
 

 

 

  

Abstract—In the present study, we applied the principles of 

passive dynamic walking onto the three dimensional motion of a 

simplified quadrupedal model.  We extended the simulation 

framework of a planar system to include a rolling degree of 

freedom and searched for limit cycles that represent periodic 

gaits.  Among the eight different gaits that we identified, were 

three kinds of trots and paces, as well as a lateral and diagonal 

single foot sequence.  We could show that a distinct relation 

exists between the lateral spacing of the legs and the relative 

phase of the front and the back legs, and a certain trade-off 

between efficiency and dynamic stability.  In agreement with 

established bipedal models, our results showed that the lateral 

rolling motion is invariably unstable. 

I. INTRODUCTION 

ASSIVE Dynamic Walking [1, 2] refers to a class of 

mechanical mechanisms that, without using actuation or 

sensing of any kind, are able to walk down a shallow incline.  

Exploiting the nonlinear coupled pendula dynamics of their 

legs, these ‘robots’ exhibit a purely mechanical limit cycle 

that rejects small disturbances.  For a well-selected set of 

mechanical parameters, such as the masses of the individual 

links or their inertial properties, deviations from the nominal 

periodic trajectory are damped out, enabling the walker to 

maintain a steady step length and forward speed.  More 

complex systems based on these principles include walkers 

with knees [3] or mechanisms that move in three dimensions 

[4].  The gaits that emerge from these walkers and the 

parameter selections necessary to stabilize them result in 

models that resemble human bipedal walking, and 

researchers were able to show that the stabilizing effect is 

also utilized in human locomotion [5].  Applying these 

principles to robots, allows the construction of remarkably 

efficient devices [6, 7] which, through clever inclusion of 

actuation, are able to continuously walk on level ground. 

When extending the principles of passive dynamic 

walking to quadrupedal locomotion [8, 9], a simple planar 

model is able to produce two distinct kinds of symmetric 

periodic gaits:  two-beat gaits in which the front and back 

legs swing in phase, and four-beat gaits in which the leg 

pairs are acting 90º out of phase and the feet strike the 
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ground in an evenly timed sequence (Fig. 1).  Within the 

context of the present study, it is very important to note that 

apart from an exact two-beat gait in which the two swing 

legs strike the ground at exactly the same moment (a rather 

theoretical construct), there exist additionally two inexact 

two-beat gaits in which the two legs strike the ground in 

quick succession (both orders: front-back (1) and back-front 

(2) are possible).  In a planar model the time between the 

two successive foot strikes accounts for only 0.2% of total 

step time.  While the inexact two-beat gaits are dynamically 

stable, the four-beat gait has an unstable mode that, upon 

encountering a disturbance, will act on the phase-difference 

between the front and the back leg pair causing the four-beat 

gait to transition into one of the inexact two-beat gaits.   

 
Figure 2 compares these results to quadrupedal gaits found 

in nature.  It shows a so called gait graph, (adapted from 

Hildebrand [10]) which illustrates the range of symmetrical 

gaits as defined by “more than 1,000 plots for 156 genera of 

tetrapods”.  Symmetrical gaits are gaits in which the left and 

right side of the quadruped perform the same motion but 

with a phase-lag of half a stride.  The graph therefore 

excludes gaits such as bounding, pronking, or galloping.  

Moreover, when mirrored at the saggital plane, the second 

half of the stride of a symmetrical gait is equal to the first 

half, which means that it is possible to limit the analysis to a 

half-stride; a technique that was employed in [8] and [9]. 

In both these studies the legs were assumed to be perfectly 

rigid, meaning that exactly two legs are in ground contact at 

Passive Dynamic Walking with Quadrupeds  

- Extensions towards 3D 

C. David Remy, Marco Hutter, and Roland Siegwart, Fellow, IEEE 

P
1

1 2

22
1 1

2

pace (a) trot (b) tw
o
-b

e
a
t

1 2

43
1 4

23

single foot lateral (c) single foot diagonal (d) fo
u
r-

b
e
a
t

 
Fig. 1:  In a planar quadrupedal model, no difference between the left 

and right side exists, which makes it possible to classify all passive 

dynamic gaits either as two-beat, or four-beat.  If a third dimension is 

added, each of these gaits exists in two variations.  For the two-beat 

gait, these are the pace shown in (a) and the trot in (b), and for the 

four-beat the lateral single foot sequence in (c) and the diagonal 

single foot sequence in (d). 
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all times.  The percentage of stride that each foot is on the 

ground (also called duty cycle) is therefore inevitably 50 %.  

