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Control-oriented modelling of a hybrid AUV

Andrea Caiti and Vincenzo Calabro

Abstract— This paper introduces a control-oriented model
for a class of autonomous underwater vehicles (AUVs) char-
acterized by an actuation system that includes propellers,
internal weight motion and ballast charge/discharge. Since
this kind of actuation combines the actuation of both oceanic
gliders and self-propelled AUVs, these vehicles are termed
hybrid vehicles. The modelling results are employed in the
definition of an adaptive backstepping control, using a fuzzy
approximator in terms of Gaussian function in order to cope
with model uncertainties and disturbances. Lyapunov stability
of the control is proved and simulations are shown for a typical
water sampling operation.

I. INTRODUCTION

During the last few years, underwater robotics, and in
particular Autonomous Underwater Vehicles (AUVs) have
received a great impulse due to the newest technologies
available and the growing interest of scientific research
centres and industries. As a consequence, performances and
consumption considerations have become increasingly im-
portant in the evaluation of vehicle capabilities. In particular,
there has been a renewed interest in oceanographic gliders,
a class of AUVs designed for long-term oceanographic
sampling [4]. Gliders navigate through change of buoyancy
and attitude obtained through internal modification of ballast
and movement of the vehicle centre of mass: the yo-yo
movement in the water column obtained by these actuation
systems is transformed in a net horizontal movement in the
desired direction through the vehicle hydrodynamic surfaces
(wings and rudder). The energy consumption of gliders is
far less than those of propelled AUVs, and the efficacy of
gliders as a component of an Autonomous Ocean Sampling
Network has been demonstrated [2]; however, gliders clearly
suffer from great limitations in terms of manoeuvrability and
speed. Recently hybrid AUV/glider capability vehicles have
been developed to fill the gap between consumption and
manoeuvrability. In particular, the Folaga class vehicles [1]
are torpedo-shaped ones, with no hydrodynamic surfaces as
wings or fins, with jet-pump propulsion along the surge and
sway axes, and with internal mass movement and buoyancy
change for attitude and depth control. Suitable rigid-body dy-
namic models are available in literature for both gliders [3],
[5] and propelled AUVs [7]. The main difference between
these two class of models is that for propelled AUVs the
invariance of mass and centre of mass produces equations
that can be written in standard forms, which in turn can be
efficiently used in vehicle control synthesis. Gliders rigid-
body equations have an additional complexity that makes
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them less amenable to standardization, and that may require
a case-by-case analysis in order to define suitable stabilizing
control laws [8]. The purpose of this paper is to derive
an approximate, control-oriented, model of a hybrid vehicle
expressed in a standard form similar to those presented in [7].
To this aim, some simplifying assumptions will be made in
order to reduce the complexity of the rigid-body equations.
Clearly, a model so obtained, a sort of trade-off between the
AUV and Glider models, in terms of control will generate
model mismatch with respect to the real vehicle. Therefore
an adaptive control procedure is formulated to handle the
mismatch. The adaptive control law is synthesized on the
basis of the simplified standard form here proposed, and
it combines a backstepping control approach with a fuzzy
approximator consisting in Gaussian basis functions. Simula-
tions are then shown in which the complete vehicle dynamics
are considered, and it is shown how the proposed control law
is able to maintain practical stability vs. model mismatch
and external disturbances. It is expected that also different
adaptive and/or robust control approaches, synthesized on the
simplified model proposed, may exhibit the same practical
stability properties.

The paper is organized as follows: after notation and defini-
tions in Section II, vehicle modelling is pursued in Section
[I. Control synthesis on the basis of the derived model
is presented in Section IV and simulative results with the
complete vehicle dynamics are reported in Section V. Finally
conclusions are given.

II. NOTATION AND SETTING

Given two vectors x,y € R3, the cross product x A y will
be represented using the following matrix form:

sAy=S(@y=-Syz=—-yAz

where the operator S(-) : R® — R3*3 is defined as follow:

0 —x i)
S(x) = x4 0 —a3
—x9 T3 0

5275



The transpose of a real matrix A will be represented as
AT . A vector p expressed in the reference frame ¢ will be
identified as p?. A positive definite matrix A will be referred
as A > 0. Vehicle motion will be represented using two
frames: the navigation frame North East Down (NED) and
the body frame.

