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Abstract— A robust cascade strategy combining an outer po-
sition predictive control loop and an inner H∞ pressure control
loop is proposed and tested on an electropneumatic testbed
for parallel robotic applications. Two types of cylinders are
tested, the standard double acting cylinder and the rodless one.
A position/pressure difference (or force) strategy is developed
and implemented. As the behavior of the nonlinear cylinders
is nonlinear, a feedback linearization strategy is adopted. A
Generalized Predictive Controller (GPC) is synthesized for the
position outer loop and a constrained LMI based H∞ con-
troller is synthesized for the pressure inner loop. Experimental
results show the feasibility of the control strategies and good
performances in terms of robustness and dynamic tracking.

I. INTRODUCTION

The paper is motivated by pick-and-place parallel robotic

applications. Within this context, the purpose is to evaluate

the position control performances of pneumatic cylinders

which are widespread in industry and interesting because of

their low cost. Parallel robots have a lot of advantages which

have made their success. Particularly, they can be very fast

as the actuators are transferred to the base frame reducing

considerably the inertia of the moving links. This enables

reaching speeds and accelerations which were unbelievable

a decade ago. For instance, the fastest industrial robot in the

world -the Quattro- has a parallel structure and can reach an

acceleration of 15g [1]. Recently, the Par2 robot which is

not yet industrialized has reached 43g while keeping a low

tracking error [2]. However, a major obstacle for parallel

robot expansion is their expensive price due to the cost

of their motors. In this context, considering other types of

actuation such as pneumatic actuators is appealing as they

are cheap actuators with low maintenance costs, and with a

good force/weight ratio. As a major obstacle of industrial use

of pneumatic actuation in robotics is the difficulty in their

control, this paper focuses on that topic.

Numerous techniques have been studied in literature and

among them a large part concerns robust control. Robust

controllers are mandatory to deal with disturbances and

uncertainties and to ensure high precision positioning. They

have been applied as a nonlinear feedback using sliding

modes [3] [4] [5] or adaptive control techniques [6] or by

using linear robust control techniques such as H∞ control [7]

[8] after feedback linearization [9] [10]. The major drawback
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of nonlinear controllers is the difficulty in the synthesis of

the control law and the high computational amount. In case

of feedback linearization with position as a control output,

a zero dynamic exists and there is no global proof of its

stability [11].

In this paper, a novel robust cascade strategy which combines

an outer position predictive controller and an inner H∞

pressure controller is proposed. The advantage of the pro-

posed strategy is a simplified control synthesis as only linear

robust controllers are implemented. There is no remaining

zero dynamic as feedback linearization is applied only for

the pressure inner pressure loop. At the same time cascade

control enables to make tracking control of two outputs in

a SISO (Single Input Single Output) manner. A Generalized

Predictive Controller (GPC) is synthesized for the outer loop.

As far as we know, only two experimental studies of GPC

on pneumatic cylinder have been carried out so far [12] [13].

The model used in [12] is a linear one which limits greatly

the performances of the controller. In [13], the authors used

a model estimation based on Neural network theory [13]. No

application of GPC based on an explicit nonlinear model has

been found in literature. In our case, the linearization allows

to obtain an explicit solution to the predictive optimization

problem and the obtained controller is easy to implement.

Another intuitive motivation for using predictive theory in

pick-and-place robotic applications is that most trajectories

are determined a priori and therefore, future trajectory is

known. For the inner pressure loop, a constrained H∞

controller is developed based on LMI optimization [14] [15].

In addition to the classical advantages of H∞ control [16]

[17] in terms of robustness, disturbance rejection, systematic

synthesis of MIMO controllers and powerful combination of

both frequency domain synthesis and state space synthesis,

the LMI approach enables the addition of constraints in an

intuitive manner. Therefore, pole placement constraints have

been added to the H∞ performances in order to have a better

control of the transitory temporal behavior of the pressure

controller.

This paper is organized as follows. Section II presents

the versatile electropneumatic testbed for robotic applications

and its nonlinear modeling. Section III deals with the control

of the cylinders. After introducing the feedback linearization

equations, both of GPC controller background and LMI

based H∞ multi-objective approach are presented. The cas-

cade strategy which combines these two control techniques

is then introduced. Finally in section IV, the robust cascade

strategy is implemented experimentally and various control

tests, including robustness tests, are presented and analyzed.
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II. EXPERIMENTAL PNEUMATIC TESTBED AND

NONLINEAR MODELING

In the long term, our aim is to design efficient parallel

robots which rely on pneumatic actuation with robust control:

the moving arm of this testbed is very similar to the arms

used for various parallel robots such as Delta or Quattro

robots [1] which is represented in Fig. 2. At its extremity,

different masses can be attached for robustness tests of the

controllers as the load varies. The proposed setup shown

in Fig. 1 replaces expensive motor-and-gears system by

low-cost pneumatic actuator. Three types of actuators are

available here. The first one is a standard double acting

cylinder1 which is very widespread in industry. It is one

of the cheapest pneumatic actuators and has been largely

studied in literature ( [18], [19], [20] and [11]). The second

one is the rodless cylinder2 which has the advantage of being

symmetric, that is to say, the maximum force provided in one

direction equals the one in the inverse direction. Another

important advantage for the rodless cylinder is that it has

generally a larger stroke than the double acting one. Finally,

Pneumatic Artificial Muscles3 (PAMs) are also installed in

the setup but not presented in this paper. It seems that

PAMs may be naturally advantaged in rehabilitation co-

manipulation tasks implying friendly robot designs [21]. It is

a common thing to use PAMs in agonist/antagonist way for

angle movement generation or torque control. More details

about PAMs can be found in [22] [23] and [5].

Fig. 1. Versatile electropneu-
matic setup for robotic applica-
tion.

Fig. 2. Adept Quattro [1].

All actuators can be driven by two 5/3-way proportional

valves4. Three types of sensors are used on the setup; a high

resolution incremental encoder, two pressure sensors and two

force sensors.The real time prototyping environment is xPC

TargetTM from Mathworks.

In the sequel, we present some key elements of the nonlinear

model of the pneumatic cylinders. Every electropneumatic

positioning device includes an actuation element (the pneu-

matic cylinder), a command device (the valve), a mechanical

part and position, pressure and/or force sensors. A schematic

1Double acting cylinder: FESTO DNC 32 320 PPV A
2Rodless cylinder: FESTO 532448 DGC 32300304132 ZR
3PAMs: FESTO MAS - 20-450N-AA-MC-K
4MPYE-5-1/4-010-B from FESTO

representation of the electropneumatic system is given in Fig.

3. Supply pressure ps is supposed to be constant. p0 denotes

Standard double 

acting cylinder

Electrovalve

�

Simulated 

robot arm

Fig. 3. Schematic representation of the experimental setup

the atmospheric pressure. It is supposed that any variation

of the chamber volume or pressure can be described by the

polytropic gas law [24]:

p1V
γ
1 = p2V

γ
2 (1)

where pi is the pressure in one of the two cylinder chambers

(indexes 1 and 2 are related to two pressure states) and Vi
is the volume of one chamber, γ is the polytropic constant.

The ideal gas equation describes the dependency of the gas

mass:

m =
pV

rT
(2)

where m is the gas mass inside the cylinder chamber, T is

the air temperature which is considered to be equal to the

atmospheric temperature and r is the specific gas constant.

Therefore, combining equation (1) and (2) leads to the

pressure dynamic expression:

dp

dt
=

γ

V (s)
[rTqm(u, p)− p

dV

ds
ṡ] (3)

where u represents the input voltage of the valve, s is the

position of the piston in case of the cylinders. qm(u, p)
represents the mass flow rate (dm

dt
= qm(u, p)). Dynamic

effects of the underlying position controller for the valve-

slide stroke are neglected. These hypotheses justify why the

mass flow is a function of the input voltage and the pressure

in the actuator chamber.

The relation between volume and displacement is given by

the following equations: Vi(s) = Vi(0)±Ais where i refers

to one of the two chambers and Vi(0) = Ai
l
2 represents the

initial volume. l is the length of the cylinders. Ai represents

the piston section of each chamber. For the rodless cylinder,

sections are symmetric (i.e. A1 = A2). The valve model

has been approximated -after identification- by the following

expression (see [25] for details):

qm(u, p) = ϕ(p) + ψ(p)u (4)

ϕ and ψ defines 5th-order polynomials with respect to p.

For the mechanical part, neglecting the friction phenomena
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and applying Newton’s second law lead to:

s̈ =
1

M
[A1p1 −A2p2] (5)

where M represents the equivalent mass of the moving

parts considered at the cylinder side. In the design phase,

M is considered as constant.

For cascade control experiments, it is mandatory to de-

termine the force/pressure dependency. This dependency is

linear and given by (for standard cylinder):

Fstandard = A1p1 −A2p2 + Fg (6)

where Fg is the term which takes into account the gravity

effects. For the rodless cylinder, we have the same expression

but A1 = A2 = A as we have piston area symmetry.

III. CONTROL OF THE ELECTROPNEUMATIC CYLINDERS

In this section, we first present the feedback linearization

equations for the cylinders. The approach used here is

inspired by differential geometry concepts [9] and differential

flatness theory [10]. Once the linearized system obtained,

GPC and LMI based constrained H∞ control techniques are

presented.

A. Feedback linearization equations

It can be easily proved -in case of valve voltage as an input

and the pressure difference as an output- that differential

flatness criterion is satisfied and that the system is completely

linearizable (using differential geometry concepts [9]). How-

ever, when position is taken as a control output, the relative

degree is less than the dimension of the system. Therefore

the system is not completely linearizable. A nonlinear zero

dynamic remains. One of the advantages of the cascade

strategy is that it avoids dealing with the zero dynamic.

dp1

dt
=

γrT

V1(s)
φ(p1)−

γ

V1(s)
p1
dV1

ds
ṡ+

γrT

V1(s)
ψ(p1)u

dp2

dt
=

γrT

V2(s)
φ(p2)−

γ

V2(s)
p2
dV2

ds
ṡ−

γrT

V2(s)
ψ(p2)u

(7)

In these equations, we have considered that u = u1 = −u2
which means that the chambers rely on the same pressure

source and use a control signal of an opposite sign. If we do

the assumption that the valve is symmetric, this means that

only one valve can be used for our control scheme which

is in fact an important advantage of this approach. This is

represented in Fig. 3 where only one valve is used for each

cylinder. By replacing the volume variation by its value (ie,
dV1

ds
= A = −dV2

ds
) we get:

dp1

dt
=

γrT

V1(s)
φ(p1)−

γA

V1(s)
p1ṡ+

γrT

V1(s)
ψ(p1)u

dp2

dt
=

γrT

V2(s)
φ(p2) +

γA

V2(s)
p2ṡ−

γrT

V2(s)
ψ(p2)u

(8)

Pressure difference is given by the following expression:

d

dt
(p1 − p2) = [

γrT

V1
φ(p1)−

γrT

V2
φ(p2)−

γA

V1
p1ṡ−

γA

V2
p2ṡ]

︸ ︷︷ ︸

f1(s,ṡ,p1,p2)

+ [
γrT

V1
ψ(p1) +

γrT

V2
ψ(p2)]

︸ ︷︷ ︸

f2(s,ṡ,p1,p2)

u

(9)

Therefore, the control input which linearizes the input/output

behavior of the system is given by:

u = [
γrT

V1
ψ(p1) +

γrT

V2
ψ(p2)]

−1 · [uaux

− (
γrT

V1
φ(p1)−

γrT

V2
φ(p2)−

γA

V1
p1ṡ−

γA

V2
p2ṡ)]

(10)

This leads to the first integrator linearized system:

ṗ1 − ṗ2 = uaux (11)

A pressure controller for the first integrator system based

on H∞ theory is then synthesized in the next section.

B. Multi-objective output feedback pressure control via LMI

optimization

An LMI is any constraint of the form:

A(x) = A0 + x1A1 + . . .+ xNAN < 0 (12)

where A0 . . . AN are given symmetric matrices and xT =
(x1 . . . xN ) is the vector of unknown variables. In (12), the

symbol < refers to negative definite5.

One way of tuning simultaneously the H∞ performance and

transient behavior is to combine H∞ and pole placement

objectives using LMI optimization techniques. Poles are

clustered in regions which can be expressed in terms of

LMIs. The class of LMI region defined below has been

introduced for the first time by [15]. It turns out to be suitable

for LMI-based synthesis.

Def. LMI Regions. A subset D of the complex plane is

called an LMI region if there exists a symmetric matrix

α = [αkl] ∈ Rm×m and a matrix β = [βkl] ∈ Rm×m

such that:

D = {z ∈ C : fD(z) < 0} (13)

with: fD(z) := α+zβ+ z̄βT = [αkl+βklz+βlkz̄]1≤k,l≤m.

For instance, we use a disk LMI region centred at (−q, 0)
with radius r. It is defined below [15]:

fD(z) =

[
−r q + z

q + z̄ −r

]

< 0 (14)

The constrained H∞ problem under consideration can be

stated as follows [15]. Given an LTI plant:

ẋ(t) = Ax(t) +B1ω(t) +B2u(t)

e(t) = C1x(t) +D11ω(t) +D12u(t)

y(t) = C2x(t) +D21ω(t) +D22u(t)

(15)

5the largest eigenvalue is negative
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an LMI stability region D, and some H∞ performance

γ > 0, find an LTI control law u = K(s)y such that:

(1) the closed-loop poles lie in D and (2) ‖Twe‖∞ < γ

where ‖Twe(s)‖ denotes the closed-loop transfer function

from ω to e. It is represented on Fig. 4. where the input

Fig. 4. System representation and notations

vector ω =
(
b v

)T
can be constituted for instance by a

disturbance b and a second input which can be a measure

noise v. The output vector e =
(
y u

)T
is composed by

the controlled output y and the control signal u. In our case,

and as defined latter in (39), y is the pressure difference

between the chambers and u is the input voltage.

The controller transfer function is denoted K(s) and can be

represented in the following state-space form by:

ẋK(t) = AKxK(t) +BKy(t)

u(t) = CKxK(t) +DKy(t)
(16)

Then, Twe(s) = Dcl + Ccl(sI − Acl)
−1Bcl with6:

Acl :=

(
A+B2DKC2 B2CK

BKC2 AK

)

, Bcl :=
(
B1 +B2DKD21

BKD21

)

, Ccl := (C1 +D12DKC2, D12CK)

and Dcl := D11 +D12DKD21.

We first examine each specification separately. It is shown

in [15] that the pole placement constraint is satisfied if and

only if there exists XD > 0 such that:

[αklXD + βklAclXD + βlkXDA
T
cl]1≤k,l≤m < 0 (17)

Meanwhile, the H∞ constraint is expressed in terms of

LMIs:




AclX∞ +X∞A
T
cl Bcl X∞C

T
cl

BT
cl −γI DT

cl

CclX∞ Dcl −γI



 < 0 (18)

Then the problem formulation of H∞ synthesis with pole

placement - assuming that the same Lyapunov matrix X > 0
is required - is:

Find X > 0 and a controller K(s) > 0 ≡ ΩK that satisfy

(17) and (18) with X = XD = X∞

(19)

The controller matrix is denoted by:

ΩK =

(
AK BK

CK DK

)

(20)

6we assume that the D22 = 0, this assumption considerably simplifies
the formulas. (Note that it is always possible to remove the D22 term by a
mere change of variables)

The difficulty in output feedback is that relations (17) and

(18) involve nonlinear terms of the form BΩKCX . This

means that problem formulation is not convex and then, can

not be handled by LMIs. Chilali and Gahinet [15] solved this

problem by taking the following change of variables of the

controller:

BK := NBK + SB2DK

CK := CKM
T +DKC2R

AK := NAKM
T +NBKC2R+ SB2CKM

T

+ S(A+B2DKC2)R

(21)

where R, S, N and M correspond to the following partition

of X and it inverse as

X =

(
R M

MT U

)

, X−1 =

(
S N

NT V

)

R ∈ Rn×n, S ∈ Rn×n

(22)

The proposed procedure is summarized in the following

theorem [15]:

Theorem:

Let D be an arbitrary LMI region contained in the open

left-half plane and let (13) be its characteristic function.

Then, the modified problem (19) is solvable if and only if

the following system of LMIs is feasible.

Find R = RT ∈ Rn×n, S = ST ∈ Rn×n, and matrices

AK , BK ,CK and DK such that

(
R I

I S

)

> 0 (23)

[

αkl

(
R I

I S

)

+ βklΦ+ βlkφ
T

]

k,l

< 0 (24)

[
Ψ11 ΨT

21

Ψ21 Ψ22

]

< 0 (25)

with the shorthand notation

Φ :=

(
AR+B2CK A+B2DKC2

AK SA+ BKC2

)

(26)

Ψ11, Ψ12 and Ψ22 terms are detailed in appendix B. Given

any solution to this LMI system:

• Compute via Singular Values Decomposition (SVD) a

full-rank factorization MNT = I − RS of the matrix

I −RS (M and N are then square invertible)

• Solve the system of linear equations (21) for BK , CK

and AK (in this order).

• Set K(s) := DK + CK(sI −AK)−1BK .

Then K(s) is an nth order controller that places the closed-

loop poles in D and such that ‖Twe‖∞ < γ.

C. GPC outer position Controller

The GPC algorithm is based on a CARIMA model which

is given by:

A(z−1)y(t) = z−dB(z−1)u(t− 1) + C(z−1)e(t) (27)

where u(t) and y(t) are respectively the control and output

sequences of the plant and e(t) is a zero-mean white noise.
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A, B and C are polynomials of the backward shift operator

z−1. They are given by; A(z−1) = 1 + a1z
−1 + a2z

−2 +
...+anaz

−na , B(z−1) = b0+b1z
−1+b2z

−2+ ...+bnbz
−nb

and C(z−1) = 1 + c1z
−1 + c2z

−2 + ... + cncz
−nc and

△ = 1− z−1. For simplicity, it is admitted that C−1 equals

1. It is important to mention that most SISO plants can

be described by a CARIMA model after linearization. The

GPC algorithm consists in applying a control sequence that

minimizes a multistage cost function of the form:

J(N1, N2, Nu) =

N2∑

j=N1

δ(j)[ŷ(t+ j|t)− w(t+ j)]2

+

N2∑

j=1

λ(j)[△u(t+ j − 1)]2

(28)

where ŷ(t + j|t) is an optimum j step ahead prediction of

the system output on data up to time t, N1 and N2 are the

minimum and maximum cost horizons, Nu is the control

horizon, δ(j) and λ(j) are weighting sequences and w(t+j)
is the future reference trajectory.

The minimization of cost function leads to a future control

sequence u(t), u(t+1), ... where the output y(t+ j) is close

to w(t+j). Therefore, in order to optimize cost function, the

best optimal prediction of y(t+j) (for N1 ≤ j ≤ N2) has to

be determined. This needs the introduction of the following

Diophantine equation:

1 = Aj(z
−1)Ã(z−1) + z−jFj(z

−1) (29)

with Ã = △A(z−1) and polynomials Ej and Fj are uniquely

defined with degrees j−1 and na respectively. △ is defined

as △ = 1− z−1

By multiplying (27) by △Ej(z
−1)zj and considering (29),

we obtain:

y(t+ j) =Fj(z
−1)y(t) + Ej(z

−1)B(z−1)△u(t+ j − d− 1)

+ Ej(z
−1)e(t+ j)

(30)

Since the noise terms in (30) are all in the future (this is

because degree of polynomial Ej(z
−1) = j − 1), the best

prediction of y(t+ j) is:

ŷ(t+j|t) = Gj(z
−1)△u(t+j−d−1)+Fj(z

−1)y(t) (31)

where Gj(z
−1) = Ej(z

−1)B(z−1)
Polynomials Ej and Fj can merely be obtained recursively

(demonstration can be found for instance in [26]).

In the future, it will be referred only to N = N2 = Nu as

the prediction horizon. N1 is chosen equal to 0.

Let’s consider the following set of j ahead optimal predic-

tions:

ŷ(t+ d+ 1|t) = Gd+1△u(t) + Fd+1y(t)

...

ŷ(t+ d+N |t) = Gd+N△u(t+N − 1) + Fd+Ny(t)

(32)

It can be written in the following compact form:

y = G u + F(z−1)y(t) + G′(z−1)△u(t− 1) (33)

where terms y, u, G′ and F can be defined in [27].

Equation (33) can be rewritten in this form:

y = Gu+ f (34)

Where f refers to the last two terms in Eq. (33) which only

depend on the past. Now, we are able to rewrite (28) as:

J = (Gu + f − w)T (Gu + f − w) + λuTu (35)

where w = [w(t+ d+ 1), w(t+ d+ 1) . . . w(t+ d+N)]T

equation (35) can be written as:

J =
1

2
uTHu+ bTu+ f0 (36)

with H = 2(GTG + λI), bT = 2(f − w)TG and f0 =
(f −w)T(f −w)
Therefore, the minimum of J can simply be found by making

the gradient of J equal to zero, which leads to:

u = −H−1b = (GTG+ λI)−1GT(w − f) (37)

Since the control signal that is actually sent to the process is

the first element of vector u (receding strategy), it is given

by:

△u(t) = K(w − f) (38)

where K represents the first element of matrix (GTG +
λI)−1GT. Contrary to conventional controllers, predictive

ones depend only on future errors and not past ones.

D. Position/pressure control strategy for the pneumatic

cylinders

In this part, the cascade control concept is presented

for the cylinders. The complete control scheme for this

concept is summarized in Fig. 5. The inner loop consists

in the control of the pressure difference between the two

chambers of each cylinder. An LMI based H∞ controller

is implemented. The outer loop consists in the position

generalized predictive controller which is implemented based

on the closed loop transfer function of pressure difference in

cascade with the mechanical dynamics. As presented before,

the linearized system in case of pressure difference is an

integrator. Therefore, equations of the system can be stated

as follows:

ẋ = (0)x+
(
1 0

)
(
b

v

)

+ (1)u

(
y

u

)

=

(
−1
0

)

x+

(
1 0
0 0

)(
b

v

)

+

(
0
1

)

u

y = (1)x+
(
0 1

)
(
b

v

)

+ (0)u

(39)

where ω = (b v)T and e = (y u)T have been defined

before. Classical assumptions for solving H∞ problem can

easily be verified7. The result of the LMI optimization is a

controller which has the following form:

K(p) =
K1p+K2

p+K3
(40)

7(A,B2) controllable and (C2, A) observable
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predictive 
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Desired
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Difference pressure inner 

GPC

parameters

Predictive position outer loop
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I/O linearizing 

block

Inverse 

kinematics
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Fig. 5. General block diagram of the cascade Position/pressure strategy for the cylinders. The inner loop consists in the control of the pressure difference
between the two chambers of each cylinder. An LMI based H∞ controller is implemented. The outer loop consists in the position generalized predictive
controller which is implemented based on the closed loop transfer function of pressure difference in cascade with the mechanical inverse dynamics.

Therefore, the equivalent closed loop pressure transfer func-

tion is:

Gclpressure
(p) =

K1p+K2

p2 + (K1 +K3)p+K2
(41)

Based on this transfer function, it is possible to reconstruct

the position by integrating the force two times and dividing

by the moving mass (5). The GPC controller will be then

synthesized using the following transfer function:

Gposition(p) =
K1p+K2

Mp2(p2 + (K1 +K3)p+K2)
=
Gclpressure

Mp2

(42)

IV. EXPERIMENTAL RESULTS

In the following, the proposed cascade GPC/H∞ is imple-

mented on the pneumatic cylinders. Some typical tests are

handled and commented in details.

A. Some typical control tests

During all tests concerning cylinders, the gravity term Fg in

(6) has been neglected. It has been observed that it has not

a big impact on performances. In this context, the design

of the cascade strategy is simplified and at the same time

it guarantees robustness to gravity effects and orientation

variations. A second assumption was made in equation (5)

where friction has been neglected. In spite of this, it will

be shown that one of the advantages of the multiobjective

pressure inner controller is that it can be used to remove

friction effects on control performances.

The first series of tests concerns the case where there is no

load attached at the end of the arm. The control frequency

is 0.2Khz. For the H∞ pressure controller, a disk LMI

region (see [15] [28]) has been chosen because it enables

to avoid fast dynamic poles. We have tried to find a tradeoff

between oscillations that appear for fast dynamic poles and

time response that will be longer for slow dynamic ones.

After some empirical simulations, a disk centered at point

(-300,0) with a radius of 15 has been chosen leading to a
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Fig. 6. Pulse response of the rodless cylinder

satisfying behavior. These parameters are used to define the

disk LMI region defined by (14).

Using constraints (23), (24) and (25) for the system defined

by (39) we obtain after LMI optimization [14] the terms R,

S, AK , BK , CK and DK . We are now able to compute the

constrained H∞ controller which is given by:

K(p) =
−263.8p− 9.15 · 10−4

p+ 339.8
(43)

The outer position controller is designed based on the

equivalent obtained transfer function given by (42). In order

to apply GPC, it is necessary to do the discretization of

the transfer function. This is done with a sampling time

Ts = 5ms. We obtain:

B(z−1) = 4.63·10−7+1.3·10−6z−1−2·10−10z−2−4.3·10−3

(44)

A(z−1) = 1− 2.44z
−1

+ 2z−2 − 0.54z−3 + 0.05z−4 (45)
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The weighting factor λ has been chosen equal to 5·10−6 and

δ is fixed to 1. The prediction horizon equals 50. On Fig. 6, a

pulse signal reference with an amplitude of −+15◦ is given

to the system. Experimental results are very good in terms of

static error and time response. The system follows easily the

reference. The rising time equals 0.045s and settling time

equals 0.24s. Steady state error is less then 0.05◦ in the

negative case and 0.2◦ for the positive one. This is due in

part to the fact that gravity effect is not the same for the

positive or negative position. As observed at time t = 3s,
there is a small jump -less than 1◦- in the output during

the steady state period. We think that this jump is due to

the sticking and restarting phenomena which is characteristic

to electropneumatic systems (see chapter 3 of [11]). In our

case, our aim is to reach a precision better than 1◦ for

carrying loads up to 5kg in pick-and-place applications. This

is achieved in all the tests presented in this document even

in presence of restarting phenomena. However, this problem

can be removed by changing the closed loop pole location of

the inner pressure controller. For instance, rather than a circle

LMI region of radius 25 and centered at point (−350, 0), we

constrain the poles to be at (−450, 0). This is represented

on figure 7.

The consequence can be viewed on Fig. 8. The limit cycle
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Fig. 7. Zero pole map: LMI circle regions and closed loop pole location
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Fig. 8. High gain step response

has been completely removed. The steady state error equals

0.02◦.

B. Pressure controller influence and robustness analysis

tests: In Fig. 9, a robustness test is done by adding a 5kg
load at t = 5s. The regulation is still good and the static error

is less than 0.1◦. It is interesting to observe that the system

reacts by a difference pressure jump which corresponds to

the mass variation added at the end of the arm. Therefore, it
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Fig. 9. Robustness test with a 5kg mass: a difference pressure jump is
observed corresponding to the mass variation. Good regulation with a static
error less than < 0.1◦.

is possible to deduce that the role of the inner loop is twice;

first, it simplifies the control synthesis of the outer controller

and secondly it robustifies the control because the difference

pressure inner tracking enables a natural adaptation to mass

variations.

C. Comparing results with state-of-art former studies:

It is not easy to compare those tests with former studies

because the experiments and the objectives are not the same.

For instance, in [11] [19] [12] [29] [18], the authors present

only position control tests without any robustness experi-

ments. In [4], the authors developed a robust sliding mode

controller. Robustness is tested by increasing the moving

mass by 1.8kg. Fig. 10 shows optimal test results with the

sliding mode controller implemented in [29] and compares

chirp signal tracking results with our robust cascade strategy.

The experiments have been done with the same control signal

amplitudes. This experiment clearly shows the improvement
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Fig. 10. Experimental chirp signal tracking results: comparison between
the robust cascade strategy and state-of-art sliding modes [29]

that can be brought by such a control scheme. In Fig. 11, a

robustness test is handled, that is, an unmodeled 4kg load is

added without considering it in the controller. The gains are

the same as for former test. Results show clearly the interest

of the cascade robust control strategy introduced here.
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Fig. 11. Experimental 4kg mass variation robustness test: tracking results
comparison between the robust cascade strategy and state-of-art sliding
modes [29]

V. CONCLUSION

An experimental versatile testbed is designed in order to

test the proposed robust cascade strategies on electropneu-

matic actuators for pick and place parallel robotic applica-

tions and based on a mixed GPC and H∞ approach. As our

aim is to reach at least a precision less than 1◦ for transport-

ing loads up to 5kg, the robust cascade strategy fulfills these

requirements in spite of the different uncertainties relative

to friction, gravity effects and different nonlinearities of the

actuators. The different experiments have shown the contri-

bution of the predictive position controller in performances

by reducing time delay in a natural manner. Predictive control

is particularly suitable for industrial robotics applications

where future references are known a priori. On the other

hand the different robustness tests have shown the importance

of pressure difference inner loop which adapts itself in a

natural manner to mass variations. Future work will consist

in the improvement of the model by estimating and canceling

the friction effects. For the pressure multiobjective controller,

the inspection of other LMI region should be interesting in

order to remove the chattering effect of the control signal for

high dynamic closed loop poles.
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cations,” Ph.D. dissertation, INSA de Lyon, 2004.

5154


