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Abstract— We aim to perform robust and fast
vision-based localization using a pre-existing large
map of the scene. A key step in localization is asso-
ciating the features extracted from the image with
the map elements at the current location. Although
the problem of data association has greatly benefited
from recent advances in appearance-based matching
methods, less attention has been paid to the effective
use of the geometric relations between the 3D map
and the camera in the matching process.

In this paper we propose to exploit the geometric
relationship between the 3D map and the camera
pose to determine the visibility of the features. In
our approach, we model the visibility of every map
feature with respect to the camera pose using a non-
parametric distribution model. We learn these non-
parametric distributions during the 3D reconstruction
process, and develop efficient algorithms to predict
the visibility of features during localization. With this
approach, the matching process only uses those map
features with the highest visibility score, yielding a
much faster algorithm and superior localization re-
sults. We demonstrate an integrated system based on
the proposed idea and highlight its potential benefits
for the localization in large and cluttered environ-
ments.

I. Introduction

We aim to perform fast and robust vision-based lo-
calization, using an a-priori obtained accurate 3D map
of the environment. This map can be reconstructed by
techniques such as bundle adjustment [1], [2] or Visual
SLAM [3]. Such a setup is feasible and would be useful in
many applications, among others to aid the navigation of
the visually impaired, which is our primary motivation. A
vision-based localization system would be able to provide
an accurate pose aligned with the head orientation, which
can enable a system to provide the visually impaired with
information about their current position and orientation
and/or guide them to their destination through diverse
sensing modalities [4].
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A key problem in obtaining accurate pose is associating
the features extracted from the image with the map
elements at the current location. Solving this matching
problem becomes very challenging when the map con-
tains a very large number of 3D landmarks, e.g., a few
million, and/or has a complex spatial structure. Recent
advances in appearance-based methods have improved
the matching process for localization substantially. A
common trend has been the efficient use of invariant
appearance descriptors [5], [6]. Less attention has been
paid to the effective use of the geometric relations be-
tween both the 3D landmarks and the camera pose to
achieve this goal. In many cases, the only use of geometric
information can be efficiently used to prune out the 3D
landmarks which are beyond the proximity from the
latest known camera pose.

A promising avenue that has been explored in the
literature is predicting whether a feature will be visible
or not in the image, based on a rough estimate of the
camera pose. For example, in the visual SLAM work by
Davison [3], the visibility of a 3D landmark is predicted
based on the similarity of the current camera pose w.r.t.
(with respect to) a memorized reference pose, recorded
when the landmark is first seen. Although this visibility
criterium works reasonably well, each 3D landmark mem-
orizes only one reference camera pose and more complex
visibility criteria can not be exploited. In the vein, Sala
et al. [7] studied the optimal feature selection for robot
navigation by means of a graph theoretical formulation
where the landmarks are divided into groups with similar
visibility. However, the visibility modeling for every fea-
ture is still limited since, for a given visibility region only
the same set of k features is visible (being k a parameter
defined by the pose-estimation algorithm). In [8] the au-
thors showed an augmented reality application in which
they model for every feature the probability distribution
from which the feature can be tracked successfully by
means of a finite set of Gaussian mixtures. The extension
of this method for larger environments is difficult and the
use of a Gaussian kernel makes this approach limited. In
addition, in their visibility modeling they only consider
camera translation and not orientation, which in fact
is more important than translation for modeling the
visibility of each feature. Zhu et. al. [9] studied how
to build an optimal landmark database rapidly and use
this database online for real-time global localization. It
was shown that by using an intelligent subsampling of
the landmark database the size of the database can be
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reduced without dropping the accuracy. In this approach
landmarks are characterized by its appearance using
Histogram of Oriented Gradients (HOG) [10] and the
selection of putative matches for pose estimation relies
vastly on appearance descriptors, not exploiting all the
geometry information.

