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Abstract— This paper proposes a novel method for comput-
ing robot motion uncertainty from ranging sensor data. The
method utilises the recently proposed CRF-Matching proce-
dure which matches laser scans based on shape descriptors.
Motion estimates are computed in a probabilistic framework
by performing inference on a probabilistic graphical model.
We propose an efficient sampling procedure for obtaining
probable association hypothesis of the probabilistic graphical
model. The hypothesis are used to generate estimates on the
uncertainty of translational and rotational movements of the
robot. Experiments demonstrate the benefits of the approach
on simulated data sets and on laser scans from an urban
environment. The approach is also combined with the well-
established delayed-state information filter for a large-scale
outdoor simultaneous localisation and mapping task.

I. INTRODUCTION

Reliable navigation in mobile robotics requires the compu-

tation of robust motion estimates. While solutions based on

inertial measurement units or GPS can provide an estimate

and corresponding uncertainties directly, for ranging sensors

this task is significantly more complex. The difficulty lies in

obtaining robust point correspondences between consecutive

scans from which the motion estimation is computed. Solu-

tions based on the Iterative Closest Point (ICP) [1], [2] can, in

general, provide reasonable motion estimates. However, for

reliable navigation, deterministic estimates of the motion are

not enough; it is also necessary to quantify the uncertainty

on these estimates.

The motion estimation uncertainty computed from range

sensors arrives from two main sources: 1) uncertainty in

the point associations; 2) uncertainty in the range and

bearing measurements from the sensor. For the particular

case of laser range finders, range and bearing estimates

are very accurate and almost insignificant compared to the

uncertainty from the point association. The computation of

uncertainty from the point association is however, much more

challenging as it involves the evaluation of a potentially

enormous set of possible associations. For example, in a

conventional data association problem with a pair of laser

scans with 361 laser points each, the number of possible

associations is 361361. The probability of a particular scan

association is then computed by evaluating the likelihood

of the association divided by the sum of the likelihoods of
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all possible associations. This computation quickly becomes

infeasible even for laser scans with a relatively small number

of points.

The recently proposed CRF-Matching algorithm [3] tack-

les the problem of laser scan association by formulating it

as a probabilistic inference procedure in a graphical model.

This allows the incorporation of general features that take

into account shape descriptors to match the scans. With

such a formulation, the laser point association problem can

be addressed in a integrated fashion, jointly reasoning over

the space of associations. This paper extends the former by

providing a procedure to compute the motion uncertainty

from the scan association. In particular, the main contribution

presented here is the development of a novel inference

algorithm for probabilistic networks that efficiently seeks for

probable configurations of the network in the space of laser

point associations.

II. RELATED WORK

Determining the uncertainty of scan matching is a signif-

icant problem in mobile robotics using laser range finders.

The problem has received much attention since Lu [1] first

addressed it. Most solutions focus on ICP like algorithms

and can be categorised according to the uncertainty sources

they model; measurement noise, lack of pairwise constrains,

local minima and improper laser point associations. Related

work for each of the four categories will be discussed next.

1) Measurement Noise: Intuitively, measurement noise

from imperfect sensors adds uncertainty. The general ap-

proach to dealing with isotropic or non-isotropic sensor noise

is by means of the likelihood function. In [4, section VI.A],

the uncertainty is modelled as a multi-Gaussian likelihood

distribution. The individual Gaussians are parameterised by

the covariance of range measurements (after linearisation).

Analogously, [5] attempts to capture the relationship between

measurement noise and the uncertainty estimate from which

a weighted matching algorithm is proposed. Wang [6, Section

3.3] again employs the likelihood function but for a grid-

based approach. Other approaches, such as [7], [8], [1, Sec-

tion 6.2], take advantage of Laplace’s method to approximate

the sensor noise distribution by a Gaussian.

