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Abstract— Trajectory generation and control of large equip-
ment in open field environments involves systematically and
robustly operating in uncertain and dynamic terrain. This
paper presents an integrated motion planning and control
system for tracked vehicles. Flexible path-end adjustments and
adaptive look-ahead are introduced to a state lattice planning
approach with waypoint control. For a given processing horizon,
this increases search coverage and reduces planning error.

This tramming approach has been successfully fielded on a
98-ton autonomous blast hole drill rig used in iron ore mining in
Western Australia. The system has undergone extensive testing
and is now integrated into a production environment. This work
is a key element in a larger program aimed at developing a
fully autonomous, remotely operated mine.

I. INTRODUCTION

Due to the remoteness and potential hazards in mining,
automation is desirable to achieve higher efficiency and
safety [1]. One of the vehicles central to open-pit mining
operations is a surface drilling rig (Fig. 1). This large tracked
vehicle drills holes into the ground that are subsequently
filled with explosive and blasted. The fragmented rock is
then extracted. Drill motions are not arbitrary. Hole locations
are carefully planned in regular patterns according to the
underlying geology. Thus, there is an underlying structure
in the form of preferred maneuvers, such as straight-line
tramming, row shifting, or three-point turning.

Fig. 1. The autonomous blast hole drill rig at rest on a drill bench of an
open-pit mine (the 4x4 truck illustrates the large scale).

Drill rig automation can be divided into three modules:
tramming, levelling, drilling. This paper focuses on tram-
ming, i.e., the processes of travelling between locations.
A multi-goal planning and control problem, tramming can
be separated into three main tasks: 1) determining the
appropriate location sequence given a pattern; 2) calculating
trajectories between initial and final pairs of drill locations;
and 3) driving the drill to follow these trajectories.

In the fielded implementation, ordering is specified a pri-
ori or can be determined by approximate methods (detailed
in related work [2]). The paths are formulated using state
lattices; and control is performed via a feed-forward, pure-
pursuit law. State lattices are a path set approach and operates
in a discrete-space, discrete-time manner with reachable sets
of control sequences tessellated through space at set time
intervals [3]. By reducing the problem from a continuum of
motions to a search through a discrete lattice, this provides
rapid computation and assures traversability. However, it
is only complete up to the sampled control resolution. In
comparison to probabilistically complete sampling methods
(e.g., RRTs), it provides fixed-time operation, efficiency for
low dimensional problems, and a direct means for exploiting
the structure through preferred maneuvers.

The operating environment adds complications that pre-
clude direct application. The vibration resulting from the
drill’s suspension compliance, large forces, friction, and in-
ertia make control difficult. In particular, for greater satellite
visibility in deep pits, the GPS antennas rest atop the drill
mast. The consequence of which is that locomotive impulses
lead to mast sway of ∼ 30 cm, which without control causes
positioning errors. Computation is limited because of the
harshness of the environment. Finally, actions from a set are
better since the drill may be operated in a supervisory mode.

The paper introduces an adaptive look-ahead and a flexible
path-end adjustment modification scheme. This provides
efficient planning with sufficient operating coverage to yield
traversable, controllable, and obstacle-robust paths. Tracking
achieves positioning accuracy in the presence of sensor
uncertainly on par or better than manual operation. This
paper starts with the software architecture and then details
the modified state lattices planner. Later sections introduce
performance metrics and detail field operation.
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II. ARCHITECTURE OVERVIEW

Considerable research in the tracked vehicle domain has
been focused on model-based operations with explicit kine-
matic and terrain models, particularly in regards to track-
ground interaction [4]. Approaches range from identification
of track slippage without previous knowledge of soil char-
acteristics [5] to straight line motion control that regulates
as error the mechanical asymmetries of the tracks [6]. This
has been extended to kinetic approaches that calculate the
required track forces to follow a path at given speeds [7].
In the mining vehicle context, a tracked vehicle controller
inspired by wheeled robots is introduced and simulated in
[8]. Whereas in [9], two separate controllers are shown to
realize controlled translational and angular velocities.

As the overarching goals of the autonomous tramming
system are to safely and robustly navigate the drill through
drill-hole patterns, it is desirable to perform navigation
without previous knowledge of soil characteristics and to
avoid obstacles. This entails a number of sub-requirements in
addition to the determination of steering commands. Chiefly
the autonomous tramming system needs: (1) to determine
a traversable path that covers all holes in a pattern while
maintaining tight spatial constraints; and (2) to follow the
planned path precisely and stop at holes accurately. These
tasks may be intuitive to an experienced operator, but its
principled determination is non-trivial.
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Fig. 2. Overview of the drill system architecture. The dashed line indicates
planning and control subsystems

Figure 2 gives a simplified view of the system architecture.
The entire system can be viewed as a loop of messages. The
operation planner receives drill-hole patterns and user inputs,
which are various parameter settings, and generates vehicle
path plans. The two sub-components of the operation planner
are the drill-hole sequencer and path planner. The drill-hole

sequencer (detailed in [2]) is responsible for generating the
drilling order for all holes in a pattern, whereas the path
planner is responsible for computing traversable paths that
connect all holes. Path plans are then fed to the tramming
controller module, which is responsible for executing a plan.
The outputs of the tramming controller, which are actuator
control commands, are sent to a drive-by-wire hardware
interface and then subsequently executed by the hardware
actuators. At the same time, the vehicle constantly collects
information about its environment and internal states, and
processes and sends this information to both of the tramming
controller and the user interface. This information is utilized
by the tramming controller to control the drill and the human
user to monitor the drill progress.

III. STATE LATTICE PATH PLANNER

A state lattice path planning approach [3] is adopted as
the environment has not overly cluttered and the system
has three degrees of freedom. A search graph is composed
of vehicle configuration as nodes and primitive trajectories
(formed from forward integrating discrete sets of vehicle
commands) as links (see Table I and Fig. 3). Minimal
(not necessarily optimal) paths are found by searching the
graph. Furthermore, since the machine is non-holonomic,
the heuristic function (for A* search) is nontrivial. An
interpolation table approach [10] is adopted based on non-
holonomic distance metrics [11].

TABLE I
END NODES OF THE TEN PRIMITIVE TRAJECTORIES.

Node Northing Easting Heading
1 6 0 0
2 -6 0 0
3 8 3.5 0
4 8 -3.5 0
5 -8 3.5 0
6 -8 -3.5 0
7 3.5 8 π/2
8 3.5 -8 −π/2
9 -3.5 8 −π/2

10 -3.5 -8 π/2

Performance is improved by defining the primitive trajec-
tories based on a functional study of tramming trajectories
in production operation. In contrast to standard implemen-
tations, in which the primitive trajectories are defined by
discretizing the reachable configurations based on the vehicle
kinematics, this approach is able to exploits histories from
both expert drivers and previous autonomous operations.

This results in a set of trajectories that is a subset of all
reachable configurations, as unlike wheeled vehicles, which
have their maneuverability limited by vehicle dynamics, the
dominant factor for drill trajectory regulation comes from
terrain constraints and drill operation procedures.

In addition to defining primitive trajectories according
to drill operations, we employ a more flexible approach
for trajectory generation. One inherited limitation of the
standard state lattices approach is the dilemma of the search
branching factor and the coverage of the search space. Once
the vehicle configuration discritisation is involved, there is
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Fig. 3. The ten primitive trajectories and their first and second expansions

a compromise between the number of primitive trajectories
and the coverage of the vehicle configuration space, i.e., the
fewer primitive trajectories, the faster the search. However,
there are more unreachable configurations in such a system.
To ensure sufficient coverage, more primitive trajectories are
required. This results in a higher computational burden to
evaluate all possible path compositions.

The core innovation of our approach is centered at the
flexibility we introduce at the primitive trajectory generation.
We generate ten primitive trajectories represented using cubic
Bezier splines. However, instead of generating primitive tra-
jectory compositions until the path is found, we first generate

a cubic spline path from the current search node to the final
destination. In the case of an invalid path, the current search
node is expanded with the ten pre-defined primitive splines.
This strategy ensures that there is no vehicle configuration
error incurred at the path planning stage due to the search
space discritisation. Given a set of primitive trajectories that
is complete enough, this strategy also fills all holes created
by the discritisation.

