
KCT : a MATLAB toolbox for motion control
of KUKA robot manipulators

Francesco Chinello, Stefano Scheggi, Fabio Morbidi, Domenico Prattichizzo

Abstract—The Kuka Control Toolbox (KCT) is a collection
of MATLAB functions for motion control of KUKA robot
manipulators, developed to offer an intuitive and high-level
programming interface to the user. The toolbox, which is
compatible with all 6 DOF small and low payload KUKA
robots that use the Eth.RSIXML, runs on a remote computer
connected with the KUKA controller via TCP/IP. KCT includes
more than 30 functions, spanning operations such as forward
and inverse kinematics computation, point-to-point joint and
Cartesian control, trajectory generation, graphical display and
diagnostics. The flexibility, ease of use and reliability of the
toolbox is demonstrated through two applicative examples.

I. INTRODUCTION

MATLAB [1] is a powerful and widely used commercial
software environment for numerical computation, statistic
analysis and graphical presentation available for a large
number of platforms. Specific toolboxes (i.e., collections
of dedicated MATLAB functions) have been developed in
the past few years for support in research and educa-
tion, in almost every branch of engineering, such as, e.g.,
telecommunications, electronics, aerospace, mechanics and
control. As far as robotics is concerned, several toolboxes
have been presented in the last decade for the modeling
of robot systems [2]–[7]. These simulation tools have been
inspired by various applicative scenarios, such as vision-
based robotics [5], [6] and space robotics [3], and have
addressed different targets ranging from industrial [4] to
academic/educational [2], [5]–[7].
A more challenging problem is to design MATLAB

toolkits, offering versatile and high-level programming envi-
ronments, for motion control of real robots. Some work has
been done in this field for one of the first industrial robots, the
Puma 560 manipulator [8], [9]: however this robot is known
to have some intrinsic software limitations, especially in real-
time applications, which have been overcome by more recent
manipulators.
In this paper we will focus on the manipulators produced

by KUKA [10], one of the world’s leading manufacturers of
industrial robots. KUKA manipulators are designed to cover
a large variety of applications in industrial settings, such
as, e.g., assembly, material handling, dispensing, palletizing
and welding tasks. A specific C-like programming language,
called KRL (KUKA Robot Language), has been developed
by KUKA for robot motion control. This language is sim-
ple and allows comfortable programming. However, it is
not suited for critical real-time remote control applications,

The authors are with the Department of Information Engineering,
University of Siena, Via Roma 56, 53100 Siena, Italy. List of e-mails:
{chinello,scheggi,morbidi,prattichizzo}@dii.unisi.it

it does not support graphical interfaces and advanced mathe-
matical tools (such as, matrix operations, optimization and
filtering tasks), and it does not allow an easy integration of
external modules and hardware (such as, e.g., cameras or
embedded devices using common protocols: USB, Firewire,
PCI, etc.). A possible way to overcome these drawbacks is
to build a MATLAB abstraction layer upon the KRL. A first
step towards this direction has been recently taken by a MAT-
LAB toolbox called Kuka-KRL-tbx [11]. The authors in [11]
use a serial interface to connect the KUKA Robot Controller
(KRC) with a remote computer including MATLAB. A KRL
interpreter running on the KRC, establishes a bi-directional
communication between the robot and the remote computer
and it is responsible for the identification and execution of
all instructions that are transmitted via the serial interface.
Kuka-KRL-tbx offers a homogeneous environment from the
early design to the operation phase and an easy integration
of external hardware components. In addition, it preserves
the security standards guaranteed by the KRL (workspace
supervision, check of the final position switches of every
robot axis, etc.). However, Kuka-KRL-tbx suffers from some
limitations:

• The MATLAB commands of the toolbox are one-to-
one with the KRL functions: this lack of abstraction
may hinder the user from designing advanced control
applications.

• The serial interface may represent a limit in real-time
control applications.

• The toolbox does not include specific routines for
graphical display.