2) Lack of Pairwise Constrains: Non-Gaussian likelihood

functions are often approximated by their first two moments;

the mean and variance. This is feasible, and reasonable, only

when sufficient associated laser point pairs are obtained at

consecutive poses. Then the true uncertainty is highly peaked

and the approximation from non-Gaussian to Gaussian is

accurate. However, it is possible that there are very few

correspondences due to a small overlap between scans, or
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a lack of orthogonal constraints. In such cases the likelihood

is ill-represented by a Gaussian [4]. Furthermore, in case

when only 1 or 2 associations are found, minimising the error

function of ICP (or its variations) is a high risk venture. This

is shown in [8] for typical under-constrained situations such

as the corridor and circular environments.

3) Local Minima: ICP optimises a concave error function

for any given association. The ICP algorithm generally uses

nearest neighbours to determine the association. However,

depending on the association, the resulting minima may only

be a local minima of the overall association problem. As

shown in [4, Section VI.C], the only way to avoid such local

minima is to adequately search the relevant space of possible

associations. One way is to draw a set of samples from the

prior distribution of the relative transformation. Each sample

is used to initialise a separate run of ICP, each converging to

a (perhaps) different local minima. The covariance estimate

is then computed from the combination of these solutions.

One such application is explored in [6].

4) Improper Laser Point Associations: It is generally

accepted that for high accuracy sensors, such as scanning

lasers, improper correspondences are much more critical

compared to the above three uncertainty sources. Unfortu-

nately, most solutions are based on the assumption that a

perfect correspondence is available. Correspondence uncer-

tainty modelling is seldom treated thoroughly. The Laplace

method does not account for correspondence uncertainty [4].

The weighted method relies too much on parameters [5].

While the sampling-based “off-line” approach proposed in

[7] is somewhat ad hoc.

CRF-Matching [3] defines the scan matching problem in

a sound statistical framework; as an inference procedure

in a graphical model. This allows for a natural extension

to the expression of the uncertainty on correspondences.

Investigating this issue is the main contribution of this paper.

III. CONDITIONAL RANDOM FIELDS

A Conditional Random Field (CRF) [9] is a probabilistic

discriminative framework. Typically the probability distribu-

tion of a CRF is represented using an undirected graphical

model; the vertices of the graph index the distribution’s

random variables, while the edges of the graph capture

relationships between variables. In the case of a CRF the

hidden variables x = 〈x1,x2, ...,xN〉 are globally conditioned

on the observations z; p(x | z). The distribution must factorise

according to the cliques of the graph; cliques are fully

connected sub-graphs. Let C be the set of all cliques of

the graph. The distribution must then factorise as a product

of clique potentials φc(xc,z) as follows:

p(x | z) =
1

Z(z) ∏
c∈C

φc(xc,z), (1)

where xc are the hidden variables of the clique and Z(z) =

∑x ∏c∈C φc(xc,z) is the partition function; it normalises the

product of clique potentials.

Clique potentials are commonly expressed by

a log-linear combination of feature functions,

φc(xc,z) = exp
(

wT
c · fc(xc,z)

)

, resulting in the following

definition of a CRF:

p(x | z) =
1

Z(z)
exp

(

∑
c∈C

wT
c · fc(xc,z)

)

; (2)

where Z(z) = ∑x exp(∑c∈C wT
c · fc(xc,z)) is the partition

function expressed using the log-linear form. C is again

the set of all cliques in the graph. wc are the parameters

(or weights). The feature functions fc extract feature vectors

given the value of the clique variables xc and observations

z.

A. Parameter Learning

The weights wc express the relative importance of the

feature functions fc. As such they play an important role

in determining the shape of the distribution. Learning the

values of the weights is achieved through maximisation of the

conditional likelihood (Equation 2) given labelled training

data. In our case this is computationally intractable; the

partition function Z(z) sums over the (very large) space of

all hidden variables. We therefore employ maximum pseudo-

likelihood learning [10] to determine the weights.

