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Abstract— Theoretically, the operational space control 
framework [1] can be regarded to be the most advanced control 
framework for redundant robots. However, in practice, the 
control performance of this framework is significantly 
degraded in the presence of model uncertainties and 
discretizing effects. Using the singular perturbation theory, this 
paper shows that the same model uncertainties can create 
different effects on the task space and joint space control 
performance. From the analysis, a multi-rate operational space 
control was proposed to minimize the effects of model 
uncertainties on the control performance and while 
maintaining the advantages of the original operational space 
framework [2]. In this paper, we present a stability analysis of 
the multi-rate operational space control framework using the 
Lyapunov’s direct method. 

I. INTRODUCTION 

enerally, most operational space (or task space) control 
approaches relate to directly closing the control loop in 

the operational space. Task space commands from the 
operational space controller are then translated into joint 
space commands through kinematic transformations. 
Operational space control approaches can be divided into 
three groups based on the way they handle the redundancy 
[3]. The first group resolves the redundancy at the velocity 
level [4-5] while the second [6-7] and the third groups [1] 
are based on the acceleration. The main difference between 
the second and the third group is whether the task-space and 
null-space are “kinematically” (second) or dynamically 
(third) decoupled. Because of the dynamically decoupling 
property, the third approach sometime has been referred as 
the force-based operational space control [3]. 
Theoretically, the force-based operational space control is 
one of the most advanced control framework for redundant 
robots. One main reason is because it uses the system’s 
inertial matrix to weight the pseudo-inverse solution. Thus, 
the solution provided by this framework is an optimal 
solution since the instantaneous kinetic energy is minimized 
along the path [8]. In other words, the force-based 
operational space framework provides a natural choice to 
decouple the task-space dynamics from its internal (or null-
space) dynamics. In order to address the nonlinear effects 
due to the link inertia, the gravity and so on in task space, 
Khatib introduced the concept of task-space dynamics [1]. 
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He also suggested a model-based PD controller to achieve 
asymptotical performance. It is worth noting that this 
asymptotical performance is only valid when the robot 
model is accurately known and the controller is continuously 
implemented. However, the assumption of perfect 
knowledge is always violated in practice, and therefore the 
control performance can be significantly degraded due to the 
imperfect model as has been experimentally shown in [2-3]. 
In order to overcome this uncertainty issue, a number of 
approaches such as robust control approaches, adaptive 
control approaches and so on, have been proposed in the 
literature. 
This paper looks at the model uncertainty issue from a 
different aspect: a multi-rate operational space control [2]. 
This approach has also been referred to as the inner-outer 
loop approach in the literature although the initial motivation 
is different. One of the main initial motivations for the inner-
outer loop approach comes from the fact that most of the 
industrial robot come with a motion controller at each joint 
[9]. As a result, the task-space commands can only be 
realized by creating an outer loop in the operational space. 
On the other hand, the motivation in our case is the 
inadequate performance when we implemented the 
conventional operational space controller [1] on our 
experimental platform, the Mitsubishi 7-degree-of-freedom 
(DOF) (from now on, the force-based operational space 
control introduced by Khaib [1] will be referred to as the 
conventional operational space control). One explanation for 
this poor performance is the inaccuracy of the task space 
inertial matrix [3]. 
It is also worth noting that the subject of model uncertainties 
in control has received a considerable attention from the 
research community. For example, Qu [10] proved that the 
continuous PD computed-torque is robust with respect to the 
unknown dynamics. Moreover, the stability of the error 
system can be made asymptotically stable with a finite-high 
control gains if the static balancing torque is known. In 
practice, however, the control gains have been shown to 
have upper limits due to the presence of model uncertainties 
and discretizing effects [11]. So far, it is not known whether 
these upper limits of the control gains can have any adverse 
effects on the control performance. By analyzing the closed-
loop systems of two control schemes (the digital PD joint 
space computed-torque control and the digital PD task space 
computed torque control), we provide a detailed explanation 
why the theoretical more advanced force-based operational 
space control cannot perform well in the presence of model 
uncertainties. 
Based on the above analysis, a multi-rate control structure 
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which was proposed in [2] is reviewed in the next section. 
Note that this control structure is not new in the sense that it 
has been mentioned in some previous works such as [9, 12-
13]. The contribution here is that the feedback linearization 
concept has been shifted from the operational space [1] into 
joint space in order to minimize the effects (if possible) of 
the model uncertainties. Details of the multi-rate control 
structure are given in section 2-3. It is also important to 
point out that in most of the previous works, the robot model 
is either perfectly known [12] or ignored [9, 13]. As a result, 
the performance of the inner-loop can be degraded if the 
nonlinear effects of the robot model are significant. 
The main contributions of this paper are as follows: 
- An explicit explanation on how the model uncertainties 

affect the control performance of the force-based 
operational space control. 

- An analysis on the stability of the multi-rate operational 
space control framework under the presence of model 
uncertainties. 

- The multi-rate operational space controller and its stability 
are verified experimentally. 

The rest of the paper is presented as follows: firstly, the 
discrete high-gain computed-torque controls are analyzed by 
the singular perturbation theory. Next, the multi-rate 
operational space control is reviewed and finally, the 
stability of the proposed controller is given using 
Lyapunov’s direct method. 

II. COMPUTED-TORQUE CONTROL FOR JOINT SPACE AND 

TASK SPACE: AN ANALYSIS 

A. High-gain computed-torque control  

The following discussion is motivated from [11]. Consider a 
simple rigid dynamic model of an n-DOF robot (without 
gravity and joint friction) in joint space and task space: 
 ( ) ( , )A q q C q q     (1) 

 ( ) ( , )x x x x F    (2) 

where q  and x  are the generalized coordinate,  and F  are 

the generalized force in joint space and task space 
accordingly. For simplicity, let us only consider non-
redundant robots at singular-free configuration in this 
section. The relationship between the joint space dynamics 
and task space dynamics can be stated as follows [1]: 
 1TJ AJ    (3) 
 TJ C Jq      (4) 

 TJ F   (5) 
Consider the two set-point PD computed-torque controllers 
in joint space and task space as follows: 

   ˆ ˆ ˆ ˆ
q vq pq dAu C A k q k q q C         (6) 

   ˆ ˆˆ ˆx vx px dF u k x k x x           (7) 

where dq and dx  are the desired set point, , ,,vq x pq xk k  are the 

control gains and ˆ ˆ ˆ, ,A C   and ̂  are the estimated/identified 

dynamic model of the robot. The closed-loop equations in 
joint space and task space become: 

 1 1 1 11 1ˆ ˆ,q x
q x

q A As A C x s 
 

               (8-9) 

where: 
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 (10-11) 

After introducing a fast time scale /t  , the joint space 
and task space closed-loop system become: 

   1 11 1

,
ˆˆq x

x x xq q q

dq dx
q x

dt dt
ds ds

s xA As q A C
dd
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

  

    
 
           

 

  

 (12-13) 

At high-gain i.e. , 0q x  , (12-13) reduces to the fast 

reduced subsystem by the singular perturbation theory [14]: 

 1 ˆq
q q q

ds
A As s

d
     and 1 ˆx

x x x

ds
s s

d
      (14) 

Note that the inertia matrices ,A  are always positive 
definite, thus if the estimated/identified inertia matrices 
ˆ ˆ,A  is also positive definite (please refer to [15] for detailed 

discussion on how to obtain an positive definite inertia 

matrix), the eigenvalues of  ,q x  will be all positive 

[16]. As a result, qs  and xs tend to 0 exponentially as 

discussed in [11]. 
As is seen from above analysis, as long as the control gains 
can be increased, the effects of the model uncertainties (12-
13): 

 
1

1

q q

x x

D q A C

D x



 





  


  



 
 (15) 

on the close-loop response can be made arbitrary small and 
the behavior of the closed-loop systems (8-9) can be defined 
by adjusting q  and x . Practically, because the control 

laws (6-7) are usually implemented using digital computers, 
thus, the control gains will have upper limits as discussed in 
[11] and section IV of [17]. This observation raises a 
question on how these gain’s limits restrict the response of 
the closed-loop systems (8-9) in practice. 

B. Discrete high-gain computed torque control 

Before discussing the effects of the discrete high-gain 
computed-torque control in joint space and task space, let us 
summarize the question in hand again: 

(i) Assume that we have an identified dynamic model of 

the robot in joint space ( ˆ ˆ,A C ). The equivalent task space 
dynamics can be obtained using (3-4). 

(ii) Let the task in joint space and task space be exactly 
the same i.e. ( )d KIN dx F q , where KINF  is the forward 

kinematics of the robot. In addition, let us assume that the 
kinematics model is accurately known. 

(iii) Let the control laws (6-7) be digitally implemented 
with the same sampling period T , and assume that the 
control gains are chosen high enough so that the closed-loop 
systems can be approximated by (14). 
The question we are interested in here is how the responses 
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of the closed-loop systems (12-13) will be. 
Let us first consider the following Lemma: 
Lemma 1: Under the above assumptions (i, ii, iii), the upper 
limits of the control gains of the joint space and task space 
controller (6-7) are the same. 
Proof: note that (14) can be rewritten as follows: 

1
1

00 1ˆ
ˆ0

q
q

q q

ds q qd
A As

q qd dt A Au




     
                   

 (16) 

1

1

00 1ˆ
ˆ0

x
x

x x

x xds d
s

x xd dt u




     
                     

 (17) 

The discrete forms of the above equations, under the 
assumption that the computation time of the control law is 
negligible, are: 

   

   

2

1 1
1 1

[ 1] [ ]1

[ 1] [ ]1
1 1
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 
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  

   

 
(18) 

and 
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 

                      
 

   

 
(19) 

where T is the sampling period. Substitute (3-5) into x  

leads to: 
 1 1 1 1ˆˆ

x qJA AJ J J           (20) 

Thus, x can be rewritten as: 
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T Tx
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                             

     
      

     

(21) 

Note that by similar matrix property, x and q have the 

same set of eigenvalues [16]. Because the stability of (18) 
and (19) can only be guaranteed if and only if the 
eigenvalues of q and x are inside the unit circle [18] (this 

is where the upper limits of the control gains occur), (21) 
implies that the upper limits of the control gains for both 
systems are the same. ⁯ 
From Lemma 1, it is clear that the responses of the closed-
loop systems (12-13) will now depend on how significant 
the disturbances (15) are. The reason is because ,q x  cannot 

be arbitrarily reduced to zero to eliminate the effects of the 
model uncertainties, as in the continuous case. 
To see the effects of model uncertainties on the closed-loop 
systems (12-13), let us further expand the disturbance terms 
(15): 
 1

q qD q A C     (22) 

 1 1 1 1ˆ( )x x xD x J q A C I JA AJ Jq                 (23) 

As is seen, the joint space closed-loop system (12) is 
disturbed by (22) and the responses can be transformed to 
the operational space using the kinematics relationship 
between the joint space and task space. However, if the 
control is done in task space, the closed-loop system (13) has 
to cope with the disturbance (23) which is the result of the 
joint-space disturbance (22) multiplied by the Jacobian. 
Moreover, the uncertainties of the inertial matrix also appear 
as an extra term in the disturbance equation (23). As a result, 
if the kinematics model of the robot happens to magnify the 
modeling errors, the control performance of the task space 
controller (7) can be much worse than the one in joint space 
(6). The main reason is because the control gains cannot be 
further increased to compensate for the model uncertainties. 
To verify the above observation, let us consider the 
simulation of a 1-DOF robot as shown in Figure 1: 

 
Figure 1: One-DOF arm 

For simplicity, let us choose the control gains ,p vk k  as 

(Hurwitz polynomial): 

 21 1
2 ,v pk w k w 

 
     (24) 

The control laws for joint space and task space are (6) and 
(7) accordingly. Based on the above discussion, the upper 
limit of the control gains is 200w  for both joint space and 
task space. Figure 2(a) shows the response of the joint space 
controller (6) for some w (the responses in task space are 
similar as the previously proved). This simulation was done 
using SimMechanics Toolbox® under MatLAB/Simulink 
environment. Clearly that when w is near to the theoretical 
unstable value (200), chattering occurred. In order to 
evaluate the control performances, the difference between 
the task space responses e q xy y y   is plotted in Figure 

2(b). Here, sin( )qy l q is the response of the controller (6) 

and sin( )xy l q  is the response of the controller (7). As is 

seen, the difference ey tends to be negative which implies 

that the overshoot of qy is less. In other words, under the 

same control gains (the maximum gains that the discrete 
high-gain system can take), the PD joint space controller (6) 
provides a better response in comparison to the task space 
controller (7).  

 
    (a)             (b) 

Figure 2: System responses with various gains 
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In conclusion, the analysis on this section indicates that for 
an inaccurate identified robot model, it is better to use this 
dynamic model in joint space rather than task space unless 
one can guarantee that the disturbance in (22) is much larger 
than the one in (23). 

III. MULTI-RATE OPERATIONAL SPACE CONTROL 

As discussed in the previous section, if the “joint space 
disturbance” (22) is smaller than the “task space 
disturbance” (23), the computed-torque control should be 
done in the joint space to minimize the effects of model 
uncertainties on the control performance. A natural question 
should be raised is how to get the joint space commands 
from tasks which are specified in the operational space. As 
point out in [19], the inverse kinematics approach has 
several disadvantages such as it ignores the robot dynamics 
and the complexity is significantly increased for redundant 
robots. On the other hand, the operational space control 
framework [1] is supposed to take care of the robot 
dynamics and dynamically decouple the null space from the 
task space. To maintain the advantages of the operational 
space framework and still minimize the model uncertainties 
on the control performance, the following multi-rate 
operational space control has been proposed [2]: 

- Outer loop: the operational space command force is 
computed as in [1] using the identified dynamics model as a 
reference [2]. This task space command is then applied to the 
joint space identified model to get the joint acceleration 
command: 

     1ˆ ˆ ˆ
d x nullq J u Jq I JJ A       (25) 

    x d V d P du x K x x K x x        (26) 

where ,V PK K is the control gains in task space, and: 

   1
1 1ˆ ˆ ˆT TJ A J JA J


   (27) 

It is worth noting that (27) is actually a inertia-weighted 
pseudo-inverse at the acceleration level [8]. Thus, equation 
(27) will give a joint space response with respect to a task 
space command { , , }d d dx x x   through the identified dynamic 

model Â . In other words, the purpose of the outer loop is to 
“transform” the task space command to the joint space 
command using the identified dynamic model. The output of 
this outer loop is then realized by the PI computed-torque 
control at the inner loop as below. 

- Inner loop: a PI computed torque controller is used to 
control the joint velocity of the robots. The use of the 
dynamics model here will enhance the performance as in 
[15]. The input of this controller is the reference joint 
velocities. The controller can be stated as: 

 ˆ ˆ ˆˆq FricAu C g       (28) 

 ( ) ( )q d d I du q K q q K q q dt          (29) 

where , IK K are the control gains in joint space. 

The desired joint velocity dq can be obtained by integrating 

the desired joint acceleration (25): 

 ( ) ( )
t t

d d

t

q t t q t dt


     (30) 

with the initial condition as the current { , }q q . Clearly, if the 

inner velocity control loop is able to bring the manipulator 
from the current state { ( ), ( )}q t q t to { ( ), ( )}q t t q t t     

after t  (sec), the behavior of the robot will be exactly 
determined by the identified dynamic model as depicted in 
Figure 3. Because the assumption that the inner velocity 
control loop can change the system states in t (sec) is 
usually violated in practice, an outer loop, which is the 
force-based operational space control, is always necessary to 
ensure the task space performance. 
The efficiency of the proposed multi-rate operational space 
control has been experimentally verified on the Mitsubishi 
7-DOF PA10 manipulator as described in the following 
section. 

A. Experiment testbed 

The proposed controller has been implemented on the 
Mitsubishi 7-DOF PA10 manipulator. In order to achieve 
real-time torque control capability (which is necessary for 
the inner-loop controller), the original controller of the PA10 
has been replaced by our custom controllers. QNX© 
Neutrino Real-time Operated System (6.3) has been used to 
implement the above multi-rate control laws as depicted in 
Figure 3. Note that because the robot is redundant, the 
following simple null-space controller is used throughout 
this paper: 
 0null nDK q V     (31) 

 0

1
( ) ( )

2 rest nP restV q q K q q    (32) 

where restq is some preferred joint configuration. 

 
Figure 3: The proposed controller: (dot frame): outer loop, (dot-dash 

frame): inner loop 

B. Experiment results 

In order to evaluate the control performance, the end-
effector of the manipulator was commanded to move 0.2 
meter in the y-direction of the base frame in 2 seconds from 
the same initial configuration (Figure 4a) using two different 
controllers: (I): the conventional operational space control 
introduced by Khatib [1] and (II): the proposed multi-rate 
operational space control. Both controllers has been tuned 
the first sign of instability appears i.e. chattering occurs at 
any control variables. 
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                      (a)                                          (b) 

 
                      (c)                                          (d) 
Figure 4: (a) Experiment setup. (b) Tracking error in x-direction. (c) 
Tracking error in y-direction. (d) Tracking error in z-direction. 

As is seen in Figure 4, the tracking performance of the 
conventional operational space control (I) is poorer than the 
one using the proposed controller (II). One explanation as 
discussed in section 2 is because the modeling errors, such 
as inertial parameters and joint frictions, are magnified 
through the Jacobian as in (23). 

IV. STABILITY ANALYSIS OF THE MULTI-RATE OS CONTROL 

The discussion from section 2 and the experimental results 
from the previous section is consistent in justifying the 
usefulness of the proposed multi-rate operational space 
controller over the conventional one. However, it is still 
necessary to investigate the stability of the proposed 
controller, at least for the continuous case. It is important to 
stress that the stability analysis in this section only serves as 
a necessary condition for the usefulness of the proposed 
controller because we do not account for discretizing effects, 
signal noise and so on. If the control law is digitally 
implemented, the performance of the closed-loop system 
will now depend on how high the control gains can take as 
discussed in section 2. Note that only a sketch of proof is 
given here due to the limited space. 

A. Problem statements 

Consider the rigid dynamic model of an n-DOF robot as 
follows: 
 ( ) ( , ) ( ) FricA q q C q q g q D         (33) 

where { , , , }A C g D  are inertial matrix, Coriolis-

Centrifugal, gravity, friction torque and unknown 
disturbance in joint space. By applying the control law (25-
29), the closed-loop control becomes: 

 1 1 1 1ˆ ˆ
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I d
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 (35) 

 X X B    (36) 
where: 
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,

ˆ ˆˆ

d d d
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x x x x x x x x x

w q q q w q q q

H C g D C g
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Here, we are interested in the stability property of the 

equilibrium  0 0 0 0
T

e
x x w z   

    of the 

nonlinear system (34). Note that there are extra terms (
1 1 1A C A A A K     ) in the  matrix, and they have been 

canceled out later in vector B . The purpose of these terms is 
to simplify the analysis for the nominal system as shown in 
the next section.  
To analyze the stability of (34), we adopt the methodology 
proposed by Khalil [20], that is: 
- Firstly, the asymptotic stability property of the nominal 
system X X   is studied. 
- Next, the solution of the overall system (34) is shown to be 
uniformly ultimately bounded. 

B. Stability of the nominal system 

Consider the following Lyapunov function candidate 
inspired by [10]: 
 TV X PX  (38) 
where: 
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is positive definite when 1, 0, 0kv k    . The derivative 

of V  is (after making use of the skew-symmetric property of 

the inertial matrix   0T TX A C C X   ): 
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After some manipulation, it can be shown that 0Q  when: 
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 (41) 

where min
ˆ( )A  is the smallest eigenvalues of Â . Assume 

that the induced norm of the Jacobian is bounded by 

|| || JJ k  then 1
max max

ˆ( ) ( )H Jk k A A  . As is seen, if the 

control gain k is fixed (i.e. after the inner-loop control is 

20( )cm

0y

0z
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(I)

(II)
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tuned), (41) can always be satisfied by increasing the task 
space gains { , }kp kv . As a result, the nominal system 

X X  is exponentially stable because: 
 2

max max( ) || || , ( ) 0TV X QX Q X Q       (42) 

C. Stability of the overall system 

Because the disturbance B is a function of joint position and 
acceleration, using the similar approach as in [21], it can be 
shown that: 
 2

1 2 3|| || || || || ||B X X      (43) 

where 1 2 3, , 0     are the system parameters. Using the 

same Lyapunov function (38), V  now becomes: 
 2

1 2 max 3|| || ( ( ( )) || || || || )T TV X QX X B X Q X X          (44) 

Thus, by applying Lemma 3.5 in [22], the overall system is 
uniformly ultimately bounded. Note that the purpose of this 
stability analysis is only to show that the proposed control 
law can be stabilized by a proper choice of control gains. 
However, in practice, the size of the uniform/uniform 
ultimate bound cannot be made arbitrarily small because of 
the upper limits on the control gains. This proposed 
controller performed better than the conventional operational 
space control because the model uncertainties has been 
shifted from task space to joint space as the discussion in 
section 2-3. Intensive experiments had been done in order to 
validate the performance of the proposed controller [2]. 

V. CONCLUSION 

In this paper, we had explicitly shown that the control 
performance of the conventional operational space control 
can be significant degraded due to model uncertainties and 
discretizing effects. As a result, the computed torque 
technique should be done in joint space to avoid magnifying 
the modeling errors through the robot kinematics. In order to 
maintain the advantages of the force-based operational space 
control, a multi-rate operational space controller was 
proposed. Experimental results showed significant 
improvements in comparison to the conventional one. 
Stability analysis had been carried out to show that the 
proposed controller is stable in the continuous domain. Since 
the joint space control of the proposed controller is a simple 
PI controller, further improvements on the inner loop control 
can be done in order to enhance the overall performance of 
the system. 
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