This means that all possible gaits are situated on the center 

line of the gait graph in figure 2.  The second variable that 

constitutes the graph refers to the relative phase of front and 

back legs, or -more precisely- the percentage of stride after 

which the forefoot falls after the hindfoot on the same side of 

the quadruped.  For a two-beat gait, this number is either 0 % 

(if the two legs on each side of the quadruped swing 

together, a gait which is called pace), or 50 % (with diagonal 

pairs swinging together, called trot).  For a four-beat gait, 

this number can be 25 % or 75 %, depending on whether the 

feet strike the ground in lateral single foot sequence, or 

diagonal single foot sequence.  A visual definition of these 

gaits is given in Figure 1.   

 
In total, the passive dynamic gaits account for four points 

in the gait graph, indicated by black crosses in Figure 2.  The 

shaded area in the same figure illustrates the considerably 

larger range of gaits found in actual quadrupeds.  Nature 

utilizes this wide variety to adapt to various conditions, such 

as different body properties, locomotion speeds, or 

environments.  Passive dynamics and the limited number of 

gaits produced by them might be an explanation for the 

fourfold indention of this range, but fail to account for the 

considerably larger variety of phase shifts and duty cycles 

found in nature, as well as for nature’s strong bias towards 

walking gaits in which the legs fall in a lateral sequence.  To 

be able to understand this bias, we have to recall that in a 

planar model with no true notion of left and right the top and 

bottom half of the gait graph cannot be distinguished.  It is 

hence obvious, that the underlying effect can only be 

observed and be explained if we expand the model to three 

dimensions.  In fact, in the biological literature, this bias has 

been attributed to the better static stability properties of the 

lateral single foot sequence in three dimensions.  The support 

polygon that arises in such a lateral sequence has the 

beneficial property that throughout the entire gait cycle it 

naturally supports the quadruped’s center of mass.  In 

contrast thereto, large compensating movements are 

necessary to allow statically stable walking with a diagonal 

single foot gait [10].  However, this explanation is only valid 

as long as at least three feet of the quadruped are on the 

ground at all times.  This excludes the rightmost three 

quarters of the graph (with a duty cycle smaller than 75%), 

for which the bias is still clearly visible. 

To better investigate the underlying principles, and to 

develop guidelines for the creation of robotic gaits, we 

extended a model of a passive dynamic walking quadruped 

towards three dimensions. 

II. METHODS 

The model used in this study consists of five rigid links 

with distributed mass (Fig. 3).  Four legs were connected to 

the front and back end of a main body through single-DoF 

rotational joints.  Each pair of legs shared a common 

rotational axis normal to the sagittal plane of the model.  Due 

to the rigid nature of the segments, it can be assumed that 

exactly two legs are in contact with ground at all times, while 

the other two legs are swinging freely.  The feet were 

assumed to have no geometrical extension.  We assumed that 

the system has no joint-friction, which means that energy is 

only lost during the ground contact collisions.   

 
We used normalized units [11] to scale all parameters with 

respect to overall weight M  and leg length l .  The 

gravitational constant was set to 1.  To simulate walking on a 

shallow incline, gravity (sin(1 ) 0 cos(1 ))o o= −g  was 

pointing slightly into the positive x-direction, which was the 

direction of forward motion of the model.  The main body 
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Fig. 3:  Model of a three dimensional passive dynamic quadruped.  

While the internal dynamics of the model are planar (all legs swing in 

parallel planes), it can rotate freely about the axis defined by the 

stance feet on the ground, which adds an additional degree of freedom 

in comparison to the planar model described in [9] 
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Fig. 2:  Passive dynamic gaits of quadrupeds represent only a few 

distinct solutions in the large continuous range of symmetric gaits 

found in nature.  In 2D, the models are also unable to explain the 

strong bias towards lateral gait sequences that can be observed in 

nature.  The shaded region was adapted from [10] and shows the 

distribution “of more than 1000 plots for 156 genera of tetrapods.” 
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contributed 0.8M  to the total mass, was 1.5 leg lengths 

long, and had a radius of gyration of 1.5 1/10l  about the 

mediolateral and dorsoventral axes and a radius of gyration 

of 1.5 1/ 25l  about the anteroposterior axis.  The COM was 

centered.  Each of the four legs weighed 0.05M , the center 

of mass was positioned 1 3l  below the joints, and the radius 

of gyration was 2
3 1/10l  about the two short principal axes 

and 1 10 l  about the long principal axis.  These parameters 

were selected to roughly resemble the properties of a Merino 

sheep.  All parameters were fixed throughout the study.  

