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Abstract— This contribution introduces a generic framework
for sensor-based robot motion control. The key contribution is
the introduction of an adaptive selection matrix for sensor-based
hybrid switched-system control. The overall control system con-
sists of multiple sensors and open- and closed-loop controllers,
in-between which the adaptive selection matrix can switch
discretely in order to supply command variables for low-level
controllers of robotic manipulators. How control signals are
chosen, is specified by Manipulation Primitives, which constitute
the interface to higher-level programming. This programming
paradigm is briefly specified in order to be able to define and

execute sensor-guided and sensor-guarded motion commands
simultaneously. The resulting control system is freely adaptable
depending on the sensor and control requirements of the desired
system and/or application.

I. INTRODUCTION

The integration of sensors belongs to one of the most

important future domains for achieving future advancements

in robot motion control systems. As even nowadays com-

mercial control units are rarely open for sensor integration,

sensor signals are often (even in research institutions) used

for sensor-based trajectory and path adaptations. This is a

very implicit way of sensor-based control (e.g., force/torque

control or visual servo control), and it — of course — already

leads to great benefits compared to simple point to point

operations, but in such systems, sensors are not part of

the feedback control loop, and it is not possible at all to

instantaneously react to unforeseen (sensor) events. On the

other hand, we can find plenty of approaches using sensors

in the feedback loops. Force/torque control [1] has had a

dedicated community since the beginning of the 1980s as

well as the field of visual servo control [2] has since the

beginning of the 1990s; we can find plenty of publications

in both areas, but the feature of instantaneous switchings is

of fundamental relevance for many real-world problems and

applications. This is one of the major reasons, why such

approaches (e.g., [1], [2]) can hardly be found in practice.

The basic requirement for such immediate reactions of

robotic systems is that their control structure can be abruptly

changed and/or adopted from one control cycle to another.

Right after some unforeseen event occurred, controllers may

be switched from one configuration to another — depending

on the current task specification. This paper has two inten-

tions:
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1) Giving a brief summary of Manipulation Primitives

(MP). MPs are used to specify sensor-guided and

sensor-guarded robot motions. This concept is already

known and was published in [3].

2) Introducing the concept of the adaptive selection ma-

trix. It is described how the parameters of a single MP

are mapped to the elements of this particular matrix.

Based on the system state given by all available sensor

signals, the elements of the adaptive selection matrix

can abruptly change the control structure in order to

instantaneously react to unforeseen events.

Thus, it becomes possible to react to uncertainties within

one control cycle (i.e., ∼ 1 ms and less). Such reactions

require a switching within the control structure, such that

a hybrid switched-system results. After related works are

introduced in the next section, Sec. III summarizes the

concept of manipulation primitives, and Sec. IV describes

how the parameters of MPs are mapped to the elements of

the adaptive selection matrix. Furthermore, it is shown, how

the elements of this matrix are used in a hybrid switched-

control system for robotic manipulators.

II. RELATED WORK

This section addresses related fields: Classic compliant

motion control, which is based on force/pose control con-

cepts; sensor integration methods (e.g., vision and distance

sensor integration); robot task specification for sensor-based

manipulations; control architectures including software tech-

nologies.

Mason [4] presented one of the pioneer works in compli-

ant motion control in 1981. Based on his work numerous

approaches have been published in this field, and especially

the group of De Schutter contributed promising concepts to

the community (e.g., [5]–[7]) and coined the phrase Task

Frame Formalism (TFF), which enables the development

of compliant motion solutions on an abstract programming

level.

These works understand force/torque control as one basic

part for compliant motion concepts [1]. Basically three

different approaches are known from literature: 1. Impedance

control [8], which uses relationships between acting forces

and manipulator poses to adjust the mechanical impedance

of the end-effector to external forces. 2. Parallel control

[9], which enables to control both, force and pose, along

the same task space direction. 3. Force/pose control which

controls force and pose in two orthogonal subspaces [10].

The latter reference introduced the term compliance selection

matrix, which constitutes the basis for the adaptive selection
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matrix. To realize this approach, we have to pay attention to

the problem of orthogonality as stated by Duffy [11], who

extended the approach, such that it is consistent, independent

of units, and independent of any origin coordinate system.