B. Inference

A CRF (Equation 2) defines a distribution over all hidden

variables. Typically one is more interested in the configu-

ration of the hidden variables that generates the maximum

a-posteriori (MAP) value of the distribution. Inference is the

process by which this configuration may be obtained.

Belief Propagation (BP) [11] is a class of inference al-

gorithms in which each node sends messages to each of its

neighbours in the graph. The messages convey what a node

believes its neighbours’ state should be given its own state.

The received messages together with a node’s own belief

are then used to compute the MAP configuration; the Max-

Product BP algorithm. Message construction is defined as

follows:

mi j(xi) = max
x j

(

φ(x j)φ(xi,x j) ∏
k∈N ( j)\i

mk j(x j)

)

. (3)

Here mi j(xi) is the message node j sends to node i.

φ(x j) is the local clique potential for node j. Local clique

potentials represent what a node believes its state is given

the observations. Pairwise potentials φ(xi,x j) relate nodes i

and j on either end of an edge. They transform the belief of

node j into a belief suitable for node i and vice versa. Lastly

a product of all incoming messages, except from the node to

which the message is being sent.

Messages are first passed inbound from the leaves to the

root of the graph. With each message mi j sent, the node also

records the states of x j responsible for the message: δi j . Once

at the root, the MAP state of the root is computed as;

x∗r ∈ argmax
xr

(

φ(xr) ∏
j∈N (r)

m jr(xr)

)

. (4)
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Fig. 1. Graphical model for scan matching.

Here xr indicates the root node while x∗r is its maximal

configuration. As can be seen maximisation is performed

on the root’s own belief (local potential) combined with all

incoming messages. The maximal configuration for the root

node is then simply a state for which the combined belief is

maximal. Using the maximal configuration of the root, the

algorithm backtracks along the graph, using δi j, to find a

consistent MAP configuration.

IV. MODEL DEFINITION

Data association is modelled using a conditional distribu-

tion; p(x | z). The hidden variables x represent the associa-

tions given an observation z. The observation consists of two

laser scans for which associations are to be determined.

The vector valued x consist of N multi-nomial random

variables, where N is the number of points in the first scan.

Each of these nodes is discrete with M + 1 states; M being

the number of points in the second scan. The states of a

variable, say variable xi, have the following interpretation.

The first state indicates the likelihood that point i in the first

scan associates to point 1 in the second scan. The second

state is the likelihood of association to the second point in

the second scan, etc. Finally, the M + 1 state represents the

likelihood that point i is an outlier.

The graphical model corresponding to this distribution is

given in Figure 1. As can be seen, the hidden variables are

modelled as a chain. The motivation for using a chain stems

from the way scan data is obtained. The laser scanner obtains

data in a single plane; the plane in which the beam scans.

As such, points are acquired one after the other; a chain

represents this acquisition. Correlations in the data are not

lost in the graph as there is a path from any one node in a

chain to any other node.

A. Feature Description

The popularity of CRFs is in no small measure due to

the feature functions fc in Equation 2. These encapsulate

domain specific knowledge which can subsequently be used

in the probabilistic framework of the CRF. The experiments

employ a subset of the features used in [3]. Three local

shape features distance, angle and geodesic and one pairwise

feature association are used. The reader is referred to [3] for

a more detailed description of these features.

In addition, one new local feature is used, the ICP associ-

ation feature. ICP is able to compute good association results

provided the scans are reasonably aligned. It is therefore

beneficial to incorporate ICP estimates in the inference

Algorithm 1 Sample-Product message construction.

1: for s = 1 to M + 1 do

2: r←GenerateRandomNumber([0,x
cM+1

i j (s)])

3: l← argmink x
ck
i j (s) > r

4: mi j(s)← xi j(s, l)
5: δi j(s)← l

6: end for

procedure. However, a mapping is required from the single

valued ICP results to the multi-valued representation of the

CRF. This is achieved by assigning 1 to the k-th state of a

node, say node i, and zero to all its other states; where k is

determined by the ICP association for point i.

V. SAMPLING INFERENCE

In order to construct uncertainty estimates over the robot

pose, several association hypotheses are required. For our

estimate construction we therefore wish to efficiently sample

configurations that map to likely poses. From these samples

the pose uncertainty can then be computed.

For the remainder of this section we shall assume that the

mapping from association to pose is smooth; in the experi-

ments a least squares mapping is used. With this assumption

the problem is then one of sampling configurations that are

similar to the MAP configuration. This can be achieved

by replacing the max operator with a sampling operator as

discussed next.

The samplex j
operator in Equation 5 samples on the

product of incoming messages, pairwise potential and local

potential; analogous to Max-Product. The values in the

generated message mi j are the values of the sampled states.

mi j(xi)≈ samplex j

(

φ(x j)φ(xi,x j) ∏
k∈N ( j)\i

mk j(x j)

)

(5)

In addition to generating the message, the sampled states

are also recorded (analogous to Max-Product); this allows

back-tracking to find a consistent configuration once message

are propagated inbound to the root.

The sample operator is implemented as shown in Algo-

rithm 1. Let xi j = φ(x j)φ(xi,x j)∏k∈N ( j)\i mk j(x j) be the

product of local and pairwise potentials and incoming mes-

sages; a M + 1×M + 1 matrix. Let xi j(s) be the s-th row

from this matrix, while x
ck
i j (s) = ∑k

l=1 xl
i j(s) is the cumulative

sum up to and including the k-th value of the s-th row.

The algorithm then proceeds, for each state of a node, as

follows: On line 2 a random number is generated in the range

0 to x
cM+1

i j (s). The random number is then used to find the

corresponding state l (line 3). The l-th value of xi j(s) is used

in the construction of the message while l is recorded as the

state responsible for mi j(s) on lines 4 and 5 respectively.

The commutative property does not hold for the sampling

operator. Strictly speaking we are therefore not allowed to

interchange maxx j
with samplex j

as done in Equation 5.

The results in the next section however, show that good

results are still achieved. Intuitively this can be explained
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by the following observation. In highly peaked distributions

(as association generally is) sampling is much like applying

the maxx j
operator; most of the probability mass is located in

only a few states. More importantly, the resulting algorithm

is one that can very efficiently sample a configuration from

the graph.

The above Sample-Product inference procedure is used to

compute K association hypothesis; the experiments compute

K = 30. For each hypothesis the solution (see also [2,

Appendix C]) to translation T = [x,y] and rotation R = θ
is computed according to Equation 6;

R,T ←min
R,T

N

∑
i=1

(z1,iR + T − z2,xa
i
)2

, (6)

where N denotes the number of laser points in the first

scan. The index xa
i is the index of the point in the second

scan, associated to the i-th point in the first scan. As such,

association hypothesis are mapped to points in the robot

motion space; X = [x,y,θ ]. The uncertainty is then computed

as the covariance of the points in the robot motion space as

follows:

ΣCRF = E ((X−E(X))(X−E(X))) . (7)

VI. EXPERIMENTS

To verify if the proposed algorithm is able to capture

the underlying uncertainty of scan matching, we evaluate

its performances on two data sets. The first data set consists

of under-constrained simulated data in the form of corridor

and circular environments. The second is a data set of the

University of Sydney campus and it is used in a Simultaneous

Localisation and Mapping (SLAM) application.

A. Simulated Data Set

As mentioned in Section II there are two under-constrained

environments; the corridor and circular environments. These

lead to large uncertainty in specific directions when aligning

the pairwise scans. The expected shapes of the uncertainty

ellipsis allow us to check the validity of the algorithm [7],

[8].

1) Corridor Environment: In the simulated corridor envi-

ronment the robot is located in a long corridor. The length

of the corridor extends beyond the range of the range finder,

the robot is thus only able to sense the walls.

