
Approximation of Feasibility Tests for Reactive Walk on HRP-2

Nicolas Perrin, Olivier Stasse, Florent Lamiraux, Eiichi Yoshida

Abstract—We present here an original approach to test the
feasibility of footsteps for a given walking pattern generator. It
is based on a new approximation algorithm intended to cope
with this specific problem. The result obtained is used on the
robot HRP-2, and enables it to guess a step feasibility 40,000
times faster (in 9µs) than with the normal verification process.
As a consequence some advance is made towards fast online
motion (re)planning based on a continuous set of possible steps.

I. INTRODUCTION

Planning and controlling motions of a legged humanoid

robot is well known to be a difficult problem. First, these

robots have a high number of degrees of freedom. This

property has a strong impact on the computation cost of

numerical methods used to produce motions on the one hand

and on collision detection complexity on the other hand [9].

Second, they are subject to dynamic constraints that make

most motions unfeasible.

One way to plan motions for a humanoid robot is to grow a

tree of random steps with an A* algorithm. The growing tree

of steps should obviously only consider feasible steps, but

the current trajectory generation and verification techniques

take at least a couple of hundreds of milliseconds for each

step on recent computers. This fact drastically limits the size

of the tree of steps, and makes this method unsuitable for

reactive walk.

Yet, reactive walk is a major requirement for humanoid

robots, because it is needed in any potentially changing

environment, and a fortiori in any task involving cooperation

with humans. The current state-of-the-art solution is to

only allow a small set of steps for the robot. In that case

the generation and verification phases are useless since all

trajectories can be memorized and verified offline ([7], [8],

[1]; for a recent extension, see [2]). This approach is not

always satisfying for it leads to a gait which has no flexibility,

and combined with planning it often results in the robot

making a large number of steps to perform a task for which

only one or two steps would have been arguably enough.

Instead of limiting the possible steps, we based our work

on the following remark: even if a robot has a great number

of degrees of freedom, the set of all possible steps only

has 6 dimensions. So, if we add some restrictions ensuring

Nicolas Perrin (n.perrin@aist.go.jp) is with Université de Toulouse ; UPS,
INSA, INP, ISAE ; CNRS ; LAAS ; F-31077 Toulouse, France, and CNRS-
AIST JRL (Joint Robotics Laboratory), UMI3218/CRT, AIST, Umezono
1-1-1, Tsukuba 305-8568 Japan

Florent Lamiraux (florent@laas.fr) is with CNRS ; LAAS ; 7 avenue du
colonel Roche, F-31077 Toulouse, France

Olivier Stasse (olivier.stasse@aist.go.jp) and Eiichi Yoshida
(e.yoshida@aist.go.jp) are with CNRS-AIST JRL (Joint Robotics
Laboratory), UMI3218/CRT, AIST, Umezono 1-1-1, Tsukuba, Japan

that to one step corresponds only one unique trajectory,

then the number of parameters used to describe a trajectory

could be small enough to make machine learning techniques

of practical interest. With such restrictions, we decided to

attempt, in the set of all possible steps, to approximate the

feasible region through extensive offline computations and

then use the approximation online to guess extremely quickly

whether a given step is feasible or not.

In this paper, we present an original approximation algo-

rithm aimed at maximizing its efficiency by taking advantage

of the specificities of our problem. We show how we used

it and obtained an approximation which helped the robot

HRP-2 to perform an experiment where online reactivity is

constantly needed.

II. PROBLEM STATEMENT

Let us denote by x = (q, q̇, q̈) a state of the robot, i.e. a

vector containing the configuration of the robot togeter with

the first and second derivatives. In diverse applications, the

trajectories of a robot are constrained by some real valued

functions defined over the state space. In our work, we took

into account four specific constraints:

1) The distance to self-collision: SC(x), which is calcu-

lated using V-clip (see [11]), and which must stay greater

than a margin σSC taking into account the possible tracking

errors of the motor PID controllers.

2) The distance to joint limits: JL(x) (negative when one

joint is out of its range). A new margin σJL is added as

a lower bound on the minimum value of JL(x) along the

trajectory.