In this paper we generalize these approaches and intro-
duce a memory-based learning framework to predict, for
each feature, its visibility w.r.t. the varying camera pose.
Our approach efficiently captures the visibility of land-
marks located in structurally complex or cluttered envi-
ronments. This is made possible by memorizing multiple
reference poses for each feature, using non-parametric
learning methods. In the remainder of the paper, the
overall framework of our 6-DoF vision-based localization
system is shown. Then, the importance of the visibility
prediction problem is discussed, and our solution based
on the non-parametric framework is presented along with
an efficient implementation. Finally, the experimental re-
sults demonstrate the benefits of the proposed approach.
Our results show that with our method, the visibility
of 3D landmarks is predicted more accurately and the
algorithm improves the quality of the matches as well as
of the localization algorithm accuracy.

II. Vision-Based Camera Localization

We describe the localization problem and our overall
framework in this section. A map M is commonly defined
as a set of high quality landmarks reconstructed from
the images. Such a 3D map comprises of the location of
each feature and can be obtained through visual SLAM
techniques, e.g., [11]. Even though stereo camera may be
used for the 3D map reconstruction, we would focus on
localization problem based on monocular vision in this
paper.

Our localization system can be described within the
Bayesian filtering framework [12]. The posterior proba-
bility of the current camera pose θt (w.r.t. a world refer-
ence frame) can be estimated from the prior probability
distribution recursively based on the motion model and
measurement model as follows:

P (θt|Z1:t,M)︸ ︷︷ ︸
Posterior

∝ P (zt|θt,M)︸ ︷︷ ︸
Measurement

·

·
∫
θt−1

P (θt|θt−1)︸ ︷︷ ︸
Motion

P (θt−1|Z1:t−1,M)︸ ︷︷ ︸
Prior

dθt−1
(1)

where Z1:t ≡ zt indicates the sequence of images up to
time t. While the framework in Eq. 1 is very general, we
implemented the posterior as a single delta function, i.e.,
only the most likely camera pose is estimated. More in
detail, the overall localization system works through the
following steps:

a) While the camera is moving, the camera acquires
an image zt from which a set of image features Yt ≡
yt,k|1 ≤ k ≤ |Yt| are detected by a corner detector
of choice, e.g., Harris corner detector [13].

b) Then, a promising subset of the map M ′t is chosen
and re-projected onto the image plane based on the
estimated previous camera pose θt−1 and known
camera parameters.

c) Afterwards, a set of putative matches Ct are
formed where the i-th putative match Ct,i is a
pair {yt,k, xj} which comprises of a detected corner
yt,k and a map element xj . A putative match is
created when the error in Euclidean norm between
a detected feature and a projected map element is
very low.

d) Finally, the posterior function in Eq. 1 is fed into
RANSAC along with the set of generated putatives
Ct, where a set of promising inlier putatives are
selected to produce an optimal camera pose θt. The
RANSAC-based framework described above is very
popular and has been used successfully by many
authors [14], [15].

As the map M becomes larger and denser, we need to
pay special attention in step (c) in order to maintain
high-quality putative matches, since the high ratio of
outlier putative matches will cause the RANSAC pro-
cedure in step (d) to slow down substantially or even
fail to compute a correct estimate [16], which will result
in under-performing system. This is due to the fact that
the number of all the possible putative match pairs (even
without assuming any spurious measurement), would
increase exponentially w.r.t. the size of the map |M |.
Hence, unless only the high quality putative matches are
selected, a large number of ill-formed putatives will be fed
into RANSAC. Traditionally, such high quality putative
pairs can be found by using appearance or geometry
information. For example, appearance descriptors such
as SIFT [5] are used to improve the matching accuracy,
or only the map elements xi ∈ M in the proximity
of the previous pose θt−1 are searched based on the
distance (geometry) to reduce matching candidates. In
many implemented systems, both approaches are often
used simultaneously.

III. Visibility

In this paper, we address the use of geometry infor-
mation to improve the selection of a promising map
subset M ′t in step (b), which turns out to be crucial to
improve localization. As mentioned earlier, the process
of selecting a subset of map becomes more important
as the map becomes larger/denser, and as the envi-
ronment with substantial degree of occlusions becomes
structurally more complex, which is often the case in
indoor environments.

The subset of features M ′t can be selected optimally if
we know the true visibility of features. In other words, a
system that can select only the features which are truly
visible w.r.t. a pose θt in reality is optimal. The visibility
is determined by the joint function of the feature xj and
the query pose θt. Formally, the visibility vj(θt) of the
j-th 3D landmark xj ∈ M w.r.t. a pose θt is a boolean
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variable defined as follows:

vj(θt) =

{
1 if xj is visible from θt
0 otherwise

(2)

A less optimal system would select a subset which
includes additional non-visible features and miss some
of the truly visible features. On the other hand, the
features Yt detected from an image would comprise of
the features that are in the map or the ones that are
not (due to the change of the environment, or just noisy
features). Consequently, the putative match generation
process in step (c) will create non-ideal matches as they
associate detected image features with incorrect map
elements in M ′t . It can be usually assumed that the
feature detectors are engineered at its best, hence, the
only factor that remains to be improved is the sub-map
selection process which should eventually capture the
visibility. Otherwise, a naive approach to step (b) would
introduce a lot of invisible features into M ′t , which will
only become more severe as the map becomes larger and
denser. Consequently, if we know the true visibilities for
all the features, we can generate high-quality putative
matches by considering only the visible features against
the detected features on the current image. Since the true
visibilities are unknown and should be predicted, we can
take a probabilistic modeling approach, and pursue to
model the following probabilistic visibility distribution
fj(θ) for every j-th map element w.r.t. a given camera
pose θ:

fj(θ) ≡ P (vj |θ) (3)

A. Non-parametric Visibility Modeling

While there can be many different candidate models
for the visibility distribution fj(θ) in Eq. 3, we propose to
use a non-parametric approach [17] where every feature
in the map remembers the camera poses which have seen
it previously. The use of the non-parametric approach is
motivated due to the complex nature of the visibility,
which occurs due to the non-trivial geometric structures
that exist in the environment. Once the visibility func-
tion in Eq. 3 in a non-parametric form is obtained, if
a feature has been seen previously by a camera pose
similar to the current pose θt, such feature is likely to
be classified to be visible. However, a major drawback
of such non-parametric approach is the computational
demand incurred due to the large size of the map M and
the size of the set of all the training camera poses stored
for every feature in the map.

A major contribution of this paper is a computation-
ally tractable and scalable algorithm which allows us to
compute the visibilities for each feature efficiently under
the non-parametric framework otherwise infeasible. For
example, Fig. 1 (a) depicts an example where the entire
map has been re-projected on the image plane. On
the other hand, Fig. 1 (b) depicts only the projections
of the map elements that are selected based on our
non-parametric framework. It can be clearly seen that

the often-used nearest-neighbor algorithm for putative
matching would perform very poorly in generating high-
quality putative matches since the number of back pro-
jections dominate the entire image plane due to the dense
characteristics of the map. On the other hand, if we try
to lower the number of map elements naively by selecting
a low distance threshold, it can potentially remove good
map elements and may deteriorate the overall quality
of the matches nonetheless. In our work, the visibility

(a) (b)

Fig. 1. The blue crosses depict the re-projections of a 3D point
from the map onto the image plane. In (a) the whole map is re-
projected, whereas in (b) only the most highly visible features for
a given pose are re-projected.

function fj(θ) is learned by providing a set of training
examples and a similarity kernel function k. In more
detail, we collect a set of training data (camera poses)
Θj for each map element where the pose set comprises
of both positive examples Θ1

j and negative examples Θ0
j ,

i.e., Θj ≡
{

Θ1
j ,Θ

0
j

}
. By positive examples, we mean the

camera poses from which the particular map element was
visible, and by negative examples the rest of the set. With
an appropriate kernel function k, the visibility at a query
pose θt can be estimated using Bayes’ law, as shown in
Eq. 4:

P (vj = 1|θt) =
P (θt|vj = 1)P (vj = 1)∑

vj

P (θt|vj)P (vj)
(4)

P (θt|vj) =
1∣∣Θvj
j

∣∣ ∑
i

k(θt,Θ
vj
j,i) (5)

In particular, the likelihood factor P (θt|vj) is modeled
by the non-parametric training examples where the like-
lihood factor for the positive case is shown in Eq. 5.
In general, the kernel function k should be chosen in
such a way that the similarity output value of the kernel
function decreases as the query pose θt stays further away
from the training data.

Since the size of the training data Θj for every feature
can be still very large, which would incur substantial
computational demand, we estimate an approximate vis-
ibility based on K-Nearest-Neighbor (KNN) approach
w.r.t. the latest pose estimate θt. This is possible due
to the fact that only the training data nearby the query
pose θt are informative to correctly compute the visibility
in Eq. 4 in most cases. As a consequence, we come to have
a succinct visibility estimation function in Eq. 6 where
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only the nearest K samples ΘK
j =

{
ΘK,1
j ,ΘK,0

j

}
would

be considered.

P (vj = 1|θt) ≈

∑
i

k
(
θt,Θ

K,1
j,i

)
∑
vj

∑
i

k
(
θt,Θ

K,vj
j,i

) (6)

While the problem of obtaining a training dataset for
the above problem does not look trivial, which seems
to be almost unrealistic to collect such data manually
for every single map elements, we can notice that the
training data exists already from the moment we built
a map M . As either the bundle-adjustment technique
or a SLAM algorithm is used to create a map, the
intermediate process of these algorithms is to provide
the information on the features seen by every estimated
camera poses in the dataset. Hence, for every feature, we
exactly know which camera poses observed it, which are
collected as positive training data. The rest of the camera
poses are collected as negative training dataset. Note that
the map building approaches above do not guarantee that
all the positive data are collected. In fact, it is expected
that some portion of the positive camera poses actually
slip into negative training set, since the map-building
approaches fails to find all the correct correspondences.

B. Learning Kernel Functions

In this section, we describe the necessary properties
of a good kernel function for visibility modeling and the
details of the function we have specially developed. In
particular, our kernel function is designed to output high
similarity between cameras with similar views, i.e., the
image features they see overlap substantially, and the
parameters of the function can be optimized based on
the training dataset. Hence, the kernel function we used
incorporates (1) Euclidean distance between the cameras
d(θ0, θ1) and (2) the normalized inner-product between
the viewing direction between the two cameras d′(θ0, θ1)
as the two distance inputs. Then, a logistic function was
learned from the transformed two dimension data:

k(θ0, θ1) =
1

1+exp
(
−(wd · d(θ0, θ1)+w

′
d · d

′(θ0, θ1)− wo)
)

(7)
Now, the parameters wd, wd′ and wo (which is an offset
parameter) of the kernel function can be learned from a
training dataset where each training datum comprises
of two camera poses with their view similarity scores
which ranges between 0 and 1. Such view similarity
scores can be readily obtained as the proportion of the
number of features observed by the two camera poses
w.r.t. the total number of features seen by the cameras.
For example, if θ0 observed features {x1, x2} and θ1
observed features {x1, x3, x4}, then the view similarity

score is: |{x1,x2}∩{x1,x3,x4}|
|{x1,x2}∪{x1,x3,x4}| = 1

4 .

C. Fast Visibility Prediction for Large Maps

We introduce the core technique to decrease compu-
tational demand to compute the visibilities for all the

map elements dramatically from the order of the map
size O(M) to O(K) where K denotes the number of
the neighbors in the KNN described. A naive way to
compute the visibilities for all the map elements is to
go over every one of them one by one computing the
visibilities using Eq. 6. The computational demand for
such approach increases linearly w.r.t. the size of the map
|M |. However, the core observation is that the results of
the visibility prediction using Eq. 6 will be mostly zero,
since most of the map elements in a large map would not
be observed at all by the KNNs of the current query pose
θt, effectively making the numerator in Eq. 6 to be zero.