Practical tasks of robot manipulators are usually affected

by various uncertainties and inaccuracies. As an obvious

result hybrid pose and force/torque control are not always

sufficient; the integration of further sensors opens new pos-

sibilities and application fields. Especially, the addition of

multiple sensors of the same kind, such that the system can

situation-dependently benefit from the advantages of single

sensors, leads to robust system behaviors.

Assuming a robot manipulation system with many dif-

ferent sensors considering a system that enables the exe-

cution of sensor-guided motion control commands in any

degree of freedom (DOF), it becomes self-evident that we

need to switch discretely between several (open- or closed-

loop) continuously working discrete controllers at any time.

Hence, the analysis of hybrid switched-system control is one

fundamental part of the work presented here. Especially,

the works of Branicky and Liberzon provide elementary

concepts to develop and analyze hybrid switched-system

control technologies. The works [12]–[14] are considered as

the most relevant ones for this paper as will be pointed out

in Sec. IV of this paper.

Systems clearly become more advanced, when the motion

control loop is additionally closed by signals from vision

systems. A recent work of Gans and Hutchinson describes,

how switched-system control concepts can be used for pose-

and image-based visual servo control [15]. In [2] and [16],

the integration of visual servo control in the TFF approach

is discussed.

Up to now, many research groups published approaches

in the field of open control systems allowing the integration

of multiple sensors (e.g., [17]–[19]). The work by Cortesão

et al. [20] presents promising experimental results of force,

vision, and pose data fusion.

Control of sensor-based manipulation systems is one major

part of this paper, but — in addition — there is still a need for

suitable robot programming paradigms allowing this kind of

integration and programming when using multiple sensors.

One recent and closely related work was published by De

Schutter et al. [21], where a unified constraint-based frame-

work of task specification was presented. For practical im-

plementations, a generic interface is required, which remains

unchanged, even when further sensors and/or corresponding

controllers are integrated. Besides the parametrization of

set-points, such a programming interface must be able to

adapt the control system to the current work step and to the

required sensor(s).

In order to extend the addressed works, we consider a

generic and universal system with Manipulation Primitives as

the top-level interface mapping sensor signals consistently to

stable, unambiguous, and deterministic manipulator motions.

This mapping is done by the adaptive selection matrix, which

is the core part of this paper.

III. MANIPULATION PRIMITIVES

This section introduces Manipulation Primitives and gives

a formal definition, which will be important for the next

sections, where the concept of unambiguous mapping of MP

parameters to low-level control is explained.

An MP is formally defined as the three-tuple

MP := {HM, τ, λ} (1)

where HM defines a hybrid motion, τ contains tool com-

mands, and the stop condition λ determines the end of

execution of a single MP. These three quantities will be

described and discussed in the following.

A. Hybrid Move HM

HM defines a hybrid move in the sense of the TFF [5],

which becomes extended here in order to take multiple

sensors into consideration. In the classical case, a motion

command is given w.r.t. the Task Frame and is determined by

a six-dimensional vector representing Mason’s Compliance

Frame [4]. This simple matrix is not a sufficient and in

particular not a practical way to parameterize sensor-guided

robot motion commands when considering more than one

sensor.

The question of how to specify motion commands un-

ambiguously and universally, such that any sensor can be

addressed, must be answered in this context. For this purpose,

the hybrid motion command HM is defined as

HM := {T F , D} (2)

with

T F := {~θ, RF, ANC, FFC} (3)

~θ =
(

θx, θy, θz, θ fx , θ fy , θ fz
)T

∈ R
6 (4)

RF, ANC ∈ {HF, WF, BF, EF} (5)

FFC ∈ {WF, BF, EF} (6)

and

D :=
{

Di|Di = ιi ∪ ξi; ιi ∈ ζ, ∀ i, j: i 6= j

=⇒ ιi 6= ιj ; i, j ∈ {0, . . . , |ζ|}
}

(7)

with

ζ := {x, y, z, jx , jy , jz } × {0, . . . , (m − 1)} (8)

ιi := {dof idi, level idi} ∈ ζ (9)

ξi := {valuei, devicei} (10)

Let us discuss eqns. (2) – (6) and eqns. (7) – (10) in the

following.

The hybrid move command HM of eqn. (2) is specified

w.r.t. the Task Frame T F , in which a set of set-points

D is applied. All control values are measured in some

Sensor Frame SF [j] with j ∈ {1, . . . , n}, which may

be located anywhere and must be transformable into the

currently applied Task Frame (cf. Fig. 1). In contrast to the

classical TFF, we admit coupling of the Task Frame w.r.t. any
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Fig. 1. Frame assignments according to [3] for the proposed TFF specification.

frame in the work cell. ~θ determines the pose of the Task

Frame w.r.t. the Reference Frame RF at the beginning of a

single MP execution. The translational DOFs are denoted by

x, y, and z, the rotational ones by jx , jy , and jz . RF can

be selected from a set of frames known by the system (e.g.,

World Frame WF , Base Frame BF , or Hand Frame HF ).

Pose, velocity, and acceleration of each frame is updated

every control cycle, typically every millisecond. The frame

ANC serves as anchor and connects the Task Frame rigidly

to another frame of the work cell. As known from [3] and

shown in Fig. 1, the Task Frame can be either anchored to

• the Hand Frame of the manipulator (ANC = HF ),

• a fixed frame (e.g., ANC = WF or ANC = BF ),

or

• an External Frame known by the control system

(ANC = EF ).

The motion state (pose, velocity, and acceleration) of the

Task Frame w.r.t. the Anchor Frame ANC
M

TF is constant

during the complete MP execution. Hence, the ANC frame

has a fundamental influence on the motion to be executed.

The frame FFC (eqns. (3) and (6), feedforward compen-

sation) usually equals the World Frame or the robot Base

Frame if a mobile manipulation system is considered. If

(compliant) motions are to be executed w.r.t. an external

moving coordinate system, the FFC frame (i.e., its pose,

velocity, and acceleration) enables the internal computation

of a feedforward compensation (FFC) signal, such that a

sensor-based motion command can be executed in dynamic

systems in the same way as in in static ones [22]. A detailed

description on these parameters as well as examples can be

found in [3].

The meaning of the set-point set D of eqns. (7) – (10)

will be explained in this paragraph. Assuming, we only

apply trajectory-following and force/torque control to a

robotic manipulation system with six Cartesian DOFs; the

consideration of all possible combinations of pose and

force/torque set-points would lead to 26 = 64 hybrid move

commands. If controller switchings should be realized with

three controllers (e.g., by adding a distance or visual servo

controller), the number of motion commands would increase

to 36 = 729. Of course, this is not a practical solution. Thus,

it has to be possible to determine an alternative set-point

individually for each DOF within every control cycle (i.e.,

on-line). For example, if force/torque control in one direction

is not possible, the system should be able to automatically

switch to the next alternative (open- or closed-loop) con-

troller for the respective DOF. If the prerequisites to apply

this controller are not fulfilled, a further alternative may be

chosen etc. If no further alternative can be determined, a

save backup controller has to be used. Commonly, this is an

only trajectory generation module [23], [24], which is able to

generation command variables without sensor feedback and

from any arbitrary state of motion. This way, a deterministic

and stable robot behavior is guaranteed in every situation.

The set D contains up to 6m set-points Di, where m is the

number of available controllers; each set-point Di consists

of two attributes:

• ξi, a tuple containing valuei, which is assigned to a

particular controller devicei, and

• ιi defining the DOF dof idi, to which the set-point is

applied as well as the level level idi.

ζ is a set of possible DOF and level combinations and gen-

erally contains |ζ| = 6 m elements. Hence, we cannot only

specify one set-point per DOF but also a set of alternative

set-points. Of course, these alternatives are optional, and

its number depends on the current task. They are indicated

unambiguously by the level ID value (level idi ∈ N). A

set-point with level id = 0 represents a desired robot state

of first choice. level id = 1 denotes the first alternative set-

point and so on. For example, in y-direction force control

with a desired value of (−15 N) has been chosen. If force

control is not possible (e.g., because there is no contact),

the corresponding DOF will automatically be controlled by

a distance controller with a set-point of 0 mm. If this

controller is also not able to service the DOF (e.g., in case

the robot is outside of the sensor’s measurement range),
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Fig. 2. Overview of the hybrid switched-system control scheme to execute Manipulation Primitives.

the determined open-loop velocity controller is activated.

If no further alternative is available, a save default backup

controller will be activated. In general, a pose controller will

keep the robot in a stable state in this situation and the current

MP would be terminated with an error state. Of course, any

combination of controllers and set-points is possible as a

matter of principle. By means of the attribute devicei, it is

possible to choose the optimal controller for each task, i.e.

the best appropriate force or visual servo control concept

etc. comes to execution. The necessary switching processes

are handled by the adaptive selection matrix (cf. Sec. IV).

B. Tool Command τ

The second part of an MP, the tool command τ , allows the

integration and the access to any tool (gripper, drilling ma-

chine, welding apparatus, etc.) mounted to the manipulator’s

end-effector or to any device of the work cell. Formally, it

is defined as

τ := {τi|τi = {tool name, command}} (11)

The structure of the command attribute is kept very open

and very general in order to permit the integration of very

complex tools.

C. Stop Condition λ

The stop condition defines the termination of an MP. A

single MP runs until the sensor states and the robot state,

which are defined by the user in the stop condition λ,

are reached. This leads to a higher flexibility regarding the

simultaneous execution of sensor-guided and sensor-guarded

motions, motions, which even may exhibit fault tolerances

due to kinematic inaccuracies and to uncertainties in the

environment.

The user stop condition is a Boolean expression defined

as

λ := S −→ {true, false} (12)

where S is the set of available sensors and their correspond-

ing filter functions. The control cycle, in which λ becomes

true, lets the current MP terminate and the next MP becomes

executed until its stop condition becomes also true, etc.

IV. THE ADAPTIVE SELECTION MATRIX

This section is the core part of this paper and describes

the control architecture for the execution of MP and intro-

duces adaptive selection matrix, which is responsible for the

mapping of MP parameters to lower-level controllers.

A. Control Architecture

The overall control architecture can be considered a hybrid

switched-system [13], [14]. Fig. 2 depicts a rough overview

of such a control scheme. Here, hybrid switched-system

control of pose, velocity, force/torque (F/T), distance, and

vision is indicated. Of course, this set can be expanded by

any other physical variable and/or controller, respectively. At

first glance, the structure seems similar to common hybrid

switched-system control structures. But in contrast to com-

mon hybrid switched-system controllers, the selection matrix

is not static during one robot command: It considers the

current robot and environment state. Thus, it is an adaptive

selection matrix.

B. The Adaptive Selection Matrix

As described in the previous section, the MP approach

allows the definition of several alternative set-points (eqns.
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Fig. 3. Classical two-dimensional assignment (left) and adaptive three-
dimensional assignment (right) of controllers and DOFs.

(7) – (10)), such that a stable and efficient robot control is

feasible for each individual DOF.

In common hybrid switched-system control approaches,

selection matrices Si are generated from the compliance

frame for each available controller type. The corresponding

controller is addressed by the index i. The resulting six-

dimensional control variable vector ~o is computed out of

the n available control variable vectors ~oi of the involved

controllers in the following way:

~o =

n−1
∑

i=0

Si ~oi (13)

where the following condition with the identity matrix I must

be fulfilled

n−1
∑

i=0

Si = I (14)

This results in the required unique assignment of controllers

to DOFs. Fig. 3 (left) depicts a sample assignment.

For the execution of MPs, which allow the usage of any

kind and any number of sensors, this simple two-dimensional

view of selection matrices does not suffice. The definition

of several alternative control loops requires the extension

by a third dimension, representing the control level. This

three-dimensional perception is illustrated in the right part of

Fig. 3. The control loops of a DOF d are shifted along the

double-headed arrow. Thus, the active control variable can

no longer be determined by constant selection matrices Si

of eqn. (13). The selection works dynamically and depends

on two factors:

1) The currently available sensors and controllers as well

as the current system state.

2) The assignment of controllers and control levels per

DOF.

Formally, a controller i delivers three matrices: the assign-

ment matrix Zi, the control matrix Oi, and the availability

matrix Fi. They are the basis for the calculation of the

control variable assignment matrix Eo and flag assignment

matrix Ef , which are used to determine the selection matrix

L, from which the resulting control value vector ~o can be

derived. All these matrices and all calculation steps will be

explained in the following.

Assignment Matrices Zi As described in Sec. III,

it is possible to determine alternatives for each set-point.

Thus, each DOF d contains several control levels k. The

assignment of the i-th controller to a control level k is

formally represented by an assignment matrix Zi:

Zi =























z0, x z0, y · · · z
0,

ez
z1, x z1, y · · · z1,

ez
.
..

.

..
.
..

.

..
zk, x zk, y · · · z

k,
ez

...
...

...
...

z(m−1), x z(m−1), y · · · z
(m−1),

ez























∈ B
m×6

,

(15)

where B = {0, 1} .

Each column corresponds to a DOF and each row represents

a control level, where m determines the maximum number

of control levels. An entry of ‘1’ assigns the DOF of the i-th

controller to the control level k. The matrix corresponds to

a vertical slice of the three-dimensional adaptive selection

matrix representation of Fig. 3 (right).

The following assignment matrix ZVelocity Ctrl has been

defined for velocity control:

ZVelocity Ctrl =





0 1 0 0 0 0
1 0 1 0 0 0
0 0 0 0 0 0



 (16)

Here, the controller is selected to manage the y-direction on

level 0 and to manage the x- and z-direction on level 1. All

remaining DOFs are controlled by some other controller.

The assignment matrices Zi are implicitly defined by

the set-point set D and are automatically computed by the

control system.

Control Matrices Oi The control variables of one single

controller i are summarized as vector ~oi. The dimension

of the vector corresponds to the number of available DOFs

of the robotic system. For computing the adaptive selection

matrix, the control variables are represented by the diagonal

elements of a control matrix Oi. For a robot with six DOFs,

the matrix Oi for one single device i is defined as

Oi =















ox 0 0 0 0 0

0 oy 0 0 0 0

0 0 oz 0 0 0

0 0 0 o ex 0 0

0 0 0 0 o ey 0

0 0 0 0 0 o ez















∈ R
6×6

(17)

Thus, the common control variable vector ~oi of the i-th

controller can be derived from Oi as follows:

~oi = diag (Oi) (18)

Availability Matrix Fi To avoid the usage of control

variables of inoperative control loops (e.g., force/torque

control in free space), the validity is indicated by a flag. A

value of ‘1’ denotes a usable control variable and ‘0’ denotes

an invalid control variable. The elements of the availability
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matrix Fi contain the mentioned flags of the i-th controller.

For six DOFs, Fi is given by

Fi =















fx 0 0 0 0 0

0 fy 0 0 0 0

0 0 fz 0 0 0

0 0 0 f ex 0 0

0 0 0 0 f ey 0

0 0 0 0 0 f ez















∈ B
6×6

(19)

The availability flag vector ~fi of the i-th controller can be

written as

~fi = diag (Fi) (20)

Control Variable Assignment Matrix Eo The cal-

culation of the resulting control value vector ~o requires

the mapping of the control values of all controllers to the

corresponding DOF d and control level k. This is possible,

as the definition of eqn. (7) ensures, that one and only one

controller can be chosen per DOF and level. The mapping

is represented by the control variable assignment matrix Eo.

The calculation of Eo with n involved controllers leads to

Eo =
∑n−1

i=0 Zi Oi

=





















o′0, x o′0, y · · · o′
0,

ez
o′1, x o′1, y · · · o′

1,
ez

...
...

...
...

o′k, x o′k, y · · · o′
k,

ez
...

...
...

...
o′(m−1), x o′(m−1), y · · · o′

(m−1),
ez





















∈ R
m×6

(21)

Each column corresponds to a DOF d and each row to one

particular control level k.

Selection Matrix L To calculate the control value vector

~o, which contains the input values for the joint controller (cf.

Fig. 2), the correct row of Eo must be chosen for each single

DOF. This is realized by the selection matrix L. It is defined

as

L =























l0, x l0, y · · · l0,
ez

l1, x l1, y · · · l
1,

ez
...

...
...

...
lk, x lk, y · · · l

k,
ez

..

.
..
.

..

.
..
.

l(m−1), x l(m−1), y · · · l(m−1),
ez























∈ B
m×6

(22)

The columns are assigned to the system DOFs, and the rows

are assigned to control levels. The entries contain ‘1’ or ‘0’,

where ‘1’ selects the corresponding value. Of course, it exists

exactly one ‘1’ per column. Thus, we obtain

m−1
∑

k=0

lk, d
!
= 1 with d ∈

{

x, y, z, jx , jy , jz
}

(23)

Transposing L and multiplying it with Eo results in a sym-

metric matrix, whose diagonal elements contain the resulting

control value vector ~o (cf. eqn. (13)). It can be written as

~o = diag
(

L
T

Eo

)

(24)

Please note that the elements of L are still undetermined. For

its calculation the flag assignment matrix Ef is responsible.

Flag Assignment Matrix Ef The matrix L depends

on the n available Fi matrices of the n involved controllers

(with i ∈ {0, . . . , n − 1} and n ≤ 6 m) and on the

assignment matrixes Zi ∀ i ∈ {0, . . . , n − 1}. This results

in the flag assignment matrix

Ef =
∑n−1

i=0 Zi Fi

=





















f ′

0, x f ′

0, y · · · f ′

0,
ez

f ′

1, x f ′

1, y · · · f ′

1,
ez

...
...

...
...

f ′

k, x f ′

k, y · · · f ′

k,
ez

...
...

...
...

f ′

(m−1), x f ′

(m−1), y · · · f ′

(m−1),
ez





















∈ B
m×6

(25)

1) Determination of L and ~o: The columns (DOFs)

of Ef can be mapped to the corresponding columns of

L. The mapping law for each single DOF d (d ∈
{x, y, z, jx , jy , jz }) is given in the following table. A ‘×’

entry means ‘don’t care’.

f ′

0, d f ′

1, d ... f ′

k, d ... f ′

(m−1), d l0, d l1, d ... lk, d ... l(m−1), d

0 0 ... 0 ... 0 0 0 ... 0 ... 0
1 × ... × ... × 1 0 ... 0 ... 0
0 1 ... × ... × 0 1 ... 0 ... 0
0 0 ... 1 ... × 0 0 ... 1 ... 0
0 0 ... 0 ... 1 0 0 ... 0 ... 1

As can be seen from the table, one and only one controller is

active per DOF, such that it is in accordance with eqn. (23).

The available controller with the lowest level id will be

activated. The first line of the table indicates an error state:

No controller of the current MP is able to service the

DOF. In such a case, the MP will be terminated, and the

corresponding DOF will be controlled by a backup controller.

The table can be rewritten as

l0, d = f ′

0, d

l1, d = f ′

0, d ∧ f ′

1, d

...

lk, d = f ′

0, d ∧ f ′

1, d ∧ · · · ∧ f ′

k, d (26)

...

l(m−1), d = f ′

0, d ∧ f ′

1, d ∧ · · · ∧ f ′

k, d ∧ · · · ∧ f ′

(m−1), d

As these terms become very complex for multiple levels,

we introduce the Boolean variable ρk, d

ρk, d := f ′

k, d ∧ ρ(k−1), d, where

k ∈ {0, . . . , (m − 1)} and ρ(−1), d := 1 .
(27)
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Fig. 4. Technical representation for one DOF of the adaptive selection
matrix.

Now eqn. (26) can be rewritten as

l0, d = f ′

0, d

l1, d = ρ0, d ∧ f ′

1, d

...

lk, d = ρ(k−1), d ∧ f ′

k, d (28)

...

l(m−1), d = ρ(m−2), d ∧ f ′

(m−1), d

By means of this recursive mapping rule and by applying

eqn. (24), ~o can be computed as

~o =



















∑m−1
k=0 o′k, x

(

ρ(k−1), x ∧ f ′

k, x

)

∑m−1
k=0 o′k, y

(

ρ(k−1), y ∧ f ′

k, y

)

∑m−1
k=0 o′k, z

(

ρ(k−1), z ∧ f ′

k, z

)

∑m−1
k=0 o′

k,
ex

(

ρ
(k−1),

ex ∧ f ′

k,
ex
)

∑m−1
k=0 o′

k,
ey

(

ρ
(k−1),

ey ∧ f ′

k,
ey
)

∑m−1
k=0 o′

k,
ez

(

ρ(k−1),
ez ∧ f ′

k,
ez
)



















(29)

Fig. 4 presents the resulting block diagram of eqn. (29)

for one DOF. It summarizes the mathematical representation

of the adaptive selection matrix from a technical point of

view.

C. Final Remarks on the Availability Flag Vector ~fi

The availability flag vector decides if a control loop is

currently able to cope with the current system state. Thus,

each element of ~fi is determined by a function that maps

state variables, sensor signals, or any other events to a logical

value. One element d of ~fi of the i-th controller can be

written as

fi,d := S −→ B (30)

where S is the set of available sensor signals (cf. eqn. (12)).

The mapping function depends on the corresponding con-

troller. It can be a simple constant (fi,d = 1), the result of a

comparison with a threshold (thA and thB , cf. Fig. 4), or any

complex function. By means of this flag function stability of

each continuously working discrete controller in the hybrid

switched-system must be guaranteed.

In this way many critical situations can be handled. Some

examples are outlined in the following:

• Managing the transition from free space motions to

force/torque controlled or any sensor-guided compliant

motions, respectively.

• Any internal controller errors, for example, a missing

sensor signal, can set the flag to zero.

• If switching to a controller yields heavy jerk values in

the robot’s end-effector or drives, it can be avoided by

this flag.

• It becomes possible to implement monitoring and safety

functions with the adaptive selection matrix.

As already stated in Sec. II, the problem of orthogonality

is very relevant. Compared to classic approaches [4], [6],

[7], orthogonality is always guaranteed by the adaptive

selection matrix in principle.

This section introduced the adaptive selection matrix — the

main contribution of this paper. One further important issue

concerns the switching behavior of the adaptive selection

matrix. Predefined trajectories as they are common in the

states of research and technology are unsuited. All non-

sensor-guided motions must be generated by an on-line

trajectory generator, which is able to take over control for

one or more DOFs from any arbitrary system state [23], [24].

V. PRACTICAL RESULTS

In order to save space, we refer to other publications

showing experimental as well as practical results achieved

with this concept. The manipulator of [25] plays the parlor

game Jenga [26], and applies force/torque, acceleration,

vision, and distance distance sensors in one exhibit. [27]

and [28] deliver further details of this concept. How the

concept of MPs can be used as an interface to higher-level

motion planning systems, which consider inaccuracies in the

kinematics as well as in the environment (e.g., [21]), can be

found in [3] and [24].

VI. CONCLUSION

We introduced a very basic but nevertheless powerful

and generic interface represented by Manipulation Primitives

to simultaneously specify sensor-guided and sensor-guarded

robot motion commands, which are executed by a hybrid

switched-system controller. As a consequence (multi-)sensor

integration in robotic manipulation control systems becomes

strongly simplified. The major contribution of this paper is
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the introduction of the adaptive selection matrix, which maps

the parameters of the manipulation primitive paradigm to

low-level control layers including hybrid switched-system

control structures.

We would like to encourage developers to reason on

practical implementations of the Task Frame Formalism in

the sense proposed in this paper. As a result, the potential of

this formalism becomes clearer and thus enables the research

communities to provide further advancements in robotics and

automation systems.
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E. Aertbeliën, K. Claes, and H. Bruyninckx. Constraint-based task
specification and estimation for sensor-based robot systems in the
presence of geometric uncertainty. The International Journal of

Robotics Research, 26(5):433–454, May 2007.
[22] U. Thomas, F. M. Wahl, J. Maaß, and J. Hesselbach. Towards a new

concept of robot programming in high speed assembly applications. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 3827–3833, Edmonton, Canada, August 2005.
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