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Abstract— This paper presents motion control concepts on
parallel robots with explicit focus on anti-windup-design and
trajectory-tracking. Starting from modeling and exact feedback
linearization, a cascade control is designed. Improvements to
control laws with respect to input-saturations are derived by
using concepts of anti-windup compensation. A multiple-axis
anti-windup-control is presented, guaranteeing tracking in case
of input-saturation. Control schemes are implemented on a
planar parallel manipulator for performance evaluation of high
dynamic operation. Efficiency of control is highlighted with
respect to trajectory tracking i. e. Cartesian distortion. All
concepts are derived in a formal way guaranteeing manipulator-
independent results and transferability.

I. INTRODUCTION

Robot structures based on closed kinematic chains gain
more and more acceptance in industrial application, as they
have proven to be a promising alternative to those based on
serial chains. The feature of many of these so called parallel
kinematic structures is especially of great interest for the
design of robots for high speed handling and assembly tasks
as they allow for the drives to be fixed in the base [1]. Design
concepts featuring low moved masses are enabled and thus
they outperform their serial counterparts by high dynamic
performance combined with precision and stiffness. Shorter
cycle times in assembly tasks can be achieved. Therefore, the
design of control concepts has to address these features in
order to maximize the performance of the robot. Due to the
non-linearities of the manipulators, a model-based control
architecture is essential to ensure precise trajectory track-
ing. Among centralized control schemes inverse dynamics
control is a common approach to control manipulators [2].
The controllers for each axis are designed independently
within a linear framework. Thus, the drive controller is
used to encapsulate the dynamics of the manipulator in a
fixed coordinate system. The design of the subordinated
drive-controller is based on a torque driven interface to
the inverters at the bottom layer and provides a uniform
trajectory interface to the top layer, specified by position,
velocity and acceleration {xref , ẋref , ẍref } in the base-frame
of the robot. This concept ensures hybrid control within
the task-frame formalism [3], [4], and thus, the presented
controllers do not restrict the manipulator to position con-
trol, see [5]. As actuators are constrained, nonlinear effects
have to be taken into account in design to prevent windup
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Fig. 1. Planar parallel manipulator FIVEBAR

effects when using integral control action [6]. Different anti-
windup-compensator schemes can be applied. In multiple-
axis control special attention has to be paid to trajectory
tracking to prevent a distortion of the trajectory [7] and
preserving directionality [8]. This paper presents the design
of anti-windup compensation with extension to a special
frame, that guarantees tracking without modification of the
reference trajectory (which normally is applied, see [9]) –
this solution of the directionality problem circumvents the
use of a reference shaping filter. The paper is organized as
follows. First, the derivation of the robots model based on
the Jacobian matrices and discrete modelling is presented.
The next section introduces the classical control structures
based on exact feedback linearization. Taking nonlinearities,
i. e. saturation of actuators into account, an anti-windup-
compensation scheme is presented which is enhanced to
the multiple axes case guaranteeing trajectory tracking. The
strategies are verified and implemented on the planar parallel
manipulator FIVEBAR, see Fig. 1. The results and perfor-
mance of the different strategies are presented and discussed
within the last sections.

II. MODELLING OF THE MANIPULATOR

Different methods of modelling parallel robots have been
proposed in literature: On the one hand approaches based
on the Newton-Euler method can be found, on the other
hand the Lagrangian method is common [10], [11]. From the
latter group the formulation of Lagrange-D’Alembert [12],
[13] in combination with discrete modelling has proven to be
computationally efficient for realtime-control [14]. The core
idea consists of the use of Jacobians for discrete modelling
and is presented in short.
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A. Discrete Modelling – Manipulator Jacobian and Differ-
ential Equations

Discrete modeling of parallel structures can be subdivided
into two parts: Derivation of the manipulators Jacobian J
and calculation of differential equations.