As a consequence, once we find the KNNs of the
current query pose, we only need to predict the visibilities
for the subset of map elements which are at least seen
once by these KNNs. Then, we can set the visibilities
to be zero for the rest of the map elements, even not
computing them at all. More formally, the visibilities
need to be computed for such map elements which are
in the union set {

⋃
Xi} where Xi denotes the set of

map elements seen by the i-th neighbor pose among
KNNs. If we assume that the number of map elements
observed by any pose is bounded by a constant c, then
the overall number of map elements to be examined is
O(cK) = O(K). In summary, we can prune out most of
the map elements from the visibility computation process
by considering only those which were seen by KNNs of
the latest camera pose.

IV. Results and Discussion

We designed our experiments in such a way that we
can analyze the benefits that are obtained by the smart
use of the geometric information. In other words, any
benefits to be demonstrated in this paper are expected
to be obtained from the improvements on the geometric
information use, isolated from any advantages due to
appearance-based matching methods. A 3D map in a
dense cluttered environment was computed using Vi-
sual SLAM techniques, which is used to provide test-
beds for localization as well as to provide training data
for non-parametric visibility functions. During the map
computation process, the different training poses from
which each map element is seen, are memorized so as
to be able to predict the visibility by means of a non-
parametric modeling during the localization stage. We
show monocular vision-based localization results for the
training and test datasets. Additionally, to stand out the
contributions of our method, we compare our idea with
two different methods:

• Brute Force: Under this assumption all the map
features are re-projected onto the image plane for
a given pose. Besides, only the features that are
predicted to lie within the image plane, are consid-
ered to form the set of putatives to be used for pose
estimation.

• Length and angle heuristic: Feature visibility
is calculated considering the difference between the
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viewpoint from which the feature was initially seen
and a new viewpoint. This difference in viewpoint
has to be below some length and angle ratio, and
predicted to lie within the image, in order to pre-
dict the feature as visible. Usually the feature is
expected to be visible if the length ratio |hi|/|horig|
is close enough to 1 (in practice between 5/7 and
7/5 and the angle difference β = cos−1((hi ·
horig)/(|hi||horig|)) is close to 0 (less than 45◦ in
magnitude).

Considering the first of the above approaches, a brute
force approach will yield in a high number of outliers
and localization errors under very dense maps (thousands
of features), whereas the second of the approaches can
yield erroneous localization when the camera is facing
occluded areas. The second approach has been widely
used in the literature such as in [18], [3], since it is very
easy to compute and provides good results, since after
the visibility prediction, matching is performed using 2D
image templates. However, one of the drawbacks of this
criteria is that can not deal with occlusions since it as-
sumes a transparent world. This in fact, can be a problem
for long term localization under cluttered environments
with occlusions, such as the ones we are interested for the
visual impaired (e.g. cities, underground stations, offices,
etc.)

The training dataset is a large sequence of 5319 frames
in which a dense map with about 1316 3D points was
obtained. The test dataset is a separate small sequence
recorded in the same space and comprises of 2477 frames,
including some camera views that were not fully captured
in the training dataset. Fig. 2 depicts the kind of environ-
ment where we have tested our localization experiments.

In our experiments we use an adaptive threshold ver-
sion of RANSAC to automatically determine the num-
ber of RANSAC iterations needed [16]. The distance
threshold that is used to create a putative match is
set to 4 pixels. In addition we only consider visibility
prediction of the 60 KNNs since we have found exper-
imentally that this number of neighbors is enough for
predicting visibility. Our experimental results shown in
Fig. 3 highlights the benefits of our method where our
result is shown to provide less number of higher-quality
putative matches, which eventually leads to faster and
more accurate RANSAC computation. In detail, Fig. 3
depicts the inliers ratio (a), the number of putatives
per frame (b) and the number of RANSAC iterations
(c) during some of the first frames of the test sequence.
The highest inliers ratio is obtained using our visibility
prediction approach and this ratio is normally above
80%. We set the number of RANSAC iterations to a
maximum of 500 for computational purposes. As it can
be seen in Fig. 3, the number of iterations for the
brute force case is very close to this bound, whereas for
the other experiments the number of iterations is much
lower, obtaining less than 20 iterations per frame for the
visibility case.

In Table I, the information about the mean inliers
ratio, mean number of putatives and RANSAC iterations
per frame is shown for the training and test datasets
respectively where we can again observe the computa-
tional benefits of our method. Fig. 4 and 5 show the
localization results for the training and test sequence
respectively, w.r.t. the ground truth data obtained by
Visual SLAM and bundle adjustment optimization. Map
3D points are characterized by a vector Yi = {X Y Z}
in a world coordinate frame (map 3D points are repre-
sented by orange dots in the next figures). Each cam-
era pose is parametrized by means of a vector θi =
{X Y Z q0 qx qy qz} (translation and orientation given
by a unit quaternion). We don’t show any figure for
the brute force case, since this approach fails to provide
accurate localization for both datasets.

Finally, we show the overall localization accuracy of
our monocular-vision system for the camera locations
and rotations. In detail, Table II and III show the mean
squared error with respect to the ground truth of the
estimated localization for both translation and orienta-
tion, training and test sequences respectively. In the test
sequence, the camera goes straight during approximately
1000 frames into a corridor where no occlusions are
present, and after that it turns right into an area with
severe occlusions. Brute force and heuristic approaches
yield a wrong localization result since these two ap-
proaches are not able to estimate correctly the 180◦

rotation in the area with occlusions. On the contrary,
with our approach, localization results are very similar to
the ones obtained in the ground truth even in areas of the
map with a dense level of occlusions. Besides, the number
of RANSAC iterations per frame that are necessary are
less than 20, showing that the method can work in real
time providing good localization estimates. It can be
observed in Fig. 5(b) a small gap in the camera position.
This is due to the fact that in the test sequence there are
some camera views that were not fully captured in the
training dataset, decreasing slightly overall localization
performance. With our approach we have obtained the
smallest errors with respect to the other two methods,
both in translation and rotation components. Results are
quite satisfactory, taking into account that appearance
descriptors have not been used in the matching pro-
cess. We think that the use of appearance descriptors
combined with our visibility prediction will improve and
speed up localization.

As it has been shown, our method depends on the
quality of the input data. But how many training views
are necessary to obtain accurate and fast localization
results? Considering a huge number of training views
can be an overwhelming computational burden for very
large environments such as buildings, or even cities.
We have done some experiments in which we reduce
considerably the number of training views (sampling
uniformly among the whole dataset of training views),
and run our localization algorithm predicting features
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Fig. 2. Some frames of the analyzed environment

(a) (b) (c)

Fig. 3. Test sequence results: (a) inliers ratio, (b) number of putatives and (c) number of RANSAC iterations per frame

Training % Inliers # Putatives # Iterations
Brute Force 0.6952 67.2181 461.7096
Heuristic 0.7392 36.7744 52.7885

Visibility Prediction 0.8335 26.3897 6.4221
Test % Inliers # Putatives # Iterations

Brute Force 0.6420 74.2782 439.0642
Heuristic 0.6817 36.9931 84.3254

Visibility Prediction 0.7368 16.7587 17.6437

TABLE I

Inliers ratio, number of putatives per frame for training and test sequences

Case Training Training Training Test Test Test
εx (m) εy (m) εz (m) εx (m) εy (m) εz (m)

Brute Force 3.4857 0.0974 1.8305 1.1825 0.1230 1.3366
Heuristic 0.5642 0.0574 0.4142 1.1549 0.0954 0.5041

Visibility Prediction 0.0476 0.0243 0.0340 0.2781 0.0785 0.2736

TABLE II

Localization errors in translation with respect to ground truth

Training εq0 εqX εqY εqZ
Brute Force 0.2180 0.1030 0.3258 0.0497
Heuristic 0.2222 0.0415 0.1911 0.0264