This paper presents a new MATLAB toolbox, called
KUKA Control Toolbox (KCT), for motion control of KUKA
robot manipulators. The toolbox, designed both for aca-
demic/educational and industrial purposes, includes a broad
set of functions divided into 6 categories, spanning opera-
tions such as, forward and inverse kinematics computation,
point-to-point joint and Cartesian control, trajectory genera-
tion, graphical display, 3-D animation and diagnostics.
KCT shares with Kuka-KRL-tbx the same advantages and

improves it in several directions:

• The functions of KCT are not a MATLAB counterpart
of the corresponding KRL commands. This makes the
toolbox extremely flexible and versatile.

• KCT runs on a remote computer connected with
the KRC via TCP/IP. A multi-thread server runs
on the KRC and communicates via Eth.RSIXML
(Ethernet Robot Sensor Interface XML) with a client

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4603

θ1

z0 ≡ z1

θ2z2 θ3z3
θ4

θ5z5

z4

θ6

z6

d21

d32 d43 d54

d65

xo ≡ x1

yo ≡ y1

Fig. 1. Reference robot: 6 DOF elbow manipulator with spherical wrist.

managing the information exchange with the mani-
pulator. This communication scheme guarantees high
transmission rates, thus enabling real-time control
applications.

• KCT has several dedicated functions for graphics and
3-D animation, and includes a graphical user interface.

KCT is fully compatible with all small and low payload
6 DOF KUKA robot manipulators which make us of the
Eth.RSIXML with KSS (Kuka System Software) v. 5.4, 5.5
or 7.0: the controllers KR C2, KR C2 ed05 and KR C3
(equipped with a real-time 10/100 card) are currently sup-
ported. KCT can be easily integrated with other MATLAB
toolboxes and it has been successfully tested on multiple plat-
forms, including Windows, Mac and Linux. The toolbox and
the relative documentation can be freely downloaded from
the web page: http://sirslab.dii.unisi.it/vision/kct
The rest of the paper is organized as follows: Sect. II

provides a comprehensive overview of the functions of KCT.
Two examples are reported in Sect. III to show the flexibility
of the toolbox in real scenarios. In Sect. IV, conclusions are
drawn and future research directions are highlighted.

II. OVERVIEW OF THE TOOLBOX

In this section we will be briefly describe the functions
of KCT. The 6 DOF robot manipulator shown in Fig. 1
will be used as a reference along the paper: vector q =
[θ1, θ2, . . . , θ6]

T denotes the collection of the joint angles
of the manipulator, and dk

k−1 ∈ R
3, k ∈ {1, 2, . . . , 6} the

displacement between the center of the (k − 1)-th and k-th
joint of the robot (note that d1

0 ≡ 0). The homogeneous
matrix H6

0 ∈ SE(3) relates the coordinates of a 3-D point
written in the base reference frame 〈x0, y0, z0〉, with the
coordinates of the same point written in the end-effector
frame 〈x6, y6, z6〉.
In the interest of clarity, the commands of KCT have

been subdivided into 6 categories, according to the task
they perform (see Table II, next page). The KUKA robot
models currently supported by KCT are listed in Table I:
up to now, the toolbox has been successfully tested on the
KR3, KR5sixxr850 and KR16-2 robots. Fig. 2 illustrates
the communication scheme between KCT and the robot
manipulator. It consists of three parts:

KUKA Control Toolbox TCP/IP protocol

kctserver.exekctserver.exe

KRCKRCEth.RSIXMLEth.RSIXMLEth.RSIXML

MATLAB

Robot manipulator

1

2

3

kctrsiclient.src

Fig. 2. Communication scheme between KCT and the manipulator.

1) A remote computer running KCT under MATLAB,
2) The KUKA Robot Controller (KRC),
3) The robot manipulator.
To establish a connection between the remote computer

and the robot controller, KCT provides kctserver, a C++
multi-thread server running on the KRC. kctserver com-
municates via Eth.RSIXML (a KUKA software package for
TCP/IP-robot interface) with kctrsiclient.src, a KRL
script which runs the eth.RSIXML client on the KRC and
manages the information exchange with the robot manipu-
lator. The MATLAB functions of KCT communicate with
kctserver using specific MEX-files (default option) or via
MATLAB Instrument Control Toolbox. The server sends
the robot’s current state to the computer and the velocity
commands to the manipulator via kctrsiclient.src, in
a soft real-time loop of 15±1 ms (the communication has
been temporized to 15 ms in order to have a suitable
margin over the 12 ms Eth.RSIXMLv1.0 time loop limit:
the ±1 ms uncertainty is currently due to the lack of a
hard real-time support platform). kctrsiclient.src is
also used to define a HOME position (starting position) for
the manipulator. Two classes of constraints affect robot’s
motion. The hardware constraints depend on manipulator’s
physics and cannot be modified by the user. On the other
hand, the software constraints (established by Eth.RSIXML)
can be configured at the beginning of each working session
via the functions kctrsiclient.src or kctsetbound

