the trajectory of each element of η̃ and ˙̃ηd goes towards the
origin.
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Fig. 5. Battery pack position along the surge axis ǫp and water mass
contained in the ballast tank ǫb as function of time within the mission.

VI. CONCLUSION

An approach to the simplified dynamic modelling of AUVs

with hybrid actuation systems, combining propellers with

change of mass and mass displacement, has been proposed.

The approach, based on a quasi-static approximation of the

vehicle COG motion, leads to a general model expressed in

the standard, compact form of [7]. The Folaga is used to be

an example of such modelling approach. Partial knowledge

of COG and mass variations is included in the rigid-body

equations while the unmeasurable parts are encapsulated into

the generalized external disturbance. Due to the model struc-

ture, analysis and control synthesis can also be approached

in a standard, systematic way. An example of such design,

a backstepping controller with fuzzy adaptation, has been

presented and it has been shown through simulation that the
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Fig. 7. Trajectory of z1 and z2

designed controller is able to account for the dynamic mis-

match between the simplified model and the complete vehicle

dynamics, as well as to cope with external disturbances.
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