Visibility Prediction 0.0068 0.0106 0.0100 0.0091
Test εq0 εqX εqY εqZ

Brute Force 0.2484 0.0488 0.2367 0.0346
Heuristic 0.1826 0.0452 0.1561 0.0304

Visibility Prediction 0.0516 0.0366 0.0476 0.0237

TABLE III

Localization errors in rotation with respect to ground truth
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(a) (b)

Fig. 4. Comparison of Localization Results for Training Sequence: (a) Heuristic (b) With Visibility Prediction

(a) (b)

Fig. 5. Comparison of Localization Results for Test Sequence: (a) Heuristic (b) With Visibility Prediction

visibility. We have studied several localization runs with
a different percentage of the total number of training
views: %100, %70, %50, %30 and %10. In Table IV
ratios about the inliers ratio, number of putatives and
RANSAC iterations per frame are shown for both the
training and test dataset respectively.

The inliers ratio is similar for all the experiments,
being higher for the %100 of training views, since this
is the case in which we have the highest level of detail
of the 3D structure. As long as we reduce the sampling
rate, keeping the same number of KNNs, the distance
between the current camera pose and its nearest neigh-
bors increases so it is easier to predict a feature to be
visible when in fact it is not really visible from the
current camera pose. This is the reason why the number
of iterations that RANSAC needs to fit the best model
increases as long as we reduce the sampling rate. In terms
about the difference in localization results is very similar
between all the cases, and even localization results with
only a %10 of the training views are better than the brute
force and heuristic approaches both for training and test
sequence.

In our experiments the acquisition frame rate of the
training sequence was 30 frames per second, the image
resolution was 320 × 240 pixels and camera was carried

in hand by a person at normal walking speeds (3Km/h−
5Km/h). According to the results it seems that our
localization algorithm can provide good results with a
considerably smaller number of views than the whole
dataset of training views. This is an important factor
for large environments since we don’t have to keep in
memory the whole training dataset. It would be of benefit
just selecting the views that give more information about
the 3D reconstruction just in a similar way as it is
explored in [19] for data association.

V. Conclusions

We have presented an algorithm for predicting the
highly visible features for real time localization under
indoor environments, in which every map feature models
its visibility w.r.t. the camera poses via non-parametric
distributions. We have shown the benefits of our method
for monocular vision-based localization. The localiza-
tion errors considering our visibility prediction are very
small compared to the ground truth and also the speed-
up gain compared to the other analyzed methods is
very significant. In addition, our procedure can provide
accurate localization results even when a small set of
training views is used. As future work we are interested in
integrating our approach into a real-time SLAM system,
i.e. when the map has been computed and the remaining
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Sequence % Camera Poses % Inliers # Putatives # Iterations # Training Views
Training 100 0.8335 26.3897 6.4221 5319
Training 70 0.8331 30.3055 6.8429 3723
Training 50 0.8158 32.2688 8.0959 2661
Training 30 0.7803 36.2432 8.6119 1569
Training 10 0.7664 42.5013 11.2367 533
Test 100 0.7368 16.7587 17.6437 5319
Test 70 0.7194 20.0803 19.5891 3723
Test 50 0.7170 25.0831 22.5293 2661
Test 30 0.6983 26.3317 27.3240 1596
Test 10 0.6510 29.4727 30.3448 533

TABLE IV

Inliers ratio, number of putatives and RANSAC iterations per frame considering different number of training views

uncertainty of the features are below a quality threshold,
the map can be used for navigation purposes using the
learnt visibility from the mapping process. Moreover, the
use of powerful appearance descriptors and our visibility
prediction idea can provide very good localization results
in cluttered environments with occlusions for indoor and
outdoor environments. Obtaining the camera views that
have more impact in the reconstruction, we can sample
the set of training poses reducing the total size of poses
to be kept in memory. In the same way we are interested
in techniques such as the one described in [9] for reducing
the total number of landmarks that are necessary for an
accurate localization.
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