The first step relies on principles of kineto-static, rep-
resenting differential kinematic and static relation as ẋ =
Jq̇ ↔ τ = JTf . The kinematic structure of the parallel
manipulator is deduced into n tree structures by cutting open
kinematic loops at the endeffector E. Assuming all passive
joints without elasticities, connected links to the endeffector
do transmit only longitudinal forces. Computing internal
link-forces[

fp1
. . . fpn

]T
=
[
S1 . . . Sn

]−1
fext

=: S−1fext
(1)

with an external force fext applied and using Jacobians of
passive joints Jpi

with i ∈ [1, . . . , n] leads to the Jacobian
of parallel manipulator:

G+ = diag{Jp1
, . . . ,Jpn

}Tdiag{S1, . . . , Sn}S−1

= JT
E = JT.

(2)

Here, G+ = G−1 = JT holds a relation between Jacobian
of serial and parallel manipulators (joint space: ẋ = Jq̇,
operational space: f = Gτ , duality of Jacobians, see [10]).
As pointed out and discussed in detail in [15], the Jacobian
of the endeffector along with the derivatives of passive joints
can be deduced in a single step.

In a second step the differential equations can be cal-
culated by using already derived Jacobians and applying
Lagrange-D’Alembert-Formulation (Lagrange-Type II):

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= τ + JTfext (3)

with L = T − V representing the Lagrange-function, T
kinetic energy, V potential energy, q vector of joint space
variables, τ being actuator torques and external forces fext
which are applied on the endeffector. Energy functions can
be computed as:

T =
1

2
q̇TMq (q) q̇, V =

q∫
q0

ηq (q) dq (4)

which leads to a differential equation in joint space coordi-
nates:

Mq (q) q̈+Cq (q̇, q) q̇+ ηq (q) = τ + JTfext (5a)

In the case of planar structures each link can be modelled
by discrete point masses mi without modifying dynamical
behaviour [16]. Using this discrete inertia-distribution allows

a simple algorithm for deducing matrices:

Mq =
∑
i

miJ
T
i Ji + diag{Im, Im},

Cq =
∂Mq

∂t
− 1

2

∂
(
q̇TMq

)
∂q

,

ηq =
∑
i

miJ
T
i g,

(5b)

with g being vector of gravitation. Hereby all Jacobians
Ji (representing differential kinematics in location of point-
mass mi) can be described as a linear combination of
endeffector- and passive-joints-Jacobians, as deduced in
eq. (2). The choice of Coriolis-matrix is not unique: Using
Christoffel-symbols and following the notation of [17] and
[18] with discussion in [19] leads to

C =
1

2

{(
q̇T ⊗ In

)− (In ⊗ q̇T)} ∂Mq

∂q

+
1

2

{(
In ⊗ q̇T) ∂Mq

∂q

}T

, (6)

where ⊗ denotes the Kronecker-product. By eq. (6) the skew-
symmetry of Ṁq − 2Cq is featured, e. g.

wT
(
Ṁq − 2Cq

)
w = 0, w ∈ �(n×1), (7)

which simplifies their usage for control algorithms [2]. This
formalism can be used for planar structures without loss of
generality and is extensible to general ones.
The differential equation of the parallel manipulator in op-
erational space computes as:

Mx (q) ẍ+Cx (q̇, q) ẋ+ ηx (q) = Gτ + fext (8a)

with:

Mx = J−TMqJ
−1 = GMqG

T,

Cx = J−T
(
CqJ

−1 +Mq

˙̂
J−1

)
= G

(
CqG

T +MqĠ
T
)
,

ηx = J−Tηq = Gηq,

(8b)

where eq. (7) still holds. Matrices still depend on joint space
variables which is advantageous, because measurements are
sampled in joint space. Thus, it circumvents the solution of
the direct kinematic problem (DKP), for which an analytical
solution exists only in special cases and not in general for
parallel kinematics.

B. The manipulator FIVEBAR

For experimental setup a planar parallel structure with
two degrees of freedom, named FIVEBAR (see Fig. 1), is
used. The endeffector of the manipulator is connected to
the drives by two independent kinematic chains. To reduce
the weight of the moved masses, cranks and rods of the
manipulator are made of carbon fiber. Hence the FIVEBAR is
well-suited for highspeed operation with a maximum velocity
v = 5 m/s and acceleration a = 70 m/s2 in Cartesian
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Fig. 2. Discrete modell of FIVEBAR

space. The control systems bases on a PC running QNX
as operating system which is linked to the inverters via
IEEE 1396 FireWire. Hence a short cycle time and sufficient
bandwidth for control purposes is ensured.

Discrete modelling as given in subsection II-A is applied
to deduce the differential dynamics equations. The discrete
mass-distribution, inherent to discrete modelling, is depicted
in Fig. 2.

III. CONTROL CONCEPTS

In the context of the overall system the drive controller
encapsulates the dynamics of the manipulator in a fixed
coordinate system. A model-based control is set up that is
enhanced by an anti-windup-scheme. In the following the
explicit specification of matrix-dependencies is skipped for
keeping simplicity.

A. Inverse Dynamics Feedback and Cascade Control

Classical linear control concepts can be applied, if lin-
earization techniques are used. Here we use inverse dynamics
feedback control which acts as exact feedback linearization.
The model derived in subsection II-A is used to set up
an external reference input u, that renders the closed loop
dynamical behavior to a set of decoupled double integrators
in Cartesian space [20], by applying

τ = G−1M̂xu+G−1ξx, ξx = Ĉxẋ+ η̂x, (9)

see eq. (8a). Note, that the existence of an analytical solution
of the DKP for the manipulator FIVEBAR has been utilized.
For simplicity, linearization neglects the dynamic effects
of the inverters because of the large difference between
electrical and mechanical time constants. Taking the delay
of the inverter, denoted by Tel , into account yields

ui = Telx
(3)
i + x

(2)
i , i ∈ {1, . . . , n}, (10)

as dynamic behaviour of the linearized subsystems. Based
on the linearized subsystem given by eq. (10) a cascaded
control scheme is designed as depicted in Fig. 3 with transfer
functions

Kvel(s) = V1

TIs+ 1

TIs
, Kpos(s) = V2

TRs+ 1

TLs+ 1
(11)

--

xref

.

xref

..

xref T0 V T1, I
V T ,T2 R L,

T0

Kpos(s) Kvel(s)

G
-1
Mx

^

q RobotDKPx

Cx x+�
^ ^ G

-1

x
.

q
.

Fig. 3. Cascade Control

for axes’ velocity and position controller, respectively.
The inner loop is parametrized via symmetrical optimum
(see [21]), which ensures stability in the presence of model
uncertainties. In the outer loop a PTD-controller is preferred
to the classical P -controller to suppress the inherent over-
shoot of the velocity controller. For disturbance reduction and
efficient feed forward dynamics, parameters are determined
by an optimization. Comparing the denominator of the closed
loop dynamics with a model function and placing all poles
except one complex pair onto the real axis allows the
extraction of damping D as an independent parameter. Using
an integral criterion for minimizing the disturbance step
response yields optimized parameters as

V1 =
5D2 + 1

16D2Tel
, TI =

4Tel

(
5D2 + 1

)
1 + 2D2

,

V2 =
1

4Tel (1 + 2D2)
, TR = 4Tel , TL = TI

(12)

and ensures tracking in Cartesian space. For details of design
consider [22] and [23] – for a comparison to other control
schemes with respect to performance we refer to [24].

B. Anti-Windup Control

In general, actuators are constrained by their output and
bandwidth. While the later one is taken into account during
controller design in subsection III-A, additional techniques
have to be applied for dealing with input-saturation to prevent
tracking errors and – more crucial – instability of closed loop
control.

Anti-windup schemes are quite common in case of coping
with input saturations [6]. They can be divided into two
major groups – observer based anti-windup (OBSAWC)
[25] and general linear anti-windup compensators (GLAWC)
[7], [26]. We here use GLAWC, whose classical design
is depicted in Fig. 4 and considers plant and controller
windup. During the design process two system dynamics
are of interest. On the one hand windup is measured by
compairing the system output y with saturating actuators to
that of a linear system yl, represented by a system dynamic
Hδ:

yδ = y − yl = Hδ (v − u) = Hδδ

y = yl +Hδδ.
(13a)
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On the other hand stability properties are covered by the use
of describing function analysis (harmonic balance analysis)
[27], which uses the loop transfer function Lv around the
nonlinearity, i. e. the saturation:

u = Lvv +K (Tw −GPSβ) , v = sat(u). (13b)

With respect to anti-windup design in Fig. 4 the dynamics
result in:

Lv = I− (I−KD) (I+KPKA)
−1

(I+KPSGP )

Hδ = GP (I+KPSGP )
−1

(I+KPKA) (I−KD)
−1

K = (I−KD) (I+KPKA)
−1

KP . (13c)

It can be seen that

P := (I−KD) (I+KPKA)
−1

(I+KPSGP ) (13d)

can be denoted as a common parameter for both dynamics
and will be used for the design. The effects of windup
represented by eq. (13) can be seen in Fig. 5. Using appro-
priate design for KA and KD copes with windup and thus
reduces tracking errors (represented by dynamics of Hδ) and
instability (see Lv) in case of input saturation.

IV. PARAMETRIC ANTI-WINDUP DESIGN AND

IMPLEMENTATION

Parametric design bases on eq. (13) and design of inner
cascade, i. e. GP = 1

(Tels+1)s , KP = Kvel(s), S = 1,
T = 1, y = ẋ for each d.o.f., see eq. (11) and eq. (12).
Hence, parametric design can be handled for each axis (i. e.
for each d.o.f.) individually or in an holistic approach for
the overall system dynamic. Here the design of the outer
cascade remains as in subsection III-A as controllers used
for position control here do not rely on integral action.

-1

Im{ }

Re{ }

-L (j )v �

N(u)

1
-

^ -1+
T1

T2

Fig. 6. Nyquist plot / harmonic balance of input saturation and system
dynamics

A. Single-Axis Anti-Windup Control

The core idea consists of finding a system dynamic Hδ

that guarantees tracking with linear error dynamics in case of
saturation on the one hand and stability of windup dynamics
Lv on the other hand. As a result a bounded difference in
velocity, i. e. ẋδ ≤ kδ, with k bounded, can be expected.
These specifications can be matched by parametric design

P =
T2s+ 1

T1s
, 0 < T2 < T1,

Hδ =
T1

(Tels+ 1) (T2s+ 1)
,

Lv = − (T2 − T1) s+ 1

T1s
.

(14)

Denoting

N(û) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 , 0 ≤ û ≤ umax

2
π

[
arcsin

(
umax

û

)
+

umax

û

√
1− (umax

û

)2]
, û > umax

(15)

as describing function for saturation and using the harmonic
balance equation

− Lv(jω)N(û) + 1 = 0, (16)

stability is verified via Nyquist plot as depicted in Fig. 6.
Hence, stability in presence of input saturation is ensured.
Taking the H∞ and L1 norm with the peak-to-peak gain

‖ẋδ‖∞ ≤ ‖Hδ‖1‖δ‖∞ = T1‖δ‖∞ (17)

into account (see Fig. 5), it can be seen that the velocity
difference ẋδ is bounded and proportional to δ for the
stationary case.