(see Sect. II-A for more details). In the following, all the
angles will be in degrees and distances in millimeters.

Small Robots (from 3 to 5 kg)
KR3 KR5sixxr650 KR5sixxr850

Low Payloads (from 6 to 16 kg)
KR5arc KR5arcHW KR6-2 KR6-2KS KR15SL
KR16-2 KR16-2S KR16-2KS KR16L6-2 KR16L6-2KS

TABLE I

6 DOF KUKA ROBOTS CURRENTLY SUPPORTED BY KCT.

4604

Initialization
kctrobot Show the list of supported KUKA robots
kctinit Load the parameters of the selected robot
kctsetbound Set the workspace bounds
kctgetbound Visualize the workspace bounds

Networking
kctclient Initialize the client
kctcloseclient Terminate the client

Kinematics
kctreadstate Return the current configuration of the robot
kctfkine Compute the forward kinematics
kctikine Compute the inverse kinematics
kctfkinerpy Compute the forward kinematics (give the pose)
kctikinerpy Compute the inverse kinematics (from the pose)

Motion control
kctsetjoint Set the joint angles to a desired value
kctsetxyz Move the end-effector in a desired position
kctmovejoint Set the joint velocities to a desired value
kctmovexyz Move the end-effector with a desired linear

and angular velocity profile
kctdrivegui GUI for robot motion control
kctpathxyz Generate a trajectory (operational space)
kctpathjoint Generate a trajectory (joint space)
kcthome Drive the robot back to the initial position
kctstop Stop the robot in the current position
kctdemo Demonstration of the toolbox

Graphics
kctdisptraj Plot the 3-D trajectory of the end-effector
kctdispdyn Plot the time history of the joint angles
kctanimtraj Create a 3-D animation of the robot

Homogeneous transforms
kctrotox Hom. transform for rotation about x-axis
kctrotoy Hom. transform for rotation about y-axis
kctrotoz Hom. transform for rotation about z-axis
kcttran Hom. transform for translation
kctchframe Change the reference frame

TABLE II

LIST OF KCT FUNCTIONS DIVIDED BY CATEGORY.

A. Initialization

The information relative to the KUKA robots supported
by KCT is stored in the MATLAB file kctrobotdata.mat
(see Table III) and can be accessed by typing,

>> kctrobot();

To initialize a particular robot model, it is sufficient to
write kctinit(’KR3’), where the argument is a string
containing the name of the robot selected as specified in
kctrobotdata.mat. The function kctsetbound(B) can
be used to set the software bounds of the robot. The matrix,

B =

[
Xm XM Y m YM Zm ZM

θm4 θM4 θm5 θM5 θm6 θM6

]
,

contains the bounds on the position and orientation (limited
to the joint angles θ4, θ5 and θ6) of the end-effector. Note that
differently from kctrsiclient.src, kctsetbound en-
ables a MATLAB warning message in the motion control
functions (see Sect. II-D), when the workspace’s bounds

’name’ KR3 KR5sixxr650 KR5sixxr850 · · ·
’link1’ [mm] 350 335 335

’link2’ [mm] 100 75 75

’link3’ [mm] 265 270 365 · · ·
’link4’ [mm] 0 90 90

’link5’ [mm] 270 295 405

’link6’ [mm] 75 80 80

TABLE III

DATA STORED IN THE FILE KCTROBOTDATA.MAT .

are violated. The bounds can be graphically visualized using
the function kctgetbound.

B. Networking

After the initialization step, the TCP/IP communica-
tion between KCT and kctserver must be established.
The main steps necessary to initialize the connection are the
following:

1) Put the mode selector on T1 (automatic execution) in
the KUKA control panel (teach pendant).

