
 
 

 

  

Abstract— Due to difficulties in measurement of muscle 
activities and understanding a user’s intention under different 
configurations, controlling machine forces using surface 
electromyogram (SEMG) is difficult in a human- machine 
interface (HMI). This study describes a novel HMI using 
Hill-based muscle model to control the isometric force of a 
robotic thumb that considers the importance of the thumb in 
hand function. In order to estimate force intension, SEMG from 
the skin surface was measured and converted to muscle 
activation information. The activations of deep muscles were 
inferred from the ratios of muscle activations from earlier 
studies. The muscle length of each contributed muscle was 
obtained by using a motion capture system and musculo- 
skeletal modeling software packages. Once muscle forces were 
calculated, thumb-tip force was estimated based on a mapping 
model from the muscle force to thumb-tip force. The proposed 
method was evaluated in comparisons with a linear regression 
and artificial neural network (ANN) under four different thumb 
configurations to investigate the potential for estimations under 
conditions in which the thumb configuration changes.  

I. INTRODUCTION 
ith the increasing development of machines which are 
driven by a user’s movement intension such as 
prostheses and exoskeletons, the human-machine 

interface (HMI) has received a great deal of research attention. 
The HMI should provide an effective channel of clear 
communication between the user and the machine and also be 
intuitive to the user for natural usage. To satisfy these issues, 
surface electromyogram (SEMG) has become a popular 
approach for HMI because SEMG provides important muscle 
activation information of exerted forces; moreover, it can be 
measured noninvasively. Therefore, it can be possible to 
control machine a intuitively with this signal.  

Many researchers have investigated how to control the 
motion or force of machines for different body parts using 
SEMG [2-4]. Most studies of the hand have focused on 
controlling an artificial hand as a gripper or on classifying 
individual finger motions of a hand robot [5-6]. Few studies 
[7] but have investigated controlling the finger force using 
SEMG. Finger force is actually very important when people 
lift or hold objects. In particular, the thumb has the unique 
characteristic of opposability, and thumb-tip force allows the 
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hand to grasp objects [8]. Clinicians generally consider the 
thumb to be responsible for at least 50% of overall hand 
function [9]. Therefore, an advanced HMI in robotic hand 
applications should offer a way of controlling thumb-tip force 
using SEMG; additionally it should also have clear command 
flow even under different thumb configurations, when 
considering the configurations of the thumb in real life.  

In order to control machine force corresponding to the user’s 
intension with SEMG, several machine learning approaches 
are available, including a support vector machine (SVM) and 
an artificial neural network (ANN). In [7], SVM and ANN 
were used to estimate force from SEMG on finger parts. 
However, these approaches are known to have low 
performance outside of the specific tasks defined by the 
training and learning sets. 

One alternative method for estimating force from SEMG 
under unspecific cases is the use of Hill-based muscle model, 
a phenomenological model of muscle contraction that  many 
researchers have contributed to developing [10-11]. It can 
estimate force under general cases because it describes 
internal muscle mechanics. There have been much research to 
use the Hill-based muscle model to estimate muscle force [2, 
4, 12-13]. Rosen et al. [13] showed that the Hill-based muscle 
model performs acceptably in general cases, while the ANN 
showed high performance only in specific sets.  

This study describes an HMI that offers isometric thumb-tip 
force control of a partial hand robot using the Hill-based 
muscle model. The proposed HMI was tested under four 
different thumb configurations to investigate performance 
under conditions in which the thumb configuration changes, 
comparing the proposed method with other force estimation 
methods using linear regression and ANN.  

II. METHODS 
An overall block diagram of the proposed method is shown 

in Figure 1. Thumb-tip forces are estimated using muscle 
activation information and a biomechanical model. Recorded 
SEMG was converted to muscle activation, and the length of 
each contributing muscle was obtained by using a motion 
capture system (Motion Analysis Co., USA) and 
musculoskeletal modeling software (SIMM, Musculo- 
graphics, USA). Once muscle forces were calculated, 
thumb-tip force was estimated based on a mapping model 
from the muscle force to thumb-tip force. Internal parameters 
in the estimation method were adjusted using a genetic 
algorithm. Finally, the calculated thumb-tip force was fed 
into the robotic thumb and the users could produce as much 
thumb-tip force as they intended to exert using SEMG. The 
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force estimation algorithm was described in detail in our 
previous study [14].  