Laser scans viewed from two consecutive poses, assuming

the walls are sufficiently smooth, will appear identical to

the robot. As a result, a lack of distinguishing features for

consecutive scans will significantly impair scan matching. In

particular along the direction of the walls, where most laser

points are aligned. An extreme case is shown in Figure 2(a);

here the robot moves in parallel with the walls. The laser

range measurements are corrupted by Gaussian white noise

with µr = 0, δr = 0.06m.

The 3-σ ellipsis are shown in Figure 2. The standard

deviations of the relative motion estimates are shown in Table

I. The results show that the relative motion estimate on X

is more uncertain than on Y (see Figure 2(b)). In Figure

σx(mm) σy(mm) σθ (◦)

Corridor 102.90 5.11 0.02

Circular 94.30 70.20 2.35

TABLE I

THE UNCERTAINTY ESTIMATES FOR THE SIMULATED

(UNDER-CONSTRAINED) ENVIRONMENTS

2(d) it can be seen that the uncertainty on X causes a large

uncertainty on rotation as well.

2) Circular Environment: Analogous to the corridor case,

when the robot stands in an ideal circular environment the

walls will significantly impair the robot’s ability to correctly

determine its rotation estimate. A typical circular situation

is pictured in Figure 3(a). During inference, it is difficult

for the CRF to find optimal laser point associations as

there are strong similarities between all points in the data.

Compared with the corridor case, the uncertainties for laser

point associations are expected to impact primarily on the

rotation estimates. This is visualised by the long radius of

the uncertainty ellipsis along the rotation axis as shown in

Figures 3(c) and 3(d). The standard deviation of the motion

estimates for the circular environment are given in Table I.

As shown above, the shape of the uncertainty ellipsis

demonstrate that the proposed approach correctly models the

underlying uncertainty in the under-constrained corridor and

circular cases.

B. Large-Scale SLAM

The configuration of the mobile platform, used to collect

the data, is a utility vehicle with SICK laser sensor. The laser

range finder data was acquired around the main campus of

the University of Sydney during the day time; it therefore

contains a significant number of dynamic objects, such as

cars and people.

To avoid difficulties in feature extraction and maintain

tractability, a view-based delayed state SLAM framework

is adopted. We do not explicitly model the environment by

extracting features and estimating their positions; instead

only a selection of key historical poses of the robot’s

trajectory are maintained in filtering. The raw laser scans

are stored and registered in order to calculate pairwise

constraints, detect potential loop closures and provide virtual

observations of pose displacements. Furthermore, we utilise

the extended information filter (EIF) rather than traditional

extended Kalman filter (EKF) for practical reasons. The

reader is referred to [12] for more details.

CRF-Matching functions, in some sense, as a virtual

odometry. It can be used to generate estimates, based on

consecutive laser scan alignments, for the control input which

are then incorporated into the robot motion model. The

uncertainty covariance matrix ΣCRF(t), computed from the

hypothesis (see Section V), is incorporated into the system

as the process noise.

GPS data from the mobile platform was collected for

ground-truth evaluation. For comparison, ICP-based SLAM
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Fig. 2. Laser scan alignment uncertainty estimates of the corridor environment. (a) Simulation scenario; Triangle indicates the robot. Yellow colour
indicates the initial pose and range measurements. Green colour indicates the subsequent pose and measurements. (b) The X-Y 3-σ uncertainty ellipsis
and samples computed from CRF-Matching with our approach. (c) X-Rotation 3-σ uncertainty ellipsis and samples. (d) Y-Rotation 3-σ uncertainty ellipsis
and samples.
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Fig. 3. Laser scan alignment uncertainty estimate of the circular environment. (a) Simulation scenario; Triangle indicates the robot. Yellow colour indicates
the initial pose and range measurements. Green colour indicates the subsequent pose and measurements. (b) The X-Y uncertainty ellipsis and samples
computed from CRF-Matching with our approach. (c) X-Rotation uncertainty ellipsis and samples. (d) Y-Rotation uncertainty ellipsis and samples.

with uncertainty estimates from the off-line approach [7] are

computed. The trajectories and maps are visualised in Figure

4 where the first loop closure corrects both the robot states

and map representation.

Figure 4(a) shows the closed-loop paths of CRF-SLAM

and ICP-SLAM and the uncertainty ellipses of CRF-SLAM.

We can conclude that CRF-SLAM out-performs ICP-SLAM

from two observations. First, the path of CRF-SLAM is much

closer to the GPS trajectory than that of ICP-SLAM. The

largest offset (30.5m) of the latter occurs after the robot has

travelled around 420m while the offset of CRF-SLAM is

4.3m. Second, accounting for the inherent measurement error

of GPS, we further check the results by superimposing the

maps on an aerial photo. It can be seen from Figure 4(b)

that the contour created by the laser map coincides with the

real object quite well.

The uncertainty model discussed in this paper indicates

the quality of the relative motion estimates. In other words,

it tell us how much we can trust the estimates. This is crucial

within the filtering framework, since proper quantifications

of uncertainty can correct the estimates while performing

time and measurement updates. Therefore, the CRF-SLAM

results presented here show that our uncertainty inference

algorithm can be integrated into a real SLAM framework

and perform well.

VII. DISCUSSIONS

Uncertainty estimation is indispensable in the construction

of a filtering framework; the proposed Sample-Product infer-

ence procedure incorporates CRF laser scan matching into

a practical SLAM application. To our knowledge, existing

work tackling similar topics, such as [1], [7], [4], [5], [8],

are based on iterative closest point (ICP) or its variants. [3]

has demonstrated that CRF laser scan matching outperforms

ICP-based approaches. Furthermore, in contrast to the ICP

based techniques, the focus here is on the uncertainty caused

by improper laser point associations rather than measurement

noise. The proposed algorithm solves the task in a novel way,

capturing laser point associations hypothesis with a shape-

oriented graphical model.

The sampling approach is used to track the uncertainty

distribution, like the off-line approach presented in [8].

The latter attempts to model the very large laser point

correspondence space (O((M + 1)N)) by a random brute

force association configuration test. It essentially assigns an

identical likelihood to the samples in the space, and randomly

selects a small set to estimate the uncertainty. However,

the correspondence space is too large for the quantity of

samples. So the off-line approach can’t guarantee to correctly

capture the underlying distribution. With respect to Sample-

Product inference, for a single node, the product of incoming

messages, pairwise potential and local potential represents

the likelihood of association candidates for that node. We

perform sampling over this likelihood. It ensures entries with

higher likelihood are more likely selected. As a result, the K

most probable association estimates are selected generating

better motion uncertainty estimates.

Instead of ranging over the entire association space, the

proposed algorithm tracks the underlying uncertainty by

focusing on the K most likely laser point associations. The
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Fig. 4. The large-scale SLAM experiments. (a) Robot trajectories after loop closure and the 1-σ uncertainty ellipsis of CRF-SLAM propagated by the
filter for every 100 poses. (b) The close-loop map created from CRF-SLAM overlapped with the aerial photo.

computational cost is determined by the number of samples

(K) drawn. In our current Matlab implementation, drawing

K = 30 samples takes approximately 2.6 seconds. Scan

matching and uncertainty quantification for 4391 laser scan

pairs is processed within 15 minutes using Matlab’s Parallel

Computing toolbox.

VIII. CONCLUSIONS

This paper presents an efficient sampling inference pro-

cedure to estimate the motion uncertainty for laser scan

registration with CRF-Matching. In contrast to existing tech-

niques, our approach focuses on capturing the uncertainty

from laser point associations. A sampling mechanism is

employed during message propagation in a graphical model

to produce probable association configuration hypothesis for

two consecutive laser scans collected by a moving robot. This

enables the computation of uncertainty for both translation

and rotation in a probabilistic manner. The effectiveness

of the proposed algorithm is demonstrated on a simulated

data-set and in a large-scale SLAM for a challenging urban

environment.
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