2) Select kctrsiclient.src on KSS.
3) Start kctserver.
4) In the MATLAB workspace start the TCP/IP
communication with kctserver by typing
kctclient(’193.155.1.0’), where 193.155.1.0
is the IP address of the KRC real-time network card.

5) Start kctrsiclient.src by pressing the run button
on the KUKA control panel and keep pushing until the
line ST SKIPSENS is reached.

6) Check whether the communication is established.
If it is not, return to step 2.

To close the TCP/IP communication is sufficient to write
kctcloseclient().

C. Kinematics

The state of the manipulator is stored in a 2 × 6 matrix,
called robotstate, containing the current position and
roll-pitch-yaw orientation of the end-effector (first row),
and the current joint angles (second row). This matrix can
be accessed using the following command: robotstate =

kctreadstate(). To compute the matrixH6
0 of the forward

kinematics and the inverse kinematics solution expressed as
a joint angles’ vector q, KCT provides the following two
functions:

>> q = [13, 32, -43, 12, 54, 15];
>> H06 = kctfkine(q);
>> q' = kctikine(H06);

The command p = kctfkinerpy(q) is analogous to
kctfkine, but returns the position and roll-pitch-yaw
orientation of the end-effector of the robot, as a vec-
tor p = [X, Y, Z, φ, γ, ψ]T . Finally, the function q =

kctikinerpy(p) computes the inverse kinematics solution
from the vector p.

4605

Fig. 3. The interface loaded by the function kctdrivegui.

D. Motion control

KCT provides several functions for point-to-point control
and trajectory planning. The simplest task one could require,
is to move the robot from an initial to a final configuration
defined by robot’s joint angles or by end-effector’s poses.
Let qf = [θ1, θ2, . . . , θ6]

T be the final desired joint config-
uration of the robot. The function,

>> qf = [23, 35, 12, -21, 54, 60];
>> [robotinfo, warn] = kctsetjoint(qf,'poly');

moves the robot from the current to the final configuration
using either a polynomial approach [12, Sect. 5.5.2] or a
proportional control, as specified by the second argument
(poly or prop, respectively). The matrix robotinfo con-
tains the time history of the joint angles and warn is a
Boolean variable that is set to 1 when an error occurs during
robot’s motion. Let now pf = [X,Y, Z, φ, γ, ψ]T be the final
desired pose of the end-effector. The function,

>> pf = [412, -2, 350, 20, 12, 15];
>> [robotinfo, warn] = kctsetxyz(pf);

moves to robot from the initial to the desired pose pf

using a proportional controller. Note that kctsetjoint and
kctsetxyz are user-level routines relying on two lower
level functions: kctmovejoint and kctmovexyz. When
kctsetjoint is called, the KUKA controller computes the
joint velocities necessary to accomplish the requested task
using kctmovejoint(qdot). Similarly, when kctsetxyz

is called, the linear and angular velocities of the end-
effector necessary to achieve the goal are computed via
kctmovexyz(pdot).
A graphical user interface, inspired by Robotics Tool-

box’s drivebot GUI [2], is loaded by kctdrivegui(),
(see Fig. 3). The joint angles of the robot can be easily
regulated here using six sliders: the corresponding motion
of the robot is diplayed via a 3-D animation.
It is very frequent in the applications to deal with

trajectories defined by a sequence of Cartesian frames
or joint angles. Consider a sequence of n points pi =
[Xi, Yi, Zi, φi, γi, ψi]

T , i ∈ {1, 2, . . . , n}, stacked into
the n × 6 matrix P = [p1, p2, . . . ,pn]

T . The following
commands,

>> P = [100, 200, 150, 12, -23, 0;
>> 10, 0, 50, 24, -15, 11;
>> -50, -30, 100, -10, 40, 32]; tp = 2;
>> [robotinfo, warn] = kctpathxyz(P,tp,1);

move the end-effector of the robot from point p1 to point
p3 using a linear interpolation method: a time step tp

of 2 seconds between two consecutive points is considered.
The third argument of kctpathxyz is a Boolean variable
enabling or disabling the visualization of the 3-D trajectory
of the end-effector and the time history of the joint angles
at the end of the task. The function kctpathjoint is
analogous to kctpathxyz: the only difference is that the
trajectory is defined here in the joint space instead of the
operational space. The first argument of kctpathjoint is
a n× 6 matrix Q, whose rows are vectors of joint angles:

>> Q = [23, 35, 12, -21, 54, 60;
>> 42, -10, 20, 14, -5, 21;
>> -15, 31, 10, 12, 20, 80]; tp = 2;
>> [robotinfo, warn] = kctpathjoint(Q,tp,1);

To immediately stop the robot in the current position, one
should first terminate the execution of the motion control
functions using ctrl-c, and then type kctstop(). Finally,
to drive the robot back to the initial position, KCT provides
the function kcthome().

E. Graphics

Three functions are available in KCT for graphical display.
The function kctdisptraj(robotinfo) plots the 3-D
trajectory of the end-effector, kctdispdyn(robotinfo)
plots the time history of the joint angles and
kctanimtraj(robotinfo) creates a 3-D animation
of the robot executing the requested task. A suite of
options (frame’s and trajectory’s color, frame’s dimension,
viewpoint, etc.) is available to customize the plot. (see the
help of the single functions for more details).

F. Homogeneous transforms

KCT provides a set of transformation functions of frequent
use in robotics. Let d ∈ R

3 be a translation vector and α
an angle. The functions,

>> Htr = kcttran(d); Hx = kctrotox(alpha);
>> Hy = kctrotoy(alpha); Hz = kctrotoz(alpha);

provide the basic homogeneous transformations generating
SE(3) for translation and rotation about the x-, y-, z-axes.
Let us now suppose we wish to move the robot’s end-effector
with respect to an external reference frame 〈xw, yw, zw〉
different from the base 〈x0, y0, z0〉. This could be useful, for
example, in an eye-in-hand framework where robot’s motion
should be referred to the camera frame (see Sect. III-B).
LetHw

0 be the homogeneous matrix defining the rigid motion
between 〈xw, yw, zw〉 and 〈x0, y0, z0〉. The function,
>> H0w = kctrotoz(alpha)*kcttran(d);
>> kctchframe(H0w);

fixes 〈xw, yw, zw〉 as new reference frame. All the operations
specified by commands executed after kctchframe are
referred to 〈xw, yw, zw〉.

4606

0
100

200
300

400
500

600

−200
−100

0
100

200

0

100

200

300

400

500

y

z

x

y

z

x

y

t = 0

x0
y0

z0

X
Y

Z

(a)

0 10 20 30 40 50 60 70

−20

0

20

samples
0 10 20 30 40 50 60 70

0

20

40

samples

0 10 20 30 40 50 60 70

−75

−65

−55

samples
0 10 20 30 40 50 60 70

−20

0

20

samples

0 10 20 30 40 50 60 70

20

40

60

samples
0 10 20 30 40 50 60 70

−20

0

20

samples

θ
1
[d
eg
.]

θ
2
[d
eg
.]

θ
3
[d
eg
.]

θ
4
[d
eg
.]

θ
5
[d
eg
.]

θ
6
[d
eg
.]

(b)

(c) t = 0s (d) t = 28s

(e) t = 55s (f) t = 83s

Fig. 4. Example 1: (a) Trajectory of the end-effector; (b) Time history of the joint angles (solid); (c)-(f) Snapshots from the experiment.

III. APPLICATIVE EXAMPLES
This section presents two examples demonstrating the

flexibility and ease of use of KCT in real scenarios. The first
example shows an elementary application of the trajectory
control functions (e.g., for painting, welding or assembling
tasks). The second example reflects authors’ personal inte-
rest in robot vision. In fact, the effectiveness of a camera
rotation estimation method based on the geometry of planar
catadioptric stereo (PCS) sensors [13] is tested using KCT.
The experiments we will present in the next subsections1,

have been performed using the KUKA KR3 manipulator
with KR C3 controller: KCT run on MATLAB v.7.0.1 under
Windows XP.
A. Drawing a circle

Suppose we wish to draw the circle,

x(k) = 600, y(k) = 150 cos(k), z(k) = 150 sin(k) + 310,

k ∈ [0, 3π/2], on a paper board, with a pen mounted
on the flange of the KUKA KR3 manipulator. To achieve
this goal, we have first to initialize the robot using the
command kctinit(’KR3’). The TCP/IP communication
between kctserver and KCT is then established with
kctclient(’192.168.1.0’). The software bounds are set
with the commands,

>> B = [450, 650, 200, -200, 0, 500;
>> -90, 90, -90, 90, -90, 90];
>> kctsetbound(B);

To draw the circle, we generated a matrix P of points using
the following lines of code:

>> k = [0:pi/50:3*pi/2];
>> x = 600*ones(1,length(k));
>> y = 150*cos(k); z = 150*sin(k) + 310;
>> P = [x',y',z',repmat([0, 90, 0],length(k),1)];

We finally called the function kctpathxyz(P,tp,1), with
time step tp = 1. Fig. 4(a) shows the trajectory of the end-
effector and Fig. 4(b) the time history of the joints angles,
as returned by kctpathxyz setting to 1 its third argument.
Figs. 4(c)-(f) show four snapshots of the real robot during
the circular motion.
1The videos of the experiments are available at the web page:

http://sirslab.dii.unisi.it/vision/kct

B. Planar catadioptric stereo: camera rotation estimation

Let us consider the Planar Catadioptric Stereo (PCS)
system [14] shown in Fig. 5(a). A pinhole camera mounted
on the effector of the KUKA manipulator, observes a struc-
tured 3-D scene directly and reflected through two planar
mirrors. Let us suppose we wish to estimate (using only
the visual information), the rotation matrix Rc

w between
the camera’s frame 〈xc, yc, zc〉 and the mirrors’ reference
frame 〈xw, yw, zw〉 while the camera moves with time.
By taking advantage of the epipolar geometry between the
real camera and the virtual cameras associated to the two
mirrors, a closed-form formula for Rc

w has been determined
in [13, Prop. 8]. In order to test the robustness of this solu-
tion in a real-world setting, we moved the camera along a
given trajectory and compared the estimated and actual roll-
pitch-yaw angles of Rc

w (see Fig. 5(b)). Since we are intere-
sted in the camera’s rotation, it is convenient to refer robot’s
motion with respect to 〈xc, yc, zc〉 in the initial point of the
trajectory, i.e., for t = 0. We then performed the following
change of frame after the initialization/connection step:

>> H6c = kctrotoz(-90)*kcttran([0, 0, 50]');
>> H06 = kctfkine(qinit); H0c = H06*H6c;
>> kctchframe(H0c);

where Hc
6 (known) and H6

0 are the homogeneous trans-
formation matrices between the camera and end-effector
frames, and between the end-effector and base frames,
respectively. qinit is the vector of the joint angles
of the robot in the initial point of the trajectory.
kctdrivegui has been used to drive the eye-in-hand
robot through other 14 points, where the real and mirror-
reflected scenes were clearly visible. The value of the
joint angles in the via points has been collected in the
15× 6 matrix Q and the function [robotinfo, warn]

= kctpathjoint(Q,tp,0) with tp = 1, has been called.
The actual rotation matrices Rc

w along the trajectory have
been obtained using the following commands (the rigid
motion between 〈xc, yc, zc〉 for t = 0 and 〈xw, yw, zw〉 has
been measured in the real setup: it corresponds to a rotation
of an angle α = 90◦ about the x-axis and to a translation
d = [−100, 0, 850]T):

4607

Pinhole camera

Planar mirrors

(a)

− 20
−10

0 10
20

30
40

− 80
− 60

− 40
− 20

0
20
0

10

20

30

40

50

xwyw
zw

t = 0

t = 60

X
Y

Z xc

yczc

(b)

0 10 20 30 40 50 60

−8

−4

0

4

8

time [sec.]

 [d
eg

.]

Estim. Roll
Roll

(c)

0 10 20 30 40 50 60
−10

−5

0

5

10

time [sec.]

[d
eg

.]

Estim. Pitch
Pitch

(d)

0 10 20 30 40 50 60
−45

−40

−35

−30

−25

−20

−15

time [sec.]

[d
eg

.]