3) The Zero Moment Point (ZMP) deviation: ZD(x). This
is the maximum distance between the ZMP reference used

by the pattern generator (which is for example, in single

support phase, the center of the support polygon), and the

ZMP corresponding to the joint space trajectory it actually

produces (we will call it the “multibody ZMP”). The robot

HRP-2 uses a walking pattern generator (see [13]) which

does not guarantee the exact tracking of the ZMP reference,

and if the multibody ZMP goes out of the polygon of support,

then the robot might fall (see [20]), therefore we add another

threshold σZD.

4) Through experiments, we noticed that in some cases

if the multibody ZMP goes out of the polygon of support

for a very short time and with a relatively small amplitude,

the robot might not fall. Hence we took a relatively high

value for σZD, and instead decided to stress more on the

case where the multibody ZMP is regularly far from the

reference along the trajectory. Thus we decided to take into

account the variance of the multibody ZMP and defined a

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4243

C

fσ(γ) Rγ
Trajectory

Generator

p ∈ R
m

Fig. 1. The mapping to approximate. The Trajectory Generator takes in
input a vector of parameters defining a step, and must return a unique

trajectory. The value returned by the mapping is positive if the trajectory is
acceptable (feasible), negative otherwise.

maximum value σV Z which should ensure that the multibody

ZMP mostly stays near its reference.

We desire to characterize the actual feasibility of a given

trajectory γ over a time interval [0, T] with a unique real

number, so finally, the formula we use returns the minimum

of the four constraints considered:

fσ(γ) =

min

(

− σSC + mint∈[0,T]

(

SC(γ(t))
)

,

−σJL + mint∈[0,T]

(

JL(γ(t)
)

,

σZD −maxt∈[0,T]

(

ZD(γ(t)
)

,

σV Z −
1

T

∫ T

t=0

(

ZD(γ(t))
)2

dt

)

(1)

where σ is the quadruple (σSC , σJL, σZD, σV Z) ∈ R
4,

and γ a trajectory which assigns to any t ∈ [0, T] a state

of the robot. The way we obtained the four margins σSC ,

σJL, σZD and σV Z is empirical. We chose a margin of 2.5

centimeters for the self-collisions, 3 degrees for the joint

limits, and, as for the margins related to the ZMP trajectories,

we calibrated them through tests.

It is straightforward to approach fσ(γ) when the trajectory

is discretized. The computable function fσ evaluates the fea-

sibility of a trajectory corresponding to a step considered by

the robot. As mentioned previously, it is unfortunately quite

time consuming to generate a trajectory γ and then compute

fσ(γ). So we would like to build offline an approximation

helping us to guess the value and more importantly the sign

of fσ(γ) without even having to generate the trajectory. To

do so, we need to produce unique trajectories from vectors

of parameters in R
m. This is shown in section V, and it give

us a mapping C as shown on Fig. 1, which can entirely be

computed and approximated offline.

Before that, in section IV, we present the original approx-

imation algorithm which is used to approximate C.

III. RELATED WORK

This idea of precomputing robot dependent data structures

has been exploited in path planning for multibody robots in

the past [10], [6], [14]. In these papers a roadmap is com-

puted for a multibody robot without obstacles. Once the robot

is placed in an environment with obstacles, the precomputed

roadmap is pruned by removing edges in collision with the

obstacles. The remaining roadmap is then used to plan paths.

In [19] a 2 dimensional map is built which returns the time

necessary to change a HRP-2 step-length during the flying

phase of the foot in order to realize an emergency stop. The

keypoint of this work is to build a map which verifies that

the ZMP realized by the robot stays in the support polygon

for a given step-length modification done at a given time

while walking. Indeed walking pattern generators such as

the one proposed by Kajita et al. [5], or Morisawa [13],

do not guarantee that the robot ZMP stays in the support

polygon. The main difference between [19] and our approach

is that we consider more constraints, and propose an adaptive

partition of the input space well suited for higher dimensions.

Indeed our work, taking into account free steps (their work

only considers forward walking), has to aim at dealing with

higher dimensions.

Concerning our approximation algorithm, we focused on

techniques that reduce the required number of samples. The

main specificity of our problem is that we are only interested

in the sign of the function to approximate. Therefore, we

naturally chose to use a method for which the sampling

is adaptive and focuses on the regions where the mapping

changes its sign. We adapted the concept of Recursive

Stratified Sampling, which has been extensively used for

Monte Carlo integration and image reconstruction (see [17],

[3] and section 7.8 of [15]). Locally, we approximate by

using a classic optimization problem. It is the same as the

one which leads to Support Vector Regression techniques

(see [18])). It minimizes under some constraints a distance

between a polynomial and the samples (see (3)). We also use

in our algorithm two techniques (one global, and one local)

of approached Farthest Point Sampling, a method which has

been shown to lead to high data acquisition rates (see [12]

for recent developments on Farthest Point Sampling).

IV. MAPPING APPROXIMATION

A remark on notations: the cardinal of a finite set X is

denoted by |X|.
Let C be a continuous or at least piecewise continuous

mapping from a bounded hyper-rectangle B0 ⊂ R
m to R.

We suppose that the set {x ∈ B0|C(x) = 0} (the “frontier”)

is of Lebesgue measure zero. We also assume that C is, on

its areas of continuity, K−Lipschitz for some K ∈ R.

Our goal is to approximate C through sampling (since we

know nothing about C we can see this task as nonparametric

learning), focusing on the correctness of the sign of the

result, and reducing as much as possible the number of

samples needed for a satisfying approximation (because

evaluating one sample is quite time consuming).

Our algorithm is articulated around two principles:

• Recursive Stratified Sampling: the initial input space

B0 is recursively partitioned into small boxes (a tree

4244

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Fig. 2. An example run of our approximation algorithm on a continuous
function from R

2 to R

structure keeps the trace of all splittings; the current par-

tition is formed by the “leaf-boxes”). On all leaf-boxes,

independant local approximations have been performed

(through the resolution of optimization problems): their

reunion gives the current global approximation.

We treat differently “frontier boxes” (typically contain-

ing samples on which the sign of the mapping differs –

boxes with no samples are also presumed to be frontier

boxes) and other, “regular boxes”, in order to obtain an

adaptive sampling focusing on the frontier.

• Farthest Point-like Sampling in two different scales:

1) While selecting a box for sampling: we roughly

estimate for each box our “confidence in the

sign” of the local approximation, and select among

boxes of lowest confidence.

2) While sampling inside a box: since there will be

a limited number of samples inside a box, we can

use a naive technique for an approached farthest

point-like sampling.

Algorithm 1 shows an overview of the approximation

algorithm.

The while loop of the algorithm always terminates because

if the number of samples in a box is 1 or zero, then the local

approximation always succeeds. The algorithm implements a

continuous learning: the approximation is endlessly updated,

and the user decides when to stop. Various stop criteria could

be considered; in our experiment we paused and tested the

approximation several times, and stopped the learning when

the percentage of false positive was below 2%.

Fig. 2 shows the result of our approximation algorithm on

a function from [−1, 1]2 to R. We can see that the boxes

are split adaptively, and that it leads to an adaptive sampling

focusing on the region where the function changes sign.

In the light of the algorithm structure, let us explain the

two main features of our approximation method with more

details:

A. Recursive Stratified Sampling

• Step 4 of the algorithm:

As mentionned earlier the leaf-boxes are separated

in two categories: the “frontier” boxes and “regular”

boxes. Before selecting a new box to sample in, the

realization of a random variable decides which category

the selected box will belong to. The probability ρboost

for the set of “frontier” boxes to be chosen is set by

the user. Because the frontier is supposed of Lebesgue

measure zero, and the size of boxes endlessly decreases

as they are split, a fixed probability for sampling near

the frontier inevitably leads to an adaptive sampling

focusing mostly on the frontier. The probability set by

the user impacts on the balance between known frontier

approximation and the search for unseen frontier.

• Steps 10 and 15 of the algorithm:

The successive splittings are made along successive

dimensions, in a cyclic way.

Therefore the structure of the splittings is fixed, as

well as their position, but locally boxes are split with

different speeds, a higher uncertainty in the mapping

sign leading to a higher splitting rate.

• Step 13 of the algorithm:

Let us show how we perform a local approximation on a

box Bcurrent. The samples in Bcurrent are the training

data {(s1, z1), . . . (sl, zl)} ⊂ R
m × R. Our goal is to

find a function f(x) that approaches this training data

with correct sign.

f will be searched among the elements of a finite

dimension vector space chosen by the user (which must

contain constant functions). Let us describe the basic

case of affine functions f , taking the form

f(x1, x2, . . . , xm) = 〈w, (x1, x2, . . . , xm, 1)〉, (2)

with w ∈ R
m+1 and where 〈·, ·〉 denotes the dot product

on R
m+1. The problem can be written as a convex

optimization problem, similarly to the foundational idea

of Support Vector Regression (see [18]), but with a

different formulation since we don’t oblige the result

to stay in a fixed margin around the training data:

minimize
∑

i

(f(si)− zi)
2

= 〈w,Mw〉+ 〈d,w〉+
∑

i

z2
i

subject to

{

∀i | zi > 0, f(si) > 0
∀i | zi ≤ 0, f(si) < 0

(3)

where M is a symmetric positive (m + 1) × (m + 1)
matrix built from (si)1≤i≤l, and d ∈ R

m+1 built from

(si)1≤i≤l and (zi)1≤i≤l.

We use the solver QL (see [16]) to solve this op-

timization problem, which generalizes well for other

vector spaces than affine functions (in the case of our

application we use the vector space of second order

polynomials).

B. Farthest Point-like Sampling

• Step 4 of the algorithm:

4245

Algorithm 1 Approximation Algorithm

Require: The Mapping C : B0 ⊂ R
m → R that can be instanciated on its input space, B0 being an hyper-rectangle.

ρboost ∈]0, 1[
kMAX : the maximum number of samples per leaf-box

k < kMAX : the number of samples sampled at once.

1: BFrontier ← ∅ ; BRegular ← ∅
2: Push (B0, 0) in BFrontier (0 is the height of B0 in the tree of boxes).

3: Let BUnderProcess be an empty stack (of type FIFO for example).

4: Randomly choose between BFrontier and BRegular: with probability ρboost pick an element out of BFrontier; with

probability 1−ρboost pick an element out of BRegular (unless one of the two sets is empty: in that case pick an element

out of the other with probability 1). Once the set BFrontier or BRegular is chosen, we pick a box with a strategy

described in section IV-B. Let us call the element picked (Bpick, hpick).
5: In Bpick, sample k new samples.

6: Push Bpick in BUnderProcess.

7: while BUnderProcess is not empty do

8: Pop an element (Bcurrent, hcurrent) out of BUnderProcess. Let Scurrent be the current set of samples in Bcurrent.

9: if |Scurrent| > kMAX then

10: Split Bpick along dimension (hcurrent mod m) into two son boxes of equal dimensions: Bleft and Bright.

11: Push (Bleft, hcurrent + 1) and (Bright, hcurrent + 1) in BUnderProcess.

12: else

13: Resolve an optimization problem on Bcurrent in order to perform a local approximation.

14: if the resolution fails (i.e. it is not possible to locally approximate with a correct sign on all samples of Bcurrent)

then

15: Split Bpick along dimension (hcurrent mod m) into two son boxes of equal dimensions: Bleft and Bright.

16: Push (Bleft, hcurrent + 1) and (Bright, hcurrent + 1) in BUnderProcess.

17: else

18: Update the value of the approximation on Bcurrent. Push back Bcurrent in BFrontier or BRegular, depending

on the current samples on Bcurrent.

19: end if

20: end if

21: end while

22: Goto 4.

Once we know whether to pick a box (and its height)

out of BFrontier or out of BRegular, we need a strategy

to decide which box to pick.

Since we are interested in the correctness of the ap-

proximation sign, it is logical to try to sample in the

zone where our confidence in the current approximation

sign is the lowest. Therefore, for each box B we give

a rough estimation of this confidence (which we denote

by conf(B)), and pick a box with lowest confidence.

If B ∈ BRegular, then the sign of the mapping is

assumed to be constant on B. If the mapping C is K-

Lipschitz, this assumption could be wrong, i.e. the sign

could change somewhere on B if, roughly, the density

of samples is small enough. If the mapping takes values

around z ∈ R on the elements of B, and if we assume

regular spacing between samples, it can be shown that

the critical density is proportional to K
z
. Therefore if we

multiply the density of samples in B by z, the result is

proportional to an estimation of the lowest K such that

C can be both K-Lipschitz and change its sign on B.

This can be taken as our “confidence in the sign”. For

z we take the minimum value seen on B, and we pose:

conf(B) =
|SB |

volume of B
×mins∈SB

|C(s)|, (4)

where SB is the set of samples in B. B being an hyper-

rectangle, its volume is simply the product of its m

lengths.

If B ∈ BFrontier, we simply take the density of samples

as an estimation of confidence:

conf(B) =
|SB |

volume of B
(5)

• Step 5 of the algorithm: We have to pick k samples in

a box Bpick which contains already a set of samples

Spick, with |Spick| < kMAX .

For the first sample, we uniformly pick an arbitrary

fixed number of candidates (we chose 40). We choose

the candidate which maximizes its minimum distance to

the samples in Spick (the distance used depends also on

the value of C on the samples when Bpick ∈ BRegular).

Then we update Spick with it and reiterate the process

with the k − 1 remaining samples.

The upper bound kMAX ensures us that the selection

of the next k samples is made in constant time. This

4246

approached farthest point sampling is interesting as long

as its computation time remains negligible compared to

the evaluation of C on one sample (about 0.4s in our

case).

V. REDUCING THE DIMENSIONALITY OF THE

PARAMETER SPACE

The only thing remaining before we can apply the algo-

rithm to the robot HRP-2 is the definition of a parameter

space from which unique trajectories can be generated. This

is the purpose of this section.

A. Unique trajectories from 6 parameters

As mentioned in the introduction, 6 parameters can fully

describe a step: 3 for the initial position and orientation of

the swing foot (relatively to the stable foot), and 3 for its final

position and orientation. Nevertheless, only the geometry of a

step usually doesn’t correspond to a unique trajectory: recent

walking pattern generators produce fully dynamic walks, and

thus take into account the initial speed of the robot’s Center

of Mass (CoM), as well as the next few steps that are going

to be performed (see [4]).

In our work, we test isolated steps only: the initial and

final speed of the CoM are zero. This corresponds to a

conservative approach, since preliminary work showed that

in most cases, a non-zero initial speed only expands the

feasible set of steps.

Moreover, a fixed CoM height is given, as well as its

initial and final position during any step: namely, at the

barycenter of the feet positions. We also set the initial and

final orientation of the robot (i.e. of its waist): its initial

orientation is the one of the stable foot; its final orientation

corresponds to the final orientation of the swing foot.

With all these restrictions, we obtain a unique trajectory

from the 6 parameters describing a step geometry.

B. From 6 to 4 parameters

In a 6-dimensional space, 10 samples per dimension

correspond to a total of 1 million samples.

Being able to treat 1 sample in about 0.4s, we were not

able to obtain a satisfying approximation in a reasonable time

with the computational power we disposed of.

Therefore, a further reduction of dimensionality was still

necessary. We noticed that if we oblige the feet to stay at

a reasonable distance from each other, and if the initial and

final orientations of the swing foot remain low (in absolute

value; e.g. between −5 ◦ and +5 ◦), then orientations don’t

have much impact on the feasibility region from a given

initial position.

Fig. 3 shows the feasibility regions approximated for the

same step with only initial and final orientations changing.

The results are similar in shape, with differences when the

lateral displacement is large. But we decided to set the upper

bound limit for the lateral distance between the two feet

of the robot to 29cm (partially due to the limited ankle

flexibility of HRP-2). We also added a lower bound limit

at 16cm, so that the feet stay relatively far from each other.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3

la
te

ra
l
d

is
ta

n
c
e

 b
e

tw
e

e
n

 f
e

e
t

(m
)

sagittal displacement (m)

Fig. 3. Approximation of the feasibility region for next step (from a
fixed initial position of the robot), for 11 very different values taken in
[−5 ◦

, +5 ◦]×[−5 ◦
, +5 ◦] setting initial and final orientations of the swing

foot (in this case the left foot). The line segments of a same color are the
set of zero points of the approximation for one couple of orientations: they
define the contour of the set of positions on which the swing foot can land
after a valid step. We can see that the feasibility region is barely changed by
changing slightly the initial and/or final orientation of the swing foot. The
horizontal lines represent lower and upper bound limits that are explained
in section V-B.

With these restrictions, we limit the feet orientation to the

interval [−5 ◦,+5 ◦] and ignore the orientation parameters

when guessing the feasibility of a step. Fig. 3 motivates this

heuristic.

VI. EXPERIMENTAL RESULTS

A. Analysis of our approximation

It took us 11 days with an Intel(R) Pentium(R) 4 CPU

3.40GHz to build the approximation we used, and the total

number of points sampled is 2,672,928.

The resulting function is instanciated in 9µs: it means that

with the same computer we divided the verification time for

a step by about 40,000.

We tested the approximation on 349,559 points randomly

drawn according to a uniform distribution over the input

space. Among these, 8,607 were steps declared feasible by

our verification process, 340,952 were declared not accept-

able (which, because of the margins, doesn’t exactly mean

that the trajectory would actually fail). On the 8,607 positive

points, the approximation was positive 8,278 times. On the

340,952 negative points, the approximation was negative

340,862 times.

With these random samples, if the approximation returns

a positive result, it is correct (i.e. the trajectory generated

would be considered feasible by our verification process)

at 98.8%. If the returned result is negative, it is correct at

99.9%. Some security mecanism should be implemented to

protect the robot if the result is a false positive.

B. Experiment

We conducted the following experiment: through a

gamepad with 2 axis the user controls simple requests of

steps that are repeatedly sent to the robot HRP-2. Each

request has two components: a position of the objective

footprint relative to the support foot, and an orientation

4247

change. The mechanism of treatment of the requests of steps

is described on Fig. 4.

Every 20ms, the step currently
set by the gamepad is sent to our
approximation, which guesses
whether the step is feasible from
the current posture of the robot
or not. As long as the step is
not feasible, it is discarded. But
when a step is declared feasible,
the software saves it and gets
ready to send it to the robot.
When another step is guessed
feasible, the previous candidate
step is overwritten: therefore,
when the robot asks at regular
intervals a new step to perform,
it is always given the last feasible
step.

Fig. 4. The experiment

With this simple approach, we have been able to teleoper-

ate the robot several times for minutes without making it fall

on the ground. It is very intuitive to guide it, and the user

naturally doesn’t keep axis positions corresponding to unfea-

sible steps. Nevertheless, in some cases, the robot, pushed to

its limits, fell down. This is due to the discrepancy between

the model on which we tested steps, and the real conditions

(use of a stabilizer, smooth connections between steps in

the actual experiment vs. zero speed CoM between steps

in the model used for the approximation, robot compliance,

inaccurate dynamics considered in simulation, etc.).

VII. CONCLUSION AND FURTHER WORK

We presented an original approximation algorithm and

showed how, through some restrictions, we were able to

limit dimensionality and perform the offline approximation

of a walking pattern generator used on the robot HRP-2.

Because HRP-2 was then able to guess the feasibility of a

step 40,000 times faster than with the normal verification

process, we successfully realized an experiment of reactive

walk. Our further work will focus on three issues:

First, many suppositions that we made seem hard to justify

theoretically. And even the full verification process of a

trajectory does not ensure that the trajectory is feasible: for

example we should also verify that the joint torques stay in

the acceptable ranges. Even with a fully dynamic simulation,

some uncertainty would still remain. Thus, it would be nice

to give a solid theoretical foundation to our work, and if

possible answer to that question: what can we ensure through

offline approximation, and what will remain empirical?

Second, the question of connectivity in the approximated

maps produced arises: what if the robot can reach a posture

from which no step would be declared feasible? This issue

naturally leads to the idea of post-treatment of the approx-

imation: which smart and convenient data structure can we

build from the approximation of a walking pattern generator?

Finally, we might try to take advantage of the fact that our

algorithm is easily parallelizable in order to massively en-

hance our computational power, and attempt to successfully

run our approximation in a high-dimensional space.

VIII. ACKNOWLEDGMENTS

This work was supported by a grant from the RBLINK

Project, Contrat ANR-08-JCJC-0075-01.

REFERENCES

[1] J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami. Planning biped
navigation strategies in complex environments. In IEEE Int. Conf. on

Humanoid Robotics, 2003.
[2] J. Chestnutt, K. Nishiwaki, J.J. Kuffner, and S. Kagami. An adaptive

action model for legged navigation planning. In IEEE Int. Conf. on

Humanoid Robotics, 2007.
[3] T. Hachisuka, W. Jarosz, R. Weistroffer, K. Dale, G. Humphreys,

M. Zwicker, and H. Wann Jensen. Multidimensional adaptive sam-
pling and reconstruction for ray tracing. In SIGGRAPH ’08: ACM

SIGGRAPH 2008 papers, pages 1–10, 2008.
[4] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, and

K. Yokoi. Biped walking pattern generation by using preview control
of zero-moment point. In in Proceedings of the IEEE International

Conference on Robotics and Automation, pages 1620–1626, 2003.
[5] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and

H. Hirukawa. A realtime pattern generator for biped walking. In
IEEE Int. Conf. on Robotics and Automation, pages 31–37, 2002.

[6] M. Kallmann and M. Mataric. Motion planning using dynamic
roadmaps. In IEEE Int. Conf. on Robotics and Automation, April
2004.

[7] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Footstep
planning among obstacles for biped robots. In IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems (IROS’01), October 2001.
[8] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion

planning for humanoid robots. In 11th Int. Symp. of Robotics Research,
2003.

[9] J. Kuffner, K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, and
H. Inoue. Self-collision detection and prevention for humanoid robots.
In IEEE Int. Conf. on Robotics and Automation, pages 2265–2270,
May 2002.

[10] P. Leven and S. Hutchinson. Toward Real-Time Path Planning in
Changing Environments. Algorithmic and Computational Robotics:

New Directions: the Fourth Workshop on the Algorithmic Foundations

of Robotics, 2001.
[11] B. Mirtich. V-clip: fast and robust polyhedral collision detection. ACM

Transactions on Graphics (TOG), 17(3):177–208, 1998.
[12] C. Moenning and N. A. Dodgson. Fast marching farthest point

sampling for point clouds and implicit surfaces. Technical report,
2003.

[13] M. Morisawa, K. Harada, S. Kajita, S. Nakaoka, K. Fujiwara, F. Kane-
hiro, K. Kaneko, and H. Hirukawa. Experimentation of humanoid
walking allowing immediate modification of foot place based on
analytical solution. In IEEE Int. Conf. on Robotics and Automation,
pages 3989–3994, 2007.

[14] A. Nakhaei and F. Lamiraux. Motion planning for humanoid robots
in environments modeled by vision. In IEEE Int. Conf. on Humanoid

Robotics, December 2008.
[15] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.

Numerical Recipes in C: The Art of Scientific Computing. 1992.
[16] K. Schittkowski. Ql: A fortran code for convex quadratic programming

- user’s guide, version 2.11. Technical report, University of Bayreuth,
2005.

[17] R. Schürer. Adaptive quasi-monte carlo integration based on miser
and vegas. In 5th Int. Conference on Monte Carlo and Quasi-Monte

Carlo Methods in Scientific Computing, 2002.
[18] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector

regression. Statistics and Computing, 14(3):199–222, 2004.
[19] T. Takubo, T. Tanaka, K. Inoue, and T. Arai. Emergent walking

stop using 3-d zmp modification criteria map for humanoid robot.
In IEEE/RAS Int. Conf. on Robotics and Automation (ICRA), pages
2676–2681, 2007.

[20] M. Vukobratovic and B. Borovac. Zero-moment point – thirty
five years of its life. International Journal of Humanoid Robotics,
1(1):157–173, 2004.

4248