B. Multiple-Axis Anti-Windup Control

In robotics and other multiple axis-control applica-
tions a fully specified C2-continuous reference trajectory
{xref (t), ẋref (t), ẍref (t)} with xref =

[
x1,ref , . . . xn,ref

]T
is quite common. In case of an output error in a single axis,
a distortion of the path in operational space is inevitable,
as parametric design in the former subsection has not taken
errors in other axes into account yet – the saturation may not
preserve directionality anymore, see [8]. A special design of
anti-windup overcomes this drawback. The core idea consist
of taking the trajectory, i. e. the coupling γ(i,j) of axes i and
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j, into account and relating it to the position error in these
axes:

γ(i,j) =
ẋi,ref

ẋj,ref

!
=

Δxi

Δxj
=

∫
eT
iHδ ∗ δdt∫

eT
jHδ ∗ δdt, i �= j, (18)

where ek represents the unit vector of axis k. Let γ(i,i) = 0
and γ(i,j) be finite, i. e. γ(i,j) = 0 for ẋj,ref = 0, so that
Γ denotes the corresponding matrix with elements γ(i,j)

1.
Assuming that input saturation occurs only in one axis k at
a time, a solution for parametric design is given by

Pk =
[
In + eT

k ⊗ (Γek)
]−1

P

Hδk =
[
In + eT

k ⊗ (Γek)
]
Hδ

Lvk
= InLv +

[
eT
k ⊗ (Γek)

]
P

(19)

to fullfill eq. (18). Here, results of parametric design in
eq. (14) have been used. The index k indicates that the
solution depends on the index of the the saturated axis, i. e.
the parametric design is (on-line) adapted to the saturated
axis and to trajectory data at each point in time, see eq. (18).

Following the generalized Nyquist criterion as pointed out
in [28], [29] stability can be proven by Nyquist plots of
eigenvalues λi,−Lvk

(s) := λi {−Lvk
(s)} and the negative

inverse describing function − 1
N(û) of the saturation. Para-

metric design in eq. (19) features that eigenvalues of Lvk
do

not change compared to the single axis design in eq. (14):

λi {−Lvk
(s)} = −λi

{
InLv(s) +

[
eT
k ⊗ (Γek)

]
P (s)

}
= λi {−Lv(s)} . (20)

Moreover, the saturation function consists of n equal satura-
tions for multiple axes control, and thus the corresponding
describing function equals the single axis control case,
see eq. (15). Hence, the stability analysis for multiple axes
reduces to the single axis case, which is given by the Nyquist
plot in Fig. 6 – the closed loop control is stable.

The velocity difference ẋδ is bounded

‖ẋδ‖∞ ≤ max
k

{‖Hδk‖1} ‖δ‖∞
= max

i,k

{√
1 + γ2

(i,k)

}
T1‖δ‖∞, (21)

because γ(i,k) is finite. Here, ‖v‖∞ denotes the H∞ norm
of the euclidean norm |v| of the vector v. Moreover,

ẋδ ∼ max
i,k

{√
1 + γ2

(i,k)e
T
kδ
} ẋref

|ẋref | (22)

is valid for the stationary case, i. e. the orientation of ref-
erence velocity in operational space is retained. Although
the position error xδ is unbounded in case of saturation, a
bounded distortion d(t) is gained by the parametric design.
Distortion here is defined by the distance between the actual
position and the reference trajectory:

d(t) = dist (xact(t),xtraj ) , (23)

1in detail: Γ =
n∑

j=1

n∑

i=1
γ(i,j)e

T
j ⊗ ei

G
-1
Mx

^

--

xref

.

xref

..

xref T0 V T1, IV T ,T2 R L,

T0

Kpos(s) Kvel(s)

-

q RobotDKPx

Cx x+�
^ ^ G

-1

x
. q

.

KA(s)

KD(s)

f(KA, )xref

.

umax

-umax

Fig. 7. Overall control scheme

with xact(t) as actual position of the endeffector in opera-
tional space and

xtraj =
{
g | ∃tl ≤ τ ≤ tl+1 ∈ �+ : g = xref (τ)

}
as the set of all points of the reference trajectory between
points tl and tl+1 in time. As a sidenote it can be mentioned
that eq. (22) can be used for specification of a maximum
contouring error of velocities for safety reasons – the one of
position is inapplicable due to possible unboundedness.

C. Overall control scheme

Saturations of actuators within the nonlinear framework
demand for variable upper and lower bounds umax of
saturations satumax

within the linear framework. Given a
boundary τmax as maximum torque applicable to the robot
and respecting eq. (9), it follows

umax = M̂
−1

x

(
Gτmax − Ĉxẋ− η̂x

)
(24)

as boundary of saturations. It may serve as an adaption law or
can be used for determination of maximum static boundaries
to ensure ∀t ∈ �+ : τ (t) ≤ τmax. Though boundaries umax

effect the parameterization of describing function N(û), its
shape is persistant, see eq. (15). Thus, adaption is applicable
as long as umax > 0 is valid for each axis, and dynamic
of adaption is assumed to be slow compared to the one
of control [30]. Furthermore, parametrization of anti-windup
compensators given by eq. (13c) can be refined by choosing

KA = IKA

KDk
= IKD +

[
eT
k ⊗ (Γek)

]
(1−KD) ,

(25)

with KA and KD denoting scalar transfer functions with ap-
propriate parametrization according to eq. (13d) and eq. (14).
As KDk

depends on feedforward values, the principle of
gain scheduling [31] is convenient for control, which results
in overall control scheme depicted in Fig. 7. The problem
of conserving directionality here is solved by parametric
design instead of using a reference shaping filter. Thus,
trajectory tracking in case of input saturation is ensured
without modification of trajectory.
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V. EXPERIMENTAL RESULTS

Controller designed in section III and section IV were
experimentally verified on the demonstrator FIVEBAR. Its
workspace and the trajectory for all experimental setups is
given in Fig. 8. The area of Cartesian distortion ΔA is
defined for benchmarking path-accuracy in operational space
by

ΔA =
∑
i

∣∣∣∣∣∣
ti+1∫
ti

dist
(
xact(t),x

∗
traj

)
ẋT
act(t)

ẋproj (t)

|ẋproj (t)|dt
∣∣∣∣∣∣ ,

where ti marks the start time of trajectory i and xproj (t)
denotes the projected point of actual position xact onto the
virtual extrapolated reference trajectory x∗

traj . It is a measure
of the absolute size of distortion-areas and thus indicates
accuracy of the endeffector path with respect to the reference
trajectory.

In terms of distortion over time its maximum value dmax =
max{dist (xact(t),xtraj )} is another important indicator for
performance with respect to system dynamics. It is an
integral benchmark for eq. (22), as it indicates overshooting
of trajectory in operational space and thus gauges an error
in orientation of velocity.

To determine the level of saturation, the maximum values
of absolute velocity error |Δẋ|max = |ẋref − ẋact |max and
input saturation |δ|max are taken as reference.
Plots of experimental results are given in Fig. 9 - Fig. 13
and will be discussed in the following. The trajectory of
FIVEBAR consists of two parts and is depicted in Fig. 9.
It can be seen that the second part of the trajectory is of
particular importance for benchmarking and will be paid
special attention. Corresponding time plots are presented in
Fig. 10, where the two parts of trajectory are indicated by
a break in the time-axis. In comparing the linear case (i. e.
no saturation, see subfigures with index (a)) to the saturated
one (i. e. with windup effects, see subfigures with index (b))
the effects of windup on the path of the endeffector can
be noted. Not only the contouring error increases, but also
the distortion – the reference trajectory cannot be followed
on time. The saturation limits are set to ±25 m/s2 within
the linear framework. Using the presented multiple-axis anti-
windup scheme (see subfigures with index (c)) the effects

Fig. 9. Trajectory of FIVEBAR: linear (gray solid), single-axis anti-windup
(black dash-dotted), multiple-axis anti-windup (black dashed) and linear
saturated (gray solid) control.

of windup are reduced. Although a contouring error is still
present, the actual postion does not overshoot the reference
trajectory anymore. Furthermore, the difference of saturated
and unsaturated actuating variable, denoted by δ, is cut down
as shown in Fig. 11. However, cycle times increase as the
excecution time of a skill primitive lengthens. Comparing
the actuating variables of the linear to the anti-windup
control concept only narrow differences in characteristics
are visible for the part where no saturation occurs – the
difference in actuating variables at the end of the second
part of the trajectory is not stationary. When the actuating
variable saturates, an influence on the other axis is reflected
by differences in behavior over time. A more detailed study,
revealing impacts on performance, is given by the distortion
over time plot in Fig. 12. The anti-windup scheme features a
lesser maximum of distortion compared to the linear control
scheme, which is a positive side-effect of the design of
the velocity-cascade via symmetrical optimum, featuring the
property that the integral of velocity error tends to zero.
Thus, overshooting is lesser in case of a bounded output
of the PI-controller. Analysis with respect to the saturated
case (b) in contrast unveils a massive distortion due to the
vectorial error of velocities Δẋ given in Fig. 13. They are
normalized to the maximum norm of the vectorial error in
the saturated case (b). To retain orientation of reference
trajectory, occurring errors have to fullfill eq. (18), which
is represented by the dashed line. I. e. velocity errors and
reference trajectory have to adopt a common orientation.
While this is valid for the linear and the anti-windup control
scheme, errors perpendicular to the reference trajectory can
be noted in case of linear control with saturation, resulting
in a large distortion, consequently.

For a quantitative comparison all control concepts are
faced to each other in Fig. 14, where each value of interest
has been normalized to the corresponding value in case
of linear control with saturation (b). The control scheme
with anti-windup compensators designed for each single
axis independently is additionally listed for completeness.
Though the maximum absolute velocity error is large for the
anti-windup case compared to the linear control case, the
distortion is kept in the same range, proving the performance
of anti-windup design in line with trajectory tracking.

4006



  2.0   2.5   3.0  13.0  13.5  14.0
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t in s

po
si
ti
on

in
m

(a) linear control

  2.0   2.5   3.0  13.0  13.5  14.0
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t in s

po
si
ti
on

in
m

(b) linear control with saturation
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(c) multiple-axis anti-windup control

Fig. 10. Trajectory tracking: reference (black), actual x-position (red), actual y-position (blue).
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(b) linear control with saturation
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(c) multiple-axis anti-windup control

Fig. 11. Actuating variables: input to saturation (black), output of saturation in x-axis (red), output of saturation in y-axis (blue).
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Fig. 12. Distortion as distance between the actual position and the reference trajectory in Cartesian space
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(b) linear control with saturation
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Fig. 13. Vectorial velocity errors during the second part of trajectory as locus plot (normalized to the linear control with saturation case): orientation of
trajectory (black dashed), vector of velocity error parameterized by time (blue solid) and difference of input to and output of saturation with respect to
axes as vectoriel plot (red).
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Fig. 14. Comparison of normalized (to the linear control case with
saturation) error-values: linear (normal), single-axis anti-windup (AWCS)
and multiple-axis anti-windup (AWCA) control.

VI. CONCLUSIONS AND FUTURE WORK

In this paper an anti-windup compensation scheme was
presented that ensures trajectory tracking even in case of
input saturation. Instead of solving the problem of direction-
ality by using a reference shaping filter, it is tackled by a
special parametric design and application of gain scheduling.
The design was applied and verified on a planar parallel
robot optimized for high-speed operation. Comparison to
the non-saturating case as well as to the single-axis anti-
windup compensation scheme presented in section V reveals
the potential of the holistic approach. Though the contouring
error increases in case of input saturation, overshoot and
large distortions are avoided – the distortion is kept at
a minimum. It just slightly differs from the linear non-
saturating case. The transfer of presented control scheme to
a computed torque control is not restricted as long as the
principle of gain-scheduling is adopted in a similar manner.

The results suggest an extensions to variable boundaries
over time of the saturations. An optimized consideration
of maximum actuating variable within the linear control-
framework by adaption (see eq. (24)) would reduce contour-
ing error and cycle times. Moreover, saturation of multiple
axes at the same time is an important point of future work
– artificial disturbances and pre-loading of plant controllers
are a point when it comes to design of forcing single axis
saturation only.
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