 

A. Thumb-tip force estimation using the Hill-based muscle 
model  

1) Muscle selection: The
2) re are nine muscles and three joints responsible for 

thumb motion [15]. They are Adductor Pollicis (AP), Dorsal 
Interosseous (DIO), Flexors Pollicis Brevis (FPB), Flexors 
Pollicis Longus (FPL), Abductors Pollicis Longus (APL), 
Opponens Pollicis (OPP), Extensors Pollicis Longus (EPL), 
Abductors Pollicis Brevis (APB) and Extensors Pollicis 
Brevis (EPB). Interactive anatomy software (ADAM 
Interactive Anatomy, A.D.A.M. Inc., USA), was used to find 
which of these muscles are located in the outermost layer. It 
was deermined that five muscle activities can be observed 
from the surface: AP, FPB, APB, DIO and APL. Therefore, 
these muscles were chosen for collecting SEMG and the 
correct placement of the electrodes was verified by function 
muscle testing [16]. The reference electrode was attached on 
the ulnar bone of the elbow. 

3) Muscle activation: The SEMG signals from the five 
surface muscles were recorded using bipolar surface 
electrodes (DE-2.1, Delsys, US). The signals were converted 
to muscle activation by a following signal processing 
technique. The signals were pre-amplified 1000 times and 
sampled at 1000Hz using a 16 bit A/D converting board 
(PCI-6034E, National Instruments, USA). The signal was 
then digitally processed using a) band-pass filter (10 - 470 
Hz), b) DC offset, c) full wave rectification, d) moving 
average filter (200ms window and 100ms overlapping step), e) 
normalization with respect to the maximal isometric muscle 
activation levels of each muscle from manual muscle testing 
[17], f) nonlinear scaling to reflect nonlinearity in the 
EMG-to-activation relationship and g) activation level offset. 
Nonlinear scaling is defined by eq (1), where A determines 
the degree of nonlinearity and ( )a t  is the processed EMG 
[12]. Activation level offset was performed because even if 
the hand was fully resting, there was a little activation offset. 
All the filters were Butterworth 5th order and the resultant 
activation level had a value between 0 and 1, where 0 
indicates no muscle activation and 1 represents maximal 
muscle contraction. 
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In this study, SEMG signals were recorded from only five 

muscles due to anatomical limitations, even though nine 
muscles are responsible for exerting thumb-tip force. Several 
techniques, e.g. averaging SEMG of the adjacent muscles 
[12], have been introduced to obtain the non- observable 
SEMG. However, it is difficult to use these simple 
assumptions for a hand because the muscles are located deep 
inside the hand and they are too small. Therefore, we used the 
specific ratio of muscle activations between the muscles of 
the thumb to obtain activations of deep-layered muscles. In 
[18], all EMG levels of the thumb muscles were observed 
invasively using wire electrodes when the subject reached the 
maximal level of thumb-tip force at a key-pinching 
configuration that was equivalent to the hand configuration in 
the current study. The measured EMG amplitude was 
normalized to the highest value during a maximal voluntary 
contraction under manual muscle testing. In the present study, 
the activation ratio between muscles was assumed to be static 
while exerting force, because the relative activity of the 
contributing muscles did not change when modulating 
fingertip force magnitude across the voluntary range [19]. For 
more accurate estimation, the non- observable muscle 
activations were determined based on the similar functional 
muscle group; FPL and OPP were determined based on FPB 
and AP respectively. EPL and EPB’s muscle activation was 
determined based on APL. 