Variations were only studied for the lateral spacing 
latd  

between the legs. 

The equations of motion (EoM) of this system can be 

stated in matrix form according to: 

 ( ) ( ) ( ) ( )
1

,
k

T T

i i

i=

⋅ − = ⋅ = ⋅∑M q q h q q J q λ J q λɶɶɺɺ ɺ , (1) 

with the coordinate set ( ) 10 1

1 4, , , , , ,
T x

x y z θ ϑ ψ α −= ∈q ℝ  

(composed of the positions ( , ,x y z ) and Euler rotations 

( , ,θ ϑ ψ ) of the main body, and the four leg angles (
1 4α − )), 

the mass matrix 10 10x∈M ℝ , and the differentiable force 

vector 10 1x∈h ℝ .  Each of the k  feet that are in contact with 

the ground exerts a Cartesian force 3 1x

i ∈λ ℝ , which is 

projected into the generalized coordinates with the Jacobian 

3 10xi

i

∂
= ∈

∂

r
J

q
ℝ  of the contact point 

ir .  Additionally, 

 
0     z

i

i i

r =

= ⋅ =r J q 0ɺ ɺ
 (2) 

must hold for the vertical distance z

ir  and the relative 

velocity with respect to the ground 
irɺ .  To this end, a uni-

directional force element that allows no slippage 

( 0x y

i ir r= =ɺɺ ɺɺ ), no penetration ( 0z

ir ≥ɺɺ ), and is limited in 

normal direction to positive forces ( 0z

iλ ≥ ) is assumed as 

contact law.  The complementary condition ( 0z z

i irλ ⋅ =ɺɺ ) 

combines the requirements that a contact is either active 

( 0i =rɺɺ ) or opening ( 0, 0z

i ír > =λɺɺ ). 

While the opening of a contact is already included in this 

formulation, the collision that occurs if a swinging leg (with 

index m ) is about to penetrate into the ground 

( 0 and 0
z z

m mr r= <ɺ ) and a contact is closed, requires some 

additional consideration.  Due to arising external impulsive 

forces Λɶ , the occurrence of a collision implies 

instantaneous changes in velocities.  To compute these, the 

equations of motion (1) have to be integrated over the 

instance of the collision: 

 { }
{ }

( )
0

0T T

t

dt + −− − ⋅ = − − ⋅ =∫ Mq h J λ M q q J Λɶ ɶɶ ɶɺɺ ɺ ɺ . (3) 

As integration is performed over an infinitesimally short 

time span, the bounded differentiable force vector h  

disappears and only the impulsive forces and the velocity 

changes remain.  Assuming a perfect inelastic collision with 

a Newton type collision law [12, 13] , all foot points that are 

considered part of the collision instantaneously come to a 

rest (or remain motionless) ( 0, 0z

i i

+Λ ≥ =rɺɺ ).  All others 

must leave the ground right after the collision 

( 0, 0z

í ir
+= ≥λ ɺ ).  These two alternatives are expressed in 

the complementary description of the collision in normal 

direction: 

 
( )

(3)
1

0, 0, 0

T

z z z z

i i i ir r

+ − + − −

+ +

− = ⋅ − = ⋅

≥ Λ ≥ ⋅ Λ =

r r J q q JM J Λɶɶ ɶ ɶɺ ɺ ɺ ɺ

ɺ ɺ

 (4) 

Using a full set of coordinates q  allows for a concise 

representation of the EoM and also for the most convenient 

computation of the contact collisions.  However, in a steady 

gait (and hence for all reasonable initial conditions) exactly 

two legs are in contact with the ground at all times and only 

four independent degrees of freedom exist.  To facilitate the 

limit cycle analysis and to restrict it to meaningful states, it is 

therefore desirable to switch to a set of minimal coordinates 
4 1x∈p ℝ  with 

 