Estim. Yaw
Yaw

(e)

Fig. 5. Example 2: (a) PCS experimental setup; (b) 3-D trajectory of the camera with respect to the mirrors; (c)-(e) Time history of the estimated (solid)
and actual (dash) roll-pitch-yaw angles of Rc

w .

>> Hwc_init = kctrotox(alpha)*kcttran(d);
>> for i=1:length(robotinfo)
>> Hwc = Hwc_init*kctfkine(robotinfo(i,:));
>> Rwc = Hwc(1:3,1:3);
>> end

The time history of the roll-pitch-yaw angles of the matrices
Rc

w thus computed (dash), together with the estimated va-
lues (solid), is shown in Figs. 5(c)-5(e).

IV. CONCLUSIONS AND FUTURE WORK

The paper describes an open-source MATLAB toolbox for
motion control of KUKA robot manipulators. The KUKA
control toolbox (KCT) runs on a remote computer connected
with the KUKA controller via TCP/IP: it includes a broad
set of functions for kinematics computation, trajectory gene-
ration, graphical display and diagnostics. The flexibility and
reliability of the toolbox has been demonstrated with two
real-word examples.
KCT is an ongoing software project: work is in progress

to extend the compatibility of the toolbox to all KUKA
industrial robots. We also aim to create a robot simulator
for off-line validation of motion control tasks, and extend
the functionality of KCT to the Simulink environment.
The control of multiple robots is another subject of current
research.

REFERENCES

[1] MATLAB and Simulink for Technical Computing. The MathWorks
Inc., USA. [Online]: http://www.mathworks.com/.

[2] P.I. Corke. A Robotics Toolbox for MATLAB. IEEE Rob. Autom.
Mag., 3(1):24–32, 1996.

[3] K. Yoshida. The SpaceDyn: a MATLAB Toolbox for Space and
Mobile Robots. In Proc. IEEE/RSJ Int. Conf. Intel. Robots Syst, pages
1633–1638, 1999.

[4] A. Breijs, B. Klaassens, and R. Babuška. Automated design envi-
ronment for serial industrial manipulators. Ind. Robot, 32(1):32–34,
2005.

[5] G.L. Mariottini and D. Prattichizzo. EGT for Multiple View Geometry
and Visual Servoing: Robotics and Vision with Pinhole and Panoramic
Cameras. IEEE Robot. Autom. Mag., 12(4):26–39, 2005.

[6] P.I. Corke. The Machine Vision Toolbox: a MATLAB toolbox for
vision and vision-based control. IEEE Robot. Autom. Mag., 12(4):16–
25, 2005.

[7] R. Falconi and C. Melchiorri. RobotiCad: an Educational Tool for
Robotics. In Proc. 17th IFAC World Cong., pages 9111–9116, 2008.

[8] W.E. Dixon, D. Moses, I.D. Walker, and D.M. Dawson. A Simulink-
Based Robotic Toolkit for Simulation and Control of the PUMA 560
Robot Manipulator. In Proc. IEEE/RSJ Int. Conf. Intel. Robots Syst,
pages 2202–2207, 2001.

[9] M. Casini, F. Chinello, D. Prattichizzo, and A. Vicino. RACT: a
Remote Lab for Robotics Experiments. In Proc. 17th IFAC World
Cong., pages 8153–8158, 2008.

[10] KUKA Robotics Corporation [Online]: http://www.
kuka-robotics.com/.

[11] G. Maletzki, T. Pawletta, S. Pawletta, and B. Lampe. A Model-
Based Robot Programming Approach in the MATLAB-Simulink
Environment. In Int. Conf. Manuf. Res., pages 377–382,
2006. [Online]. http://www.mb.hs-wismar.de/˜gunnar/
software/KukaKRLTbx.html.

[12] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and
Control. Wiley, 2006.

[13] G.L. Mariottini, S. Scheggi, F. Morbidi, and D. Prattichizzo. Planar
Catadioptric Stereo: Single and Multi-View Geometry for Calibration
and Localization. In Proc. IEEE Int. Conf. Robot. Automat, pages
1510–1515, 2009.

[14] J. Gluckman and S.K. Nayar. Catadioptric Stereo using Planar Mirrors.
Int. J. Comput. Vision, 44(1):65–79, 2001.

4608

