
On-line Kinematics Reasoning for Reconfigurable Robot Drives

Michael Hofbaur Mathias Brandstötter Christoph Schörghuber Gerald Steinbauer

Abstract— The control system for a mobile robot typically
assumes fixed kinematics according to the drive’s geometry
and functionality. Faults in the system, for example a blocked
steering actuator, will then lead to an undesired behaviour,
unless one takes care of specific single and/or multiple faults
explicitly. We present a novel model-programmed procedure for
on-line kinematics reasoning that allows a robot to deduce the
(inverse)-kinematics of the drive and also its kinematic abilities
for the specific modes of operation and some falt modes during
operation. As a consequence, we can reconfigure a robot drive
to compensate for some faults and also inform a higher level
control system about changed mobility capabilities of a robot.
Being fault tolerant is, however, only one advantage of our
approach that derives the kinematics control strategy from a
geometric and functional model of the drive. We can easily
adapt the controller for various robot drives, handle drives
that change their geometry and functionality during run-time
and also provide the basis for a flexible control scheme for
self-configuring multi-robot systems.

I. INTRODUCTION

Robot kinematics are typically considered at the design
stage of a robot. The resulting drive-geometry and func-
tionality reflects the desired mobility capabilities for a robot
according to its application. Kinematic analysis [2] provides
the basis for the control law that converts a drive command
from higher level control (e.g. path planning) into the corre-
sponding actuation (steering angles and rotational speeds) of
the individual wheels. This approach implies several limits
in robot design and application:

1) Operational faults in the drive, for example a blocked
steering, can result in significantly different kinematics
so that a fault tolerant control scheme has to consider
these cases as well and switch to the appropriate
controller upon fault detection. However, given the
complex mechatronic designs of typical robot drives, it
is easy to see that one might only consider single faults
since the number of multiple fault scenarios becomes
too large quickly.

2) The path planner that operates a robot typically as-
sumes a specific mobility capability for the robot drive.
This assumption is maintained implicitly so that a
change in the robot’s kinematics (e.g. due to a fault)

This research has been funded by the Austrian Science Fund (FWF) under
grant P20041-N15.

M. Hofbaur and M. Brandstötter, Institute of Automation and Control
Engineering, Private University UMIT, Eduard Wallnöver Zentrum 1, A-
6060 Hall in Tyrol, Austria, michael.hofbaur@umit.at; Ch.
Schörghuber, Institute of Automation and Control, Graz University of
Technology, Kopernikusgasse 24/2, A-8010 Graz, Austria; G. Steinbauer, In-
stitute of Software Technology, Graz University of Technology, Inffeldgasse
16b/2, A-8010 Graz, Austria

would require a non-trivial interaction with the path
planning procedure.

3) Some applications might require robot drives that
change in functionality and geometry. For example,
consider a robot that can extend extra wheels for im-
proved traction [5] or a robot that can widen its base to
improve its stability (e.g. [7]). An implicit kinematics
solution for the drive control only captures the very
specific drive design and is unlikely to generalise to a
wider range of applications.

Contrarily to this conventional approach for low-level
robot control, we want to propose a model-programmed
control scheme that easily adapts to a diverse set of possible
robot drive geometries and functionalities. Even more, we
will present a method that allows us to analyse the drive’s
kinematics on-line during operation. This enables us to
handle drives that change their functionality due to faults or
even due to a desired operation. It also provides an explicit
awareness about a the drive’s mobility capabilities. Low-
level control can use this information to validate a drive-
command from higher level control and, for example, to
re-configure a drive-command to compensate for faults in
the drive. High-level path planning, on the other hand, can
utilise the information to actively plan a path that does not
demand movements that are beyond the drive’s capabilities.
Our control architecture shown in Fig. 1 consists of sev-

Fig. 1. Single-robot model-programmed control architecture

eral model-based control units that can deal with changes
in the drive during run-time. The controller actuates each
steered and/or actuated wheel of the robot drive through the
drive-unit handler. The unit represents the interface to the
wheel’s low-level servo controller and additionally provides
the geometric and functional specification of the wheel. This
specification represents the single-component building-block

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 5441

that is used by the automated hybrid modelling unit to deduce
the kinematic and dynamic model for overall robot drive
during run-time. The dynamically generated model is mostly
used within the hybrid monitoring and estimation unit [3]
which infers the current mode of operation / failure for
the system. This mode, together with the kinematic model
from the modelling unit is then used in the kinematics
reasoning unit to analyse the kinematic capabilities of the
drive, to perform necessary reconfigurations and to deduce
the currently active inverse kinematics for the drive. This
inverse kinematic is then used to compute appropriate set-
points for the individual drive units through the coordinated
drive control unit in an orchestrated way.

Additionally to this novel control scheme, we developed a
modular robotic platform that allows us to quickly configure
wheeled robots with diverse geometry and functionality.
The modular system utilises a 6-edge honey-comb shaped
prism as its basic building block. Fig. 2 shows configuration
examples for robot drives that can be built with this versatile
geometric form.

a) b) c) d)

e) f) g)

Fig. 2. COMB modular robot drive configurations: (c) shows an omni-
directional drive with three steered and actuated standard wheels whereas
(b) realizes an omni-drive with two standard wheels and a ball-wheel and
(f) denotes an omni-drive with three swedish wheels. Robot drives with
both, steered and unsteered wheels for a tricycle- (a) and a car/ackermann
configuration (e).

II. KINEMATICS REASONING

The kinematics reasoning unit represents the key compo-
nent for our control architecture. Its functionality builds upon
the qualitative kinematic constraints that we introduced in [1]
for Mecanum wheels. These constraints provide the basis to
deduce (on-line) the space of admissible and controllable
motions B for a robot drive with specific geometric configu-
ration and mode of operation/failure. The explicit knowledge
about this space provides valuable information since we can
always check, whether a motion set-point from higher-level
control

ξ̇ = [ẋ ẏ Θ̇]T (1)

that describes the desired longitudinal velocities (ẋ and ẏ)
and the angular velocity (Θ̇) of the robot (within its local

frame of reference) is feasible for the robot at its current
configuration. Whenever the condition

ξ̇ ∈ B (2)

holds, we can use the kinematic model to automatically
deduce the inverse kinematics of the robot that provides
the procedure to compute the set-points for the wheel’s
steering angles βi and angular velocities ωi = ϕ̇i. We will
use the explicit knowledge of the space of admissible and
controllable motions B in two ways. Firstly, we provide this
information to higher level control such as the path planner
for the robot. Secondly, we utilise it to check, whether a drive
command from the path planner is admissible for the drive
in its current mode of operation/failure. A violation of the
condition (2) can either stop the robot and inform the path
planner about the failure to execute a desired drive command,
or trigger a re-configuration to compute an alternative set-
point ξ̇∗ within B as we will show below.

A. Qualitative Kinematics Constraints

The key algorithm for this single robot kinematics reason-
ing is the deduction of B. The kinematics of robot drives
is typically described in terms of the rolling and sliding
constraints that one obtains from the geometric alignment
of the wheels and their type (steered and un-steered stan-
dard wheels, mecanum wheels, castor wheels, etc.) in the
drive [8], [2]. The usual rolling (3) and sliding (4) constraints
for standard wheels relate ξ̇ and the angular wheel velocities
φ̇ = [ϕ̇1, . . . , ϕ̇n] through the drive’s geometry (J1,C1) and
the radius Ri of the wheels J2 = diag[R1, . . . , Rn]

J1(βs)ξ̇ = J2φ̇ (3)

C1(βs)ξ̇ = 0. (4)

However, the matrices J1 and C1 depend upon the (time-
varying) steering angles βs = [β1, . . . , βn]T . To remove this
dependancy for analysis purposes, we formulate qualitative
rolling and sliding constraints with matrices Jq and Cq

that capture the matrices for all possible steering angles in
compact form.

For example, consider the standard wheel at geometric
position 〈l, α〉 as shown in Fig. 3. The wheel defines the

xR

yR

l

()t

R

α

ϕ β

OR

Fig. 3. Geometric parameters for a standard steered wheel

following row

j1(β) =
[

sin(α + β) − cos(α + β) −l cos(β)
]

(5)

5442

in the matrix J1(βs) of the rolling constraint. In terms of
drive-space analysis we are interested in the sub-space of
IR3 that the row-vector j1 of (5) defines for the parametrised
steering angle with range −π < β ≤ π. This leads to what
we call the qualitative rolling constraint jq that encodes the
subspace in terms of two linear independent rows for Jq.
The two perpendicular angles β = 0 and β = π

2 ensures this
property, so that we define:

jq :=
[

sin(α) − cos(α) −l cos(0)
sin(α + π

2) − cos(α + π
2) −l cos(π

2)

]
. (6)

Both rows together define the sub-space of controllable
velocities for the actuated wheel. A wheel with blocked
steering simply acts as un-steered wheel so that jq simply
becomes jq = j1(β). The situation for a drive with impaired
rotational actuation (e.g. a freely spinning wheel or a wheel
with blocked rotation) requires a definition for jq that ex-
presses the failure to control the velocity through the wheel’s
actuation. In terms of our qualitative constraints we express
this fact through the null-vector

jq =
[

0 0 0
]
. (7)

We apply an analogue principle for the sliding constraint
cq that a single wheel contributes for Cq.1 A wheel with
blocked steering contributes the standard sliding constraint

cq = c1(β) =
[

cos(α + β) sin(α + β) l sin(β)
]
(8)

for a wheel at the fixed steering angle β. In operational/fault
modes with operating steering we can always direct the
wheel so that it does not impose a constraint on the move-
ment. As a consequence we use the null-vector

cq =
[

0 0 0
]

(9)

for the qualitative sliding constraint. A fully blocked wheel
(steering and rotational actuation) does not allow any longi-
tudinal movement. We can express this fact through the two
sliding constraints for Cq with perpendicular angles β = 0
and β = π/2

cq =
[

cos(α) sin(α) l sin(0)
cos(α + π

2) sin(α + π
2) l sin(π

2)

]
. (10)

Table I summarise the qualitative constraints jq and cq for
standard wheels in various mode of operation/failure.

B. Drive-Space Computation

We now use the matrices Jq and Cq to compute the space
of admissible and controllable motions B for a robot drive
as follows:

In the first step we compute the space of the admissible
motions Z for a specific mode in the usual way through the
null-space or kernel:

kernel(C1(βs)) ⊆ IR3 . (11)

1The matrix Cq generalises the matrix C1,f that specifies sliding
constraints for fixed wheels of the robot only.

To eliminate the dependency on the steering angles, we use
our qualitative form of C1 instead and obtain

Z = kernel(Cq) ⊆ IR3 . (12)

However, one has to ensure, that an admissible velocity ξ̇ ∈
Z can be actuated (controlled) through the actuated robot
wheels. Re-writing (3) we obtain

J−1
2 J1(βs)ξ̇ = φ̇ (13)

It becomes evident that we can compute the non-controllable
velocities S̄ by means of

kernel(J1(βs)) ⊆ IR3 . (14)

Our qualitative form of J1, i.e. the matrix Jq encodes
the (again, steering angle independent) rolling constraint
information of the robot wheels with rotational actuation so
that we obtain the non-controllable velocities S̄ through

S̄ = kernel(Jq) ⊆ IR3 . (15)

Whenever the two spaces do intersect, i.e. Z ∩ S̄ �= ∅,
we have to refine the admissible velocities Z to exclude
those movements that cannot be actuated through the robot’s
wheels. By computing the complement of S̄

S = kernel(S̄T) ⊆ IR3 , (16)

where S̄ denotes the matrix of basis vectors for S̄, we obtain
the controllable velocities so that, finally, the intersection

Z ∩ S =: B (17)

defines the space of admissible and controllable velocities
for a given mode of operation or failure of the robot.

Of course, the line of argument more or less summarises
text-book knowledge from robot kinematics (e.g. [8]). How-
ever, the introduction of our qualitative sliding constraints
and, in particular, rolling constraints enables us to formulate
the line of argument in an efficient algorithmic form that
allows on-line drive-space and control/motorization analysis.
The computations rely on several null-space computations
(e.g. via singular-value decomposition) and the vector-space
intersection (17) (e.g. with the Zassenhaus algorithm [10]).
All operations together require less than 1 ms on our
robot’s National Instruments cRIO real-time CPU. As a
consequence, we can utilise the reasoning concept directly
within the drive’s control loop and thus reactively adapt the
drive’s control mechanism to the kinematics for the onset of
operational mode and faults in the drive.

C. Drive command reconfiguration

As noted above, we use the information about the admissi-
ble and controllable drive space B to check the compatibility
of a drive command ξ̇ with a drive’s mobility capabilities.
Whenever the Kinematics Reasoning Unit identifies an in-
compatible drive command through ξ̇ /∈ B it performs two
operations. Firstly, it communicates the incompatibility to
higher order control / path planning to initiate re-planning.
Secondly, it either stops the drive until it receives a new

5443

TABLE I

QUALITATIVE ROLLING AND SLIDING CONSTRAINTS FOR A STANDARD WHEEL

Mode of Operation jiq ciq

OK: actuated rotation and

operational steering

[
sin(α) sin(α + π

2
)

− cos(α) − cos(α + π
2
)

−l · cos 0 − l · cos π
2

]T [
0
0
0

]T

Fault 1: actuated rotation

and blocked steering

[
sin(α + β)

− cos(α + β)
−l · cos β

]T [
cos(α + β)
sin(α + β)

l · sin β

]T

Fault 2: freely spinning wheel

and blocked steering

[
0
0
0

]T [
cos(α + β)
sin(α + β)

l · sin β

]T

Fault 3: blocked rotation

and operational steering

[
0
0
0

]T [
cos(α) cos(α + π

2
)

sin(α) sin(α + π
2
)

l · sin 0 l · sin π
2

]T

Fault 4: freely spinning wheel

and operational steering

[
0
0
0

]T [
0
0
0

]T

compatible drive command from the path planner or adapts
the drive-command to a compatible set-point ξ̇∗ ∈ B. For
example, one might want to make sure that the robot remains
on track (i.e. maintain the longitudinal velocities ẋ, ẏ of ξ̇)
and determine the robot’s angular velocity according to the
mobility constraint (Θ̇ → Θ̇∗).

Let us illustrate the drive-space computations and re-
configuration procedure with an omni-directional robot in
a geometric configuration with three actuated and steered
wheels as in Fig. 4 (and Fig. 2d). The regular 6-edge comb
geometry of our modular robot leads to a drive with wheel
parameters α1 = 0, α2 = 4π

6 , α3 = 8π
6 and l1 = l2 =

l3 = 0.26. Fig. 4 shows two fault scenarios for such a robot
that we now use to demonstrate our automated kinematic
reasoning and the reconfiguration procedure. In the following
we represent the vector spaces B,Z, S̄ and S through 3× 3
matrices B,Z, S̄ and S, respectively, that contain the basis-
vectors of the individual spaces in their columns.

x

y

x

y

(a)(a) (b)

1

2

3

1

2

3

Fig. 4. 3-wheel COMB robot with (a) a single steering-fault in wheel 3
and (b) a triple fault scenario with steering-faults in wheel 2 and 3 and
an actuation fault in wheel 1 (freely spinning wheel) leading to a tricycle
configuration of the robot

Fig. 4a shows a scenario with two operational wheels
(wheel 1 & 2) and a wheel with blocked steering (wheel

3) at β3 = −3π
6 . The angular speed actuation is operational

for all three wheels. This mode implies qualitative constraint
matrices2

Jq =

⎡
⎢⎢⎢⎢⎣

0 −1 0.26
1 0 0

0.866 0.5 −0.26
−0.5 0.866 0
0.5 0.866 0

⎤
⎥⎥⎥⎥⎦ ,

Cq =

⎡
⎣ 0 0 0

0 0 0
−0.86 0.5 0.26

⎤
⎦ .

Because all wheels have operational rotational actuation we
obtain a matrix Jq with full rank. This implies S̄ = 0 and
S = I which indicates full control (motorization) in terms of
the drive’s actuators. The admissible and controllable space
B or its matrix of basis vectors B is thus simply defined
through the kernel of Cq as

B = Z =

⎡
⎣ 0 −0.545 0

0.461 −0.744 0
0.887 0.387 0

⎤
⎦ .

This defines a 2-dimensional subspace for ξ̇ that specifies
velocities with ICRs on the axis of the impaired wheel. A
feasible drive command adaption Θ̇ → Θ̇∗ that maintains
longitudinal velocities obtains the modified angular velocity
Θ̇∗ through projecting ξ̇ onto the plane as shown in Fig. 5.

Fig. 4b shows a triple-fault scenario with impaired steering
in wheel 2 and 3 and no actuation in the steered wheel
1 (freely spinning wheel). This configuration defines the

2The horizontal lines separate the sections for the individual wheels.

5444

Fig. 5. Drive command adaption ξ̇ → ξ̇∗ to maintain the longitudinal
velocities ẋ, ẏ

qualitative matrices and drive space matrices

Jq =

⎡
⎣ 0 0 0

1 0 −0.225
−1 0 −0.225

⎤
⎦ ,Cq =

⎡
⎣ 0 0 0

0 1 −0.130
0 −1 0.130

⎤
⎦ ,

S̄ =

⎡
⎣ 0 0 0

1 0 0
0 0 0

⎤
⎦ ,Z =

⎡
⎣ 0 1 0

0.129 0 0
0.992 0 0

⎤
⎦ .

It is easy to see that the space Z does not intersect with S̄
(rank([S̄,Z]) = rank(S̄)+ rank(Z)) so that we can conclude
B = Z.

An additional actuation fault of wheel 2 (freely spinning
wheel) leads to a different scenario with

Jq =

⎡
⎣ 0 0 0

0 0 0
−1 0 −0.225

⎤
⎦ ,Cq =

⎡
⎣ 0 0 0

0 1 −0.130
0 −1 0.130

⎤
⎦ ,

S̄ =

⎡
⎣ 0 −0.220 0

1 0 0
0 0.976 0

⎤
⎦ ,S =

⎡
⎣ 0.976 0 0

0 0 0
−0.220 0 0

⎤
⎦ ,

Z =

⎡
⎣ 0 1 0

0.129 0 0
0.992 0 0

⎤
⎦ .

Since Z intersects with S̄ we have to compute B through
B = Z ∩ S and obtain B = ∅! This result indicates that
we cannot actuate the drive specifically enough so that it
can perform movements within Z. Of course, one can argue
that the robot is still capable of driving since the steerable
front wheel provides enough (sideways) friction forces that
ensures a specific movement. However, recall that Cq does
not contain constraints for wheels with operational steering.
As a consequence, our mechanism provides a conservative,
but on the other hand safe3 result for the drive. However,

3The configuration restricts movements to ones with an ICR on the axis
of the wheels 2 and 3, except an ICR at the location of the only remaining
wheel with actuator (wheel 3). An ICR that is slightly off the location of
wheel 3, however, would impose high torque requirements onto the actuator
that can easily overstress the drive.

one could also easily extend the reasoning concept for the
specific case B = ∅, Z �= ∅, S �= ∅ as follows: Apply
Z to compute ξ̇∗ and determine the appropriate steering
angles for the steered wheels βs = [β1, . . . , βn]T . These
angles are then used to determine C1(βs). Whenever this
matrix satisfies rank(C1(βs)) = 1 we can conclude, that
the drive sufficiently constrains the movement to enforce the
desired movement through the sliding constraints. We can
then actuate the desired movement whenever ξ̇∗ /∈ S̄.

D. Origin Shift and Multi-Robot Systems

Our procedure not only provides a sense of self awareness
about the active kinematics for the robot drive but also
explicit information for the path planner that should be used
actively within the higher levels of control.

1) Origin Shift: Some drive geometries and control tasks
have preferred positions for the robot’s center. For example,
for a robot with differential drive it is advantageous to locate
the robot’s center onto the common axis of the un-steered
wheels (O(2) in Fig. 6a). Another example is shown in
Fig. 6b. The robot control task of pushing a ball can be
simplified through matching the robot’s and the ball’s center.

Fig. 6. Origin shift examples for a single robot

Of course, we do have full control over the geometric
model of the robot drive. We could easily perform an
origin shift through an adaption of the model. The on-
line kinematics reasoning process will then take care of
the adapted situation automatically. Another strategy is to
perform a virtual origin shift through transformation. So
the drive acts as a robot with (adaptive) center O(2) for
higher-level control, whereas it uses a fixed center O(1) for
kinematics reasoning and control. This functionality will also
be enormously helpful for multi-robot control as we shall see
later.

Fig. 7. Origin shift geometry

Mathematically, we have to perform the problem of
velocity transformation [9] ξ̇(1) ↔ ξ̇(2), where ξ̇(i) =
[ẋi, ẏi, Θ̇(i)]T represents a drive command with respect to a

5445

coordinate system with origin O(i). For example, O(1) rep-
resents the original robot origin and O(2) denotes the shifted
(virtual) origin. We describe the transformation through a
translation r = [x(1)

r , y
(1)
r]T and a rotation γ between the

two coordinate systems for both origins as shown in Fig. 7
and obtain

ξ̇(2) =

⎡
⎣ cos(γ) sin(γ) 0

− sin(γ) cos(γ) 0
0 0 1

⎤
⎦
⎡
⎢⎣ξ̇(1) + Θ̇(1)

⎡
⎢⎣ −y

(1)
r

x
(1)
r

0

⎤
⎥⎦

⎤
⎥⎦

Our kinematics analysis provides the mobility spaces with
respect to the origin O(1), i.e. we write B(1), Z(1) and S̄(1).
The matrix B(1) specifies the space B(1) through up to
three basis vectors that define admissible and controllable
velocities in B(1). As a consequence, we can easily compute
the space B(2) for the shifted origin O(2) through apply-
ing the transformation column-wise and obtain B(2). The
transformations Z(1) → Z(2) and S̄(1) → S̄(2) are handled
analogously so that we can provide a path planner with
the mobility information with respect to the virtual origin
O(2). Velocity set-points ξ̇(2) from higher level control/path
planner are then transformed to the drive’s origin O(1)

through the inverse transformation.
2) Multi-Robot Systems: We are particularly interested in

controlling multi-robot systems where robots join to (tem-
porarily) form meta-robots with diverse drive geometries.
Fig. 8 shows such a robot that combines a 4-wheel Ackerman
steering type robot with a 3-wheel omnidirectional robot.

(a) (b)

O*
mO1 O2O *

1 O *
2

(1)(1)

Fig. 8. Origin shift for a multi-robot control

Our control architecture (Fig. 1) allows us to dynami-
cally add/remove wheels so that we could simply use the
kinematics analysis outlined above for centralised control of
the meta-robot. Another strategy is to merge the drive-space
information of the individual robots into the drive-space
information of the meta robot and use distributed/hierarchical
control for the meta robot.

In a first step, we shift the robots origins O
(1)
1 and O

(1)
2

onto the desired contact points O∗
1 and O∗

2 (see Fig. 8a) and
compute

Z
(1)
i → Z∗

i , S̄
(1)
i → S̄∗

i , i = 1, 2 (18)

and merge the robots through control with respect to the
shifted origins. An interconnection of the robot implies that
the shifted origins O∗

1 and O∗
2 match and define the origin

O∗
m of the meta-robot. The drive-space information (Z and

S̄) of the meta robot is then computed through intersection

Z∗
m = Z∗

1 ∩ Z∗
2 , S̄∗

m = S̄∗
1 ∩ S̄∗

2 . (19)

Analogously as in the single robot case we have to refine the
admissible space Z∗

m whenever it contains non-controllable
velocities, i.e. Z∗

m ∈ S̄∗
m �= ∅, through S̄∗

m → S∗
m and B∗ =

Z∗
m∩S∗

m. We can apply this procedure recursively to handle
multi-robot configurations with more than two robots.

III. CONCLUSION

We presented a robot control architecture that builds upon
an on-line kinematics-reasoning capability in order to cope
with faults in the system and virtual and physically changing
robot-drive geometries. Many detailed analyses for robot
kinematics can be found in literature and textbooks, for
example [2], [6], [4], [8]. These papers provide profound
and systematic techniques and methodologies for the off-
line kinematics analysis of robot drives. Our formulation
that builds upon generalised sliding and rolling constraints,
however, allows us to perform kinematics-reasoning during
run-time of the robot. This capability enables us to formulate
a fault-tolerant, robust and adaptable control scheme for the
robot drive. Furthermore, it opens interesting perspectives
for intelligent drive-aware path planning and re-configurable
robot drives and, in particular, coordinated control of het-
erogeneous multi-robot systems. Being able to analyse/drive
robots with almost arbitrary wheel geometry generalises to
multi-robot systems where the formation of heterogeneous
robots forms a particular meta-robot with specific drive
geometry. Our reasoning technique can directly analyse the
kinematics of this meta robot in a centralised control setting
but also supports hierarchical and distributed control schemes
through the multi-robot kinematics reasoning scheme out-
lined above.

REFERENCES

[1] M. Brandstötter, M. Hofbaur, G. Steinbauer, and F. Wotawa. Model-
based fault diagnosis and reconfiguration of robot drives. In Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS07), pages 1203–1209, 2007.

[2] G. Campion, G. Bastin, and B. D’Andréa-Novel. Structural properties
and classification of kinematic and dynamic models of wheeled mobile
robots. IEEE Transactions on Robotics and Automation, 12:47–62,
1996.

[3] M. W. Hofbaur and B. C. Williams. Hybrid estimation of complex
systems. IEEE Transactions on Systems, Man, and Cybernetics - Part
B: Cybernetics, 34(5):2178–2191, October 2004.

[4] W. Kim, S. Lee, and B. Yi. Mobility analysis of planar mobile
robots. In Proceedings of the IEEE Internat. Conf. on Robotics and
Automation (ICRA02), pages 2861–2867, 2002.

[5] E. Nüchter, E. Bahr, and Lohmüller H. Omnidirektionales Fahrzeug,
Fahrmodul und mobiler Industrieroboter, German Patent Office, Of-
fenlegungsschrift DE 10 2007 016 662 A1, 2008.

[6] R. Rajagopalan. A generic kinematic formulation for wheeled mobile
robots. Journal of Robotic Systems, 14:77–91, 1997.

[7] R. Robuffo Giordano, M. Fuchs, A. Albu-Schäffer, and G. Hirzinger.
On the kinematic modeling and control of a mobile platform equipped
with steering wheels and movable legs. In Proceedings of the IEEE
Internat. Conf. on Robotics and Automation (ICRA09), pages 4080–
4087, 2009.

[8] R. Siegwart and I. Nourbakhsh. Introduction to Autonomous Mobile
Robots. MIT Press, 2004.

[9] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and
Control. Wiley, 2006.

[10] H. Zassenhaus. Über einen Algorithmus zur Bestimmung der Raum-
gruppen. Commentarii Mathematici Helvetici, 21:117–141, 1948.

5446