( )

10 4, x

=

∂
= ⋅ = ⋅ ∈

∂

q q p

q
q p Q p Q

p
ɺ ɺ ɺ ℝ

 (5) 

These coordinates inherently fulfill the geometric 

constraints 

 ,= ⋅ ⋅ = ∀ ⇒ ⋅ =r J Q p 0 p J Q 0ɶ ɶɺ ɺ ɺ , (6) 

and allow us to state (1) without ground contact forces as: 

 0T T⋅ − ⋅ =Q MQ p Q h . (7) 

The specific set of minimal coordinates p  used in this 

study was defined by the X and Y components of a body-

fixed Z-Y-X rotation of the back stance leg with respect to a 

purely vertical pose and the relative angles of the main body 

with the two swing legs. 

The equations of motion for this multi-body system were 

numerically integrated using MATLAB/Simulink and the 

SimMechanics toolbox (The MathWorks, Natick, MA) [14, 

15].  To detect numerical errors, kinetic and potential energy 

were closely monitored throughout the course of the 

simulation.  As the model was not provided with knees, the 

contact collision detection was limited to states in which the 

swing leg was in front of the corresponding stance leg (i.e. 

showed a larger angle with respect to the main body) to 

make sure that the swing motion was completed and to avoid 

foot scuffing.  The pre-impact velocities and the positions 

were retrieved from the SimMechanics model and the 

collision complementary problem (4) was solved by cycling 

through all possible contact configurations until the unique 

solution that fulfills the complementary condition was found.  

After processing the collision, the roles of stance and swing 

foot were switched, the new relative position of front and 
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back stance foot registered, and the integration re-started 

with the new geometric constraints and the new initial 

velocities. 

Based on this model, we identified periodic gaits by 

searching for limit cycles in the 8-dimensional state space of 

p .  To this end, a Poincaré section was defined at the 

instance of back foot ground contact and periodic limit 

cycles were identified by numerically searching for 

stationary points in the resulting Poincaré map.  We used the 

results of the planar model (for which stationary solutions 

were know), to initiate the root search on a flat model in 

three dimensions ( 0latd = ), and gradually increased lateral 

leg spacing.  As we were only investigating symmetrical 

gaits, it was possible to limit the analysis to half a stride. 

To assess stability, Floquet multipliers were computed for 

the previously identified limit cycles.  These eigenvalues of 

the linearized stride-to-stride transfer function indicate the 

rate at which the disturbance of a certain mode vanishes 

(eigenvalue < 1) or grows (one eigenvalue > 1) [1]. 

III. RESULTS 

With the three dimensional model we were able to identify 

all eight expected gaits.  Depending on the order of contact, 

what was known as four-beat gait in the planar model turned 

into a lateral single foot sequence or a diagonal single foot 

sequence and what was known as two-beat gaits (one exact, 

two inexact) turned into three different kinds of paces and 

trots.  Other periodic gaits were not identified. 

A. Lateral vs. Diagonal Sequence 

In contrast to our expectation, absolutely no difference 

between the lateral and diagonal single foot sequence was 

observed with regard to stability and walking velocity.  The 

magnitude of all eigenvalues (Fig. 4) and the walking 

velocities (Fig 6) of both gaits remained exactly identical 

over a wide range of 
latd .  From a dynamical point of view, 

these gaits have identical properties, although they are in fact 

truly different gaits, with clearly distinguishable support 

patterns.  The same observation was made for the inexact 

trots and paces.  The order in which the feet strike the 

ground had no impact on limit cycle stability and velocity. 

Additionally to the unstable phase-mode eigenvalue 

(magnitude of 2.383) that was already present in the planar 

model, a new (highly) unstable eigenvalue was observed.  It 

corresponds to the 3D lateral rolling motion.  Being most 

unstable for a quadruped with zero lateral spacing, its 

magnitude decreases for wider configurations of the 

quadruped (from 14.880 to 2.142).  However, it never gets 

smaller than 1, meaning that the rolling motion is invariable 

unstable. 

B. Width-phase relationship 

A very distinct relation exists between the lateral leg 

spacing and the relative phase of back and front legs (Fig. 5).  

For the four-beat gaits the phase of the lateral sequence is 

increased and the phase of the diagonal sequence reduced 

when the spacing is widened, such that both gaits are 

converging towards a trotting gait.  At the same time, both 

inexact trots undergo the opposite development, i.e. the very 

quick succession in which two feet strike the ground is 

extended, which creates a gait with a more evenly spaced 

rhythm and four clearly distinguishable foot strikes.  At a leg 

spacing width of 0.49latd l=
⌢

 the four-beat gaits and inexact 

trots show the exact same phase shifts and hence become 

identical.  This critical width also marks the maximally 

possible leg spacing for the aforementioned gaits.  All these 

gaits cease to exist for a leg spacing wider than 
latd
⌢

, which 

explains why the graph in Figure 4 is limited to a leg spacing 

of 
lat latd d≤
⌢

. 

 
The observations made here also explain the behavior of 

the unstable phase-mode eigenvalue in Figure 4.  At a leg 

spacing of 0.35latd l≈  the four-beat gaits start converging 

towards two-beat gaits, which means that the (unstable) 

phase-mode of the four-beat gait is also converging towards 

the (stable) phase-mode of the two-beat gait.  At the point of 

critical leg spacing latd
⌢

, the phase-mode magnitude is 1, 

making the mode meta-stable.  The three pace-gaits are not 

affected by this phase shift. 

C. Walking velocities 

As the nominal cost of transportation (energy consumption 

per distance traveled normalized by weight) is always equal 

to the inclination of the slope on which the passive dynamic 

walker moves, we utilize forward speed to compare the 

efficiency of different configurations and of different gaits 

on the same slope.  This is a valid indicator as the energy 

losses are proportional to the overall walking speed, which 

means that on the same slope a faster walker is conceptually 

more efficient. 
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Fig. 4  Eigenvalue magnitudes for varying width of the main body 

(lateral leg spacing) for the lateral and diagonal single foot sequences 

are absolutely identical.  The two gaits are equivalent with respect to 

stability. 
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Velocity is the parameter that is most obviously affected 

by the choice of gait.  In pacing gaits, the entire mass of the 

main body has to rock from side to side to maintain a 

continuous motion.  For larger lateral leg spacing, this leads 

to increased losses in the contact collisions, as the angle at 

which the center of mass is redirected during this lateral 

motion (and the associated loss) is growing according to 

( )2 tan latd l .  This energy can not be used for forward 

movement, which means that for a lateral leg spacing of 

more than 0.37l  walking in an exact pace becomes 

impossible on a 1o  slope.  The inexact paces have slightly 

lower losses in the forward motion and can hence continue 

walking up to a leg spacing of 0.40l . 

Trotting gaits, on the other hand, remain nearly unaffected 

by changes in the lateral spacing.  This can be explained by 

imagining a virtual leg with the same mechanical effect as 

the two stance legs.  When trotting, the two stance legs are 

positioned at diagonal corners of the main body and the 

virtual leg will hence always act right at the center of the 

main body [16] .  As a consequence, the main body will not 

undergo any rotational motion at all, and the entire motion 

becomes independent of the lateral spacing between the legs.  

Absolutely no changes in walking velocity can therefore be 

observed for an exact trot.  As a consequence to the phase 

shifts described above, the walking velocities of the inexact 

trots are slightly affected by changes in leg spacing.  The 

phase shifts have two effects on velocity that are partly 

canceling each other.  While walking in a more equally timed 

rhythm reduces the collision losses of the forward motion, it 

also introduces some lateral rocking motion which leads to 

collision losses in a lateral motion. 

Similar effects can be observed in the four-beat gaits:  

Walking velocity decreases for a leg spacing up to 

0.45latd l=  due to the collision losses associated with the 

lateral rocking motion of the main body.  If the leg spacing is 

increased further, the phase shift gives the four-beat gaits 

more and more the property of a trot, which means that these 

losses become smaller for a spacing larger than 0.45latd l> . 

 

D. Stability 

The lateral motion of the three dimensional model is 

invariably unstable.  Even when the lateral leg spacing is 

going towards infinity (which is only possible for the exact 

trot) the corresponding eigenvalue asymptotically converges 

towards 1, without ever actually reaching it.  Energy 

dissipation due to a lateral motion, as it was discussed in the 

previous section, is reducing the instability in the sense that 

the rolling-mode eigenvalue becomes smaller and 

disturbances are growing slower.  A comparison of the 

rolling-mode eigenvalue magnitudes for all possible gaits is 

given in figure 7.  It is interesting to note, that the ‘rolling-

mode’ is largely decoupled from disturbances in other 

degrees of freedom.  Only for pacing, an interaction can be 

observed, which results in a pair of complex eigenvalues for 

lateral spacings above 0.3l . 

IV. DISCUSSION 

With the help of a simplified passive dynamic 

quadrupedal model, we were able to show that a clear 

relationship exists between the phasing of the front and back 

leg pair and the lateral leg spacing, that the sequence of 

ground contacts (which seems to be of high importance in 

nature) has no influence on stability and efficiency for the 

investigated gaits, and that a certain trade-off exists between 

efficiency and dynamic lateral stability. 

Similar to bipedal robots [17], the self-stabilizing effect of 

passive dynamic walking was limited to the sagittal plane, 
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Fig. 6  Walking velocity (in normalized units gl ) for the different 

3D gaits as a function of lateral leg spacing.  No difference in walking 

speed exists between the lateral and diagonal single foot sequences as 

well as between the different kinds of inexact paces and trots.  While 

the trots are nearly unaffected by the leg spacing, the lateral rocking 

motion in the paces dissipates energy slowing down the forward 

motion. 
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Fig. 5  Phase shift (in percent of a total stride) between the back and 

front legs on the same side of the quadrupedal model as a function of 

lateral leg spacing.  For increasing lateral leg spacing, the four-beat 

gaits (in lateral and diagonal sequence) converge towards a trotting 

gait, while the inexact trots diverge towards more pronounced four-

beat gaits.  At the critical leg spacing of 0.49l  four-beat and inexact 

trots become identical and cease to exist for even wider leg spacing. 
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leaving the lateral motion invariably unstable and 

necessitating active control in an actual quadrupedal robot.  

Appropriate leg spacing might be able to aid such a 

controller, however, making the spacing as wide as possible 

as our results suggest, is most probably not the optimal 

solution.  One should keep in mind that there is always a 

trade-off between stability and maneuverability, and a leg 

spacing that is too wide might adversely affect the ability to 

turn and move laterally. 

 
As a main limitation, these results were obtained with a 

strongly simplified model that can certainly not represent the 

complex and far more detailed mechanics of an animal or an 

actual robot.  This makes comparisons with biological 

systems challenging.  However, some general tendencies, as 

for example the fact that only long-legged dogs (i.e. with 

small latd ) are using pacing gaits [18] might already be 

inferred from this simplified model. 

Creating a more detailed and sophisticated model (for 

example, with knees, springy legs, or more degrees of 

freedom in the hip and shoulder joints) might, on the other 

side, conceal the very basic aspects of locomotion this study 

was aiming at.  Nevertheless, to investigate the full range of 

possible gaits (both symmetrical and asymmetrical) in a 

passive dynamic model, the use of springy legs will be 

imperative.  Only elastic legs can allow for phases of multi-

leg support and (through a ‘powered’ lift-off) airborne 

phases and thus create gaits with a duty factor other than 

50%.  It has already been shown that self stabilizing effects 

as they are utilized in passive dynamic locomotion can be 

employed in running robots with elastic legs [19, 20], but a 

more conceptual foundation for the underlying mechanisms 

would be desirable. 

The role of all the different gaits that are possible for four-

legged robots and that can be found in an even wider variety 

in nature is still a largely unanswered question.  Yet, 

knowledge about the fundamental principles of gait selection 

is very important if we seek to build efficient robots that 

optimally exploit their inherent natural dynamics over a wide 

range of locomotion speeds and areas of application.  In this 

context, we believe that the study of passive dynamic 

walking and running is a particularly fruitful approach as it 

reduces the problem of legged locomotion to the core 

questions of efficiency and stability. 
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Fig. 7  Magnitude of the roll-mode for the different 3D gaits.  This 

mode is unstable for all gaits and the possible range of lateral leg 

spacing.  Gaits that show more pronounced energy losses due to lateral 

motion (such as the pace) have a ‘less unstable’ roll-mode, in the sense 

that disturbances grow slower. 

5236