Assumption n. /: NED will be assumed as inertial
frame.
Velocity expressed in the body frame b can be decomposed
in the navigation frame using the rotation matrix I}, in

particular:
n

" = Ry

The body frame will be centred in the vehicle Centre of
Buoyancy (COB). The class of vehicle considered is able to
change dynamically the Centre of Gravity (COG) by acting
on a ballast tanks (injecting/ejecting water) and by moving
the internal battery packs along the surge axis. In the case
of the Folaga class vehicles, as it may be expected in other
hybrid vehicles with the same actuation principle, ballast
variation and battery movements are slow compared to other
system dynamics. In particular, the maximum internal mass
rate of change within the Folaga is of 0.020 Kg/s, while
the maximum speed for displacement of the battery pack
is 0.0007 m/s [1]. The Folaga propulsion system is able to
drive the vehicle at a speed of 1-2 m/s. The fact that COG
is moving at slow speed with respect to vehicle speed is
the basis of our approximate analysis in the following: in
particular, in some equations, a quasi-static approximation
will be used, neglecting the velocity of the COG.

III. MODELING THE VEHICLE

To obtain the 6DOF model we are going to consider a
vehicle with a variable mass m(¢) placed in the variable
COG (see Fig. 2):

AR oy X o)

b _ 7 —
Tg(t) - m(t) ’ g( ) m(t)

where A and Y(t) represent the static and dynamic contri-
bution to the motion of the COG, respectively.

A. Linear Motion
Velocity of the COG with respect to a point o can be
represented as:

b__ b b b n _ pn,b
Vg =V tw Arg, vy = Ryug

=Ry (WS 4w’ Ar) (1)
Assumption n. 2: In the previous equation the term 7'“2
does not appear: as discussed in the previous section, we are
assuming a quasi-static situation in which we can neglect 7*3
in the kinematic equation. A complete treatment, without this
assumption, can be found in [5].

Taking the derivative of Eq.(1):

b A b
g + w /\7"9

o = Ry (w® A (0 +wP Arh) + 00+ 0% Ard Wb AT

by =0h+ " ATy

Fig. 2. Rigid Body Configuration

Since linear momentum can be expressed as I = muvg, then
by imposing that the rate of change of Iy must be equal to
the external forces we obtain:

dl?

g—mv + vy = F, F

b
dt ext? ext = Rl?]:o

m[wb/\(vS—rlg’/\wb)+®g—r2Awb—|—wb/\7”g}—|—
+m(ug—rg/\wb) = Fb

which can be rewritten in the following matrix form as:

Fo=( ml | -mS() ) (Tf’}) +

b
+( mS(Wh) | —mSWh)S(rh) ) (%F)Jr
b
+ ( mS(w ‘ vl — S(rl;)wb ) (—:nL) 2

B. Angular Motion
The angular momentum hg can be represented as:
hb =nt fmrb/\vb :Iowarmrg/\vf,fer/\vg =

= Ow +mr /\(rg/\wb)

R =Iw® + La® + 1ird A (r0 Aw®) + mit A (18 A W) +
+ mrg A (1'“2 A wb) + er A (7‘2 A wb)
Since

By = Rihly, by = Ry (w ARG+ 35)

then, imposing that rate of change of angular momentum
must be equal to the external moment applied:

dhg

dt

ML, =Ry (M’; — rg A ]-'f)’)

ext

= (s s ) =
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which yields to:

RLN [Iowb + mrz A (rg A wb)] + fowb + Iowb—|—
+mrz A (rg /\wb) + mr‘z A (7’2 /\wb) +
+mrd A (7 AwP) +mrb A (rh AQP) = ME— b AT

Considering the term:

—TZAfé’:—rgA{m[wb/\(vZ—rZ/\wb)
+vb—rl’Awb+waf§]+
—|—m(v -7 /\w)}
and since:
—TZ/\ [m (—T /\wb)] :mrg/\ (rg/\w )
—rz/\[m(w /\rb)] er/\(fz/\w)
—rlg’/\[m( rlg’/\w)]:fnTZ/\(TS/\wb)
—-r, N [mwb/\ ( TZ /\wb)] =wb A [mrg A\ (rb /\wb)]
") =

we can conclude that:

WA Iowb + fowb + Iowb — mrg AWl A 7;2 + mwb® A rg A fg—l—

—I—mrg/\ (wb/\vz) —|—mr_2/\i)g—|—rhrg/\v2 =M,
The moment of inertia I, can be expressed as:

I, = —mS(TS)S(rb)

g9

It then follows that:

I, = —mS(r2)S () = mS(rh)S(rh) — mS () S ()

g g g
and since

) b b _ b b A sb b b A sb

mrg/\rg/\w —mrg/\w /\rg mw /\Tg/\Tg

the term ,w” can be rewritten as:

by

Towb = — mS(rg)S(rg)wb - mS(wb)S(rb)f“g

g
+ QmS(rg)S(wb)fg

and finally, after substitution, we can rewrite the previous
equations in the following matrix form as:

My = (msteg) | -ms*(r) ) (55-) +

b
+( mS(rh)S(Wh) | —mS(wh)S3(rh (%F +
b
+ ( mS(TZ)S wb) ‘ S(rg)vg — ,92( <—:nL
3)

C. System actuation

We are considering a class of vehicles equipped with a
ballast and a battery pack. We will use the state variables ¢,
to identify the water mass contained in the ballast tank and
ez to idenfity the position of the battery pack with respect to
the body frame. In particular:

m(t) = ms +ep(t), Y(t)= ebr}g + mpez

where m is the static mass contribution, TZ is the position
of the ballast tank decomposed in the body frame and m,,
is the battery pack mass. With these assumptions, we can
include this terms into the model:

b b
. T myp Tg.
7“2 —be —|— b——geb
m m
m:eb

or in an equivalent matrix form:

i\ (SR L (=) é
i) - () () o

Now we can merge the previous equations (2),(3),(4) to
obtain the 6DOF model:

Mgp(€)v + Crp(v,e)v + T(v,e)é =7 (5)

where v = (vg,wb)T, € = (ez,eb)T and 7 = (FJ, M}).
Note that for constant € = €, ¢ = 07, the model (5) becomes
the same of [7].

IV. BACKSTEPPING CONTROL WITH FUZZY ADAPTATION

By adding the hydrodynamics effects, restoring forces,
disturbance and the kinematics equation, we obtain as result
the final model:

M(e)v+ C(v,e)v + Dw)v + g(n,e) + T(v,e)é+d =71
(6)
= Jnw (7

where d represents the effect of external disturbances and
model uncertainties, ¢(7,€) represents the contribution of
gravity and buyoancy, D(v) is the hydrodynamic damp-
ing and the terms M(e) = Mpp(e) + My, Cv,e) =
Crp(v,€) + Ca(v) include the effects of added masses.
Assumption n. 3: det(J(n)) # 0,Vn, in particular, we
are going to choose J(n) as [7] and a roll passively
stabilized vehicle.
To derive the control law, we define the position error 7 =
n — ng and:

t
zlzﬁ—i-/f/ ndt, k>0
0
Zr =1+ K = J(Nv —1a + K]
and the following Lyapunov function:

1
Vi=gam

Vi =z (J(n)v — nq + &) (8)
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choosing v = a + 25 as virtual input, with

a=J" ) (g — K121 — ki), K; =0
& =J""(n) (g — K11 — wi]) +

+(J7Y) () (g — K121 — ki)
then the Eq.(8) becomes:
Vi= 2Kz + 2T T(n)2 )

Since 29 = v — «a and 23 = ¥ — & and recalling that
2T (M —-2C)z = 0,Vx # 0, then we can define the
following Lyapunov function:

6

1 7 1 P
%zi@ﬂﬂd@+522@5i (10)
where the vectors f3; will be defined in the sequel. Taking
the time derivative of Eq.(10) we obtain:

TRy

Ve = 2 M() (7 — &) + 524 M
i=1

= 22T (r=C(,e)v — DWw)v —g(n,e) — T(v,€)é —d+
6 .

+C(v,€)zg — M (e oa)—l—ZBiTBi (11)
i=1

Assumption n. 4: Each d =
( dy,...,dg )T is bounded.:

|di|§’7i7 P)I’LER7

element d; of

%‘>07

According to the Universal Approximation Theorem [9] there
exists a fuzzy system JF; based on gaussian membership
functions, such that:

|f:—dz|§wz, wieR,wiZO

A natural choice for the fuzzy system can be [6]:

Fi = Z 1#](221)511 — Q= 21)T/Bi
Z k(i)

/J‘ (2227€j70-j) = exp [ ‘|

where L is the number of rules and §; € R are the
weighting coefficients (“consequent terms” in the Fuzzy
Logic jargon). Based on the previous definition, we can
choose the following control law:

T=M(e)a — C(v,€)zo + C(v,e)v + D(v)v + g(n,€)+
—‘rT(I/,G)é—I—]:—KQZQ—JT(’I])Zl, Ky >0

where F = . Fel"

as:

Fi, .

and we can rewrite the Eq.(11)

6
Vo =—2) Kazp + 3 20i (Fi —

i=1

12)

6 .
i)+ B Bi— 2 T(n)z
=1

Defining B; = Bi — B; the Eq.(12) becomes:

6
Vo= —28 Kozo + Z 22; (Q

=1

(Z2i)T5; - di) +

6 .
+y 8" (51‘ + Q(Z2i)22i) — 21 J(n)2 13)
i=1
Choosing the updating law:
Bi = —Q(22i)z2i (14)
we obtain:
' 6
Vo = —23 Kazp + ZZ% (Q(Zm)Tﬁl* - di) — 2 J(n)2
i=1
6
< =2 Kozo+ Y |20:l|Q(200) B — il — 2 T(n)2
i=1
6
< -2 Koz + Y |zailwi — 21 J(n)2 15)

i=1
Combining Eq.(9),(15) we conclude that:

6
T T § :
—Zz1 K121 — 29 KQZQ + |ZQZ“CL)1L'
i=1

V=Vi+V; <
Since the following inequalities hold:

6
S il < ellzall < ol
i=1

— 2T K12 — 2T Koz < —0|2))?

where ¢ = 6 max; w; and ¢ = min; \;(diag(K1, K3)), then
it follows that:

V < l2ll (0 = ell=l) (16)
which is negative definite in z for all:
2l > = an
o

Condition (17) proofs the uniform ultimate boundedness
of the trajectory error. Note that, increasing the controller
gain (p) or as the norm of the fuzzy approximation error
(¢) decreases, the region of ultimate boundedness shrinks
towards the origin.

V. SIMULATION

The controller defined in the previous section is now tested
against a complete dynamic model, in order to evaluate the
robustness of the controller with respect to model mismatch
and external disturbances. Physical parameters for the Folaga
vehicle have been used. With respect to the control law, we
assume to know the mass and COG rate of variation and
to neglect the high order derivative. However these effects
will be included in the generalized external disturbance d.
In order to simulate the controller presented in the previous
section, we need to control the e-subsystem and to access its
state. For this purpose, it is possible to realize a controller
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Fig. 3. Trajectory of the vehicle during the proposed sampling operation

T-dependent (control allocation) or alternatively, use an ex-
ternal controller connected directly to the depth and pitch
error. In the following simulation we are going to follow the
second policy, applying for both ¢, and ¢, subsystems a PI
control. The following disturbance f. is applied to simulate
the sea current:

fb _ Rb R" f’w

w

(18)

and in addiction, to simulate the real vehicle, the neglected
dynamics are included in the rigid-body equation, in partic-
ular defining:

fm = m (W0 ATy +Fy) + 10 (19)
and combining the Eq.(18) and (19) we obtain:
d=F.+ F,, (20)

where F, = [ fm, 75 A fm}T and F, = [fe,r5 A fC}T. The
purpose of this simulation is to sample data over different
reference points. In particular, the vehicle moves towards a
given position in geographical coordinates and depth, then
is kept idle while performing environmental sampling, and
finally re-surfaces moving on the vertical axis only. In details,
reference is generated using sigmoidal functions:

oi(t) = [1+e_"'it]_1, teR, peR, t>0, p;, >0

In particular, defining 14(t) = RTo(t) , with o = col(o;(t))
and R a real matrix of proper dimension, and computing the
time derivative, it is possible to choose p; in order to provide
a bound in terms of velocity. Results of this simulation are
presented in Fig. 3,4,5,6,7 and 8. The results show that during
the vehicle motion the e-subsystem, which is controlled by an
external PI, will affect the model structure and will provide
an unmeasurable disturbance. This problem will be handled
by the adaptive control by changing the fuzzy consequent
terms [;.

d(n-ny/dt

—10 1 1 1 1 1 1 1
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Fig. 4. Evolution of the position and velocity errors. As result of the control
law selection, the trajectory of each element of 7 and 7y goes towards the
origin.
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Fig. 5. Battery pack position along the surge axis €, and water mass
contained in the ballast tank ¢ as function of time within the mission.

VI. CONCLUSION

An approach to the simplified dynamic modelling of AUVs
with hybrid actuation systems, combining propellers with
change of mass and mass displacement, has been proposed.
The approach, based on a quasi-static approximation of the
vehicle COG motion, leads to a general model expressed in
the standard, compact form of [7]. The Folaga is used to be
an example of such modelling approach. Partial knowledge
of COG and mass variations is included in the rigid-body
equations while the unmeasurable parts are encapsulated into
the generalized external disturbance. Due to the model struc-
ture, analysis and control synthesis can also be approached
in a standard, systematic way. An example of such design,
a backstepping controller with fuzzy adaptation, has been
presented and it has been shown through simulation that the
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Fig. 6. Evolution of the coefficients /3. In this example, a Fuzzy system

with L = 3 is adopted. As shown in the picture, during vehicle motion, the
adaptive system plays a fundamental role to contrast model uncertainties
and external sea current disturbance. During sampling operation, since the
contribution of f,,, becomes negligibile, the adaption process terminates
with suitable value of 8 to contrast sea currents disturbance only.
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Fig. 7. Trajectory of z1 and z2

designed controller is able to account for the dynamic mis-
match between the simplified model and the complete vehicle
dynamics, as well as to cope with external disturbances.
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