Given the relatively short path lengths, the final vehicle
configuration can be reached within three or four levels of
node expansion. There is no need to design a sophisticated
heuristic function to guide the search. Instead, breadth-first
search is used. The algorithm stops when a set of paths is
found or it reaches a node expansion threshold. We then
evaluate all resulting paths based on criteria such as the path
length and the amount of turning. The path ranks at the top
in such evaluation is returned.

Further, the implementation composes trajectories of both
a cubic Bezier spline and a straight line segment (see Fig. 4)
The purpose of the straight segment ending is to ease the
trajectory tracking problem for the vehicle controller. This is
also in a framework that is similar to and compatible with
optimal steering methods [12].
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Fig. 4. Ten primitive trajectories with straight-line segment ending

Since trajectories are generated using splines, they are
represented by discritised points. It is very convenient to
compute the amount of heading change between two adjacent
points. Since there is a direct mapping between the heading
change and the turning radius, we use this measure to
evaluate the amount of turning for each trajectory, instead
of the curvature.

IV. TRAMMING CONTROLLER

The tramming controller is composed of three sub-
controllers in a hierarchical manner (see also Fig. 5). It
is designed such that the actuator controller regulates the
speed of the two tracks; the rate controller regulates the
vehicle velocity and the turn rate; and the waypoint controller
maintains the tracking of planned trajectories. Due to the skid
steering nature of the drill, velocity and yaw rate are chosen
as the two main control parameters because they directly
relate to the drills tramming commands.
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Fig. 5. Block diagram of the tramming controller showing the control
sequences and feedback for an implementation of the control system on a
blast-hole drill rig. Input shaping can be optionally used to actively control
vibration modes.

A. Tramming Controller Design Requirement

Unlike autonomous vehicles designed for general purpose
road driving, autonomous drill tramming has a specific set
of requirements. In contrast to road vehicles that operate
in a highly dynamic environment, the working environment
for drill is static. On-site traffic is tightly monitored and
controlled. Moving obstacles in the field are rare. Therefore,
there is no requirement for high speed traversing and agile
maneuverability. On the other hand, due to the tight spatial
constrains on drill sites and to ensure the accurate posi-
tioning of drill holes, drill tramming requires considerably
higher control accuracy than road vehicles. This requirement
translates to tight error tolerances on path tracking and final
vehicle positioning.

B. Actuator Controller

The actuator controller is the logic nearest to the track
actuators. It takes the speed and yaw rate as its inputs from
the rate controller and generates track speeds as its outputs.

Assuming the control point of the drill is at its center
of rotation, using a clockwise positive coordinate frame, we
have:

θ̇ =
SR− SL
Base

(1)

v =
SR+ SL

2
(2)

where SR is the speed of the right track, SL is the speed
of the left track, and Base is the distance between the two
tracks. Solving for SR and SL gives:

SR =
2v +Baseθ̇

2
(3)

SL =
2v −Baseθ̇

2
(4)

We use a PID controller to control these two track speeds
with a pressure relief for safety. Feedback is taken from the
two track encoders.

C. Waypoint Controller

The waypoint controller is the top level tracking controller
in this drill tramming system. It takes waypoint lists, which
are coordinates, as its inputs from the path planner and
generates speed and yaw rate. The trajectory tracking control
is inspired by various sources, which include the Argo [13]

and the RedRover [14]. The latter can be traced back to the
control model developed by Kanayama [15].

As with the Argo and RedRover, the implementation of
the control was separated into two parts, 1) speed regulation
and 2) steering regulation. However, unlike the RedRover,
which is a wheeled vehicle and has a natural decoupling
of the speed and the turn rate controls, the speed and turn
rate are tightly coupled for the tracked drill. Extra care is
taken to ensure valid controls, i.e., controls that are within
the physical capability of the drill, are issued to lower level
controllers. After a waypoint list is received by the waypoint
controller, the controller estimates the desired instance speed
at each of the waypoint. The estimation is carried based on
the heading change rate at the waypoint. For the sake of
simplicity, the relative turn rate, ω, for each of the waypoints
is approximated as being proportional to the maximum
curvature or turning radius, ρ, associated with the trajectory
for the region around the waypoint. This is computed using
the method descried in [16]. The waypoint speed (v) is hence:

v = ρω. (5)

Waypoint speed is the basis for the controlled vehicle
speed. Since the waypoint speed is estimated beforehand
with little consideration of the runtime vehicle behavior, it
is difficult to ensure its validity at the runtime. Therefore,
the controlled vehicle speed is further verified against the
controlled vehicle turning rate. If the controlled vehicle
speed exceeds the maximum allowed speed for the specific
turning rate, the controlled speed is reduced. The maximum
allowable speed for a given turning rate is computed as:

v = −(
Vmax

θ̇max
)θ̇ + Vmax. (6)

The Vmax is the maximum allowed velocity and the θ̇max is
the maximum allowed yaw rate of the drill.

Steering regulation is performed with proportional and
integral control. The control strategy is designed around error
corrections. We define three errors, vehicle heading error,
e (θ), waypoint heading error, e (δ), and cross-track error,
e (x), in the path tracking process. The waypoint controller
constantly monitors these three errors and issues steering
command to correct them. The resulting control law for
turning rate has 6 tuned parameters (Kθ . . . αx) and can be
written as:

θs =
(
Kθ +

αθ

s

)
e (θ) +

(
Kδ +

αδ

s

)
e (δ) +

(
Kx +

αx

s

)
e (x) (7)

As shown in Fig. 6, the vehicle heading error θ is defined
as the angular difference between the vehicle heading and the
vector defined by the vehicle position, the current tracking
waypoint and the following waypoint. In our setting, the
current tracking waypoint is always ahead of the vehicle in
the direction that the vehicle travels. Correcting the vehicle
heading error pulls vehicle towards the direction of the path.
The desired heading direction is jointly defined by the vehicle
position, the current tracking waypoint and the following
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point (pi) and final point (pf ) by factoring cross-track error (x) to the
current smooth interpolated path (dashed line), and orientation differences
between the current and forward waypoints (angles θ and δ).

waypoint. In this setting, the desired heading direction is a
weighted average between the vector defined by the vehicle
position and the current tracking waypoint and the vector
defined by the vehicle position and the following tracking
waypoint. It can be described as:

θ =
d

D
θ1 +

D − d
D

θ2. (8)

D is the distance between the current tracking point and
the previous waypoint. d is the distance between the current
vehicle position and the previous waypoint. θ1 is the angle
between the vehicle heading and the vector defined by the
following waypoint and the vehicle position. θ2 is the angle
between the vehicle heading and the vector defined by the
current tracking waypoint and the vehicle position. This
technique provides one step look-ahead for the waypoint
tracking. It also removes abrupt changes in the error mea-
surement during the transition of the tracking waypoint.

The waypoint heading error is defined as the angular
difference between the vehicle heading and the desired
heading at the tracking waypoint. The desired heading at
a waypoint is then defined as the vector that connects the
waypoint and its successive waypoint.

The cross-track error is defined as the distance between
the vehicle position and the planned path. Even though
paths are represented as waypoint lists, it is problematic
to define the cross-track error as the distance between the
vehicle position and the tracking waypoint. As this inevitably
introduces sudden changes in the error reading while the
vehicle transits from one tracking waypoint to another and
brings disturbances to the control. We solve this problem by
further interpolating the planned path with high order splines
and then take fine discritisation in the interpolation. We then
measure the cross-track error as the distance between the
vehicle position and the nearest point from the fine-grained
path interpolation. This gives accurate reading in the cross-
track error and avoids all abrupt changes in error reading due
to transition of the tracking waypoint.

V. EXPERIMENT SETUP AND PERFORMANCE MEASURE

The tramming method is currently deployed at an iron-ore
mine on an autonomous blast-hole drill rig. It has been used

in autonomous production operations over a variety of bench
types (e.g., Fig. 7). The performance of the control method
is shown in path following and drill positioning experiments
as measured using the on-board D-GPS position when the
machine came to a rest, as compared to desired points as
planned and surveyed in advance by mine staff.

0 10 20 30 40
0

5

10

15

20

25

30

35

40

45

East (m)

N
o

rt
h

 (
m

)

Fig. 7. A sample drill hole pattern (note the regular ordering)

A. Vehicle Configuration

The blast-hole drill rig weighs 98-ton and is 13 m by 5.8
m and has a 17 m tall mast. Navigation is preformed by a
Topcon D-GPS suspended on the mast and two generic track
encoders. It is suspended on two large tracks and turns by
skid-steering. The system has high actuator authority being
driven by hydraulics (500 psi) and powered by a 1000 HP
diesel motor.

B. Path following

The path planner generates paths that connect drill holes
in a pattern. The machine then trams along this path. Motion
is constrained by two competing objectives. First, it is
desirable to drive as quickly as possible to meet production
requirements. However, it is important that the drill does
not deviate significantly from the prescribed path given the
presence of obstacles and crests. As shown in the Fig. 8 for
tramming both a straight and curved path.

C. Drill Mast Positioning

Drill mast positioning is one of the most important
criterion of drill operation performance. The feed-forward
controller is able to partially compensate for the suspension
compliance and the resulting mast sway. Tests with D-GPS
positioning have errors <15 cm on average and maximum
errors of < 30cm (see Fig. 9). This is particularly notable
since this is less than the system’s positioning variance
(recall the GPS antenna is on top of the swaying mast), thus
confirming the utility of a feed-forward approach.

D. Path Planner Performance

The two properties of the path planner we focused our
experiments on are: 1) the coverage of all possible trajecto-
ries, and 2) the number of node-explorations before a path is
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Fig. 8. Path following examples: In (a) some turning is involved as the drill moves around a bend in a row-shifting maneuver that is used frequently in
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These two figures demonstrate the accurate path following performance.
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Fig. 9. Drill mast positioning with <15 cm average error.

found. The first property represents the completeness of the
algorithm, and the second property represents the efficiency
of the algorithm.

The Monte Carlo method is used to determine the path
coverage. The vehicle starts at (0,0), with heading θstart = 0.
Fig. 10 shows the reachable region in the (-8:8, -8:8) m
square with the final heading θend = 4 ∗ π/5 and θend =
π after one depth of search node expansion (with 20,000
points are generated in each case). The allowed minimum
turning radius for each trajectory is 2 m, the same as the
minimum turning radius of the primitive trajectories. Fig. 12
shows the relation between the coverage and the heading
difference between the starting position and the final position.
In this graph, it can be seen that the unreachable area grows
rapidly as the heading difference approaches π. Fig. 11 shows
the reachable region in the (-8:8, -8:8) square with the final
heading θend = π after two depth of search node expansion.
It can be seen that there is a 100% coverage in this setting.

To test the search efficiency, we expand the end point area
to (-20:20, -20:20). 20,000 points are randomly generated in
this area as destination points with random heading range

(a) Typical case: Final Heading θend = 4 ∗ π/5

(b) Extreme case: Final heading of θend = π

Fig. 10. Search coverage for the extended state lattice method (compare
to Fig. 3). The starting heading is θstart = 0. Shaded areas are reachable
in the 8 m by 8 m square (from a starting point of (0,0) after one depth
of search node expansion. The later case requires a larger turn and hence
shows less coverage.

from −π to π. The starting point is (0,0) and the starting
heading θ is 0. Fig. 13 shows the histogram of the number
of nodes examined before a path is found. Combined with
the search coverage results presented above, we conclude our
simple breadth-first search is capable of producing desirable
results for our application.
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Fig. 11. Search coverage (ref Fig. 10 for a final heading of θend = π
after two search node expansions
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Fig. 12. The search coverage as a functions of total heading variation
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Fig. 13. The histogram of the number of nodes examined for each search.
This shows path planning efficiency as most cases did not require extensive
searching.

VI. CONCLUSION AND FUTURE WORK

A software architecture, a control mechanism and a path
planner for an autonomous tracked vehicle are presented.
Coverage is important in open environments as there are
no roads to follow. The extended state lattice method uses
operational data to achieve rapid coverage of the state-
space. The tramming controller utilizes a modified waypoint
following path tracking technique specialized for high-inertia
of the vehicle. The method is implemented as a set of
modules and deployed on a 98-ton autonomous blast-hole
drill rig in production mining environments.Experimental
results include complete autonomous operation in production
drill hole patterns. We demonstrated the designed controller
is capable of satisfying the two major requirements in
mining production in real-time: maintaining good overall
path tracking performance and realizing accurate drill hole
positioning. Field tests indicate that both the average cross-
track errors and average positioning errors are <0.15 meters.

Future developments include further system refinement to

improve operating efficiency.
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