4) Muscle length identification: To calculate isometric 
muscle force, the length of the muscle length must be 
determined as well as the muscle activations because 
isometric muscle force changes depending on muscle length 
[10]. SIMM was used to estimate muscle length by averaging 
the muscle-tendon length from the motion-captured data. The 
generic model was scaled to a specific subject with the 
assumption that the subjects were of similar anthropometric 
proportions. Holzbaur et al. [20] created extrinsic muscles 
from the upper limb model in the software, and we created the 
intrinsic muscles (not included in the software) as a single 

 
 

Fig. 1. Overall block diagram 
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segment extending between the origin and insertion points 
[14]. Muscle origin and the insertion points of each muscle 
were defined as the centroids of muscle attachment areas 
based on anatomy software. Wrap objects are added on each 
joint to keep the muscle from penetrating the bone segment. 
Since the length from the origin to the insertion point in 
SIMM is the muscle-tendon length, muscle length can be 
calculated by subtracting the tendon length. In this study, the 
tendon was considered to be stiff because this element has 
been reported to be stiffer than the parallel component [21]. 
The fixed tendon length was obtained from the 
muscle-tendon length at 0 degree by using the relative ratio 
between the muscle fiber and tendon length.  

5) Muscle model: The Hill-based muscle model is a 
simplified phenomenological model that describes muscle 
contraction and which allows muscle force to be estimated 
according to the processed neural activity, the change of the 
muscle length, and the contraction velocity [10]. The model 
represents an active muscle consisting of three elements: the 
contractile element (CE), the serial element (SE), and the 
parallel element (PE). The CE and PE represent an active 
muscle fiber and membrane outside the contractile elements. 
When the serial elastic element in cross-bridges of the CE is 
neglected because energy stored in the SE of cross-bridges is 
very small [22], the SE can be considered to be a tendon. 
When motor neurons stimulate a muscle to contract, the CE 
begins to shorten and the total muscle force is calculated by 
eq (2). The CE is the dominant component of the Hill-based 
model; under isometric conditions, the output force can be 
described by eq (3) where a  is the muscle activation and 
scale the size of the active parabolic curve, lf  is the 
normalized force-length function and 

maxCEF  is the maximal 
muscle force which is produced at maximal activation. The 
force-length equation is defined by (4) where CEL  is the 
length of the CE element, 

0CEL  is the optimal fiber length at 
which the maximal muscle force is produced, and φ  is a 
parameter affecting the variance of the Gaussian. More 
detailed equations of Hill-based muscle model force were 
described in our previous study [14] and in the literature 
[10-11].  
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6) Estimation of thumb-tip force: To obtain the thumb-tip 
force from muscle forces, a mapping model from muscle 

forces to thumb-tip force was used. In our setup, the 
thumb-tip force vector was assumed to be only in the palmar 
direction. Therefore, the mapping model was based on the 
measured relationship between the input tendon tensions and 
the output thumb-tip force vectors in the palmar direction, 
according to the study by Pearlman et al. [1]. The magnitude 
of thumb-tip force in the palmar direction and the applied 
muscle force are shown in Table I. Thumb-tip force can be 
estimated by summing the palmar-directional forces by each 
muscle. Therefore, the total thumb-tip force can be calculated 
by (5). 

9

1
ithumb tip i muscle

i
F K F−

=

=∑                      (5) 

where K indicates the mapping gain based on Table I, and 
subscript i indicates the ith muscle. Among the nine thumb 
muscles, the force vectors of DIO were changed based on the 
physiologic cross-sectional area (PCSA) of the AP muscle 
because the subjects produced thumb-tip force with both the 
thumb and index finger, while only the thumb was used to 
produce force in the original experiments.  

7) Muscle parameter optimization using Genetic 
Algorithm (GA): In the Hill-based model, there are internal 
parameters to describe muscle contraction that are important 
to adjust for the specific subject to give a realistic description 
of the muscle force exertion. The physical parameters 
(

maxPELΔ , 
0CEL , φ , S ) are introduced to reflect inherent 

differences between subjects, whereas parameter A  is 
calibrated depending on electrode placement and moisture of 
skin. However, these parameters are very difficult to measure 
due to anatomical and physiological variability. To find the 
internal parameters, a genetic algorithm (GA) was used in the 
absence of complete information by minimizing objective 
function. In the current study, optimization was performed 
with the genetic algorithm optimization toolbox (GAOT) in 
Matlab (Mathworks Inc., USA) [23] and the number of 
iterations was set to 20 empirically. In the algorithm, the 
chromosome was designed with 33 “genes” and five 
parameters for each of the nine thumb muscles were 
determined (A is calibrated only for measured muscle and  φ  
has same value for all nine muscles). The parameters were 
then optimized by minimizing the root-mean-squared errors 
(RMSE) between the measured and estimated thumb-tip 
force.  

Optimization was performed to reflect different physical 
conditions using only the data from 0-degree configuration of 
every set.  The parameters obtained by the optimization were 
used to estimate the force in other thumb configurations, 
because the referred activation ratio [18] was obtained at 0 
degree. Generally, it is reasonable to optimize parameters at 
one task because physical parameters and SEMG-related 
parameters do not changed as long as electrode placement 
remains [4]. 
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B. Experimental protocol  
Experiments were performed separately for off-line analysis 

and real-time estimation. In both off-line and real-time 
experiments, three healthy, right-handed males (age 26.6 ± 
2.9) participated. None of the subjects had a history of upper 
extremity or other musculoskeletal complaints. Before 
experiments, initial recording at fully resting state of the hand 
and manual muscle testing were performed for all subjects. 
During this session, activation offset and maximal muscle 
activation were calculated for the nine muscles. The maximal 
muscle activation level was obtained by exerting maximal 
force against a palmar direction based on the muscle testing 
method [17]. 

The experiments for off-line analysis consisted of two parts: 
generic model scaling and thumb-tip force recording. After an 
initial recording session and manual muscle testing, subjects 
were asked to stand in the vicinity of motion capture cameras 
(six Eagle Digital Cameras and two Hawk Digital Cameras, 
Motion Analysis Co., USA) with 19 reflective markers placed 
on the subject’s upper body and static motion-captured data 
for each subject during 3 seconds were recorded with 60 Hz 
sampling frequency. After recording, the captured data were 
fed into the SIMM and the generic model in the software was 
scaled to a specific subject based on the ratio of segment 
lengths. Once the generic model was scaled to a subject, the 
subject was seated on a chair and asked to exert thumb-tip 
force for 80 seconds following the guide force from the 
monitor. The guide force and current force level were 
represented as a bar graph. The guide force was composed of 
static (10, 20, 30 N) and dynamic levels by generating a 
sinusoidal function for 80 seconds. The upper limit of the 
guide force induced subjects to exert approximately 40% of 
the maximal pinching force with the assumption that the 
maximal thumb-tip force is 80 N. The one-axis force sensor 
(651AL, Maximum force 10kgf, KTOYO Inc., Korea) was 
mounted on aluminum posts which have four different angles; 
the angle between the force sensor plate and the ground was 0, 
15, 30, and 45 degrees, as described in our previous study 
[14]. In the current experiments, each set consisting of the 
thumb-tip force recording from 0 to 45 degrees was repeated 
twice per subject. While the subject produced thumb-tip force, 
the force, SEMG and motion-captured data were recorded 
simultaneously. Reflective markers attached to the fingers 
during a static motion recording, excluding the thumb, were 
removed. The force measured by the sensor was acquired at 
10Hz using a 16bit A/D converter (PCI-7354, National 
InstrumentsTM, USA). Then the force values were digitally 

processed with a low-pass filter (cutoff frequency 3Hz). A 
2-min recovery period was given between contractions. 
Additionally, subjects had a 5-min break after completing 
each set. 

C. Evaluation of Experiments  
To evaluate the performance of the proposed method, the 

force was estimated using linear regression and ANN. The 
muscle activation for linear regression was calculated using 
integrated EMG (IEMG). In the present study, the AP muscle 
was selected for calculating the IEMG signal because the AP 
is one of the main agonist muscles involved in thumb motion 
[18]. The SEMG signal from the AP was integrated over 
periods of 200ms and overlapped with 100ms step. In 
addition to the linear regression method, two ANN models 
were developed to investigate the influence of training data 
on estimation performance; one was trained only with 
0-degree data, while the other was trained with the data from 
all configurations. Each ANN included one hidden layer and 
fifteen hidden nodes and was trained using the 
Levenberg-Marquart algorithm with Matlab. The 
optimization process for the proposed model, linear 
regression, and ANN were performed to adjust the internal 
parameters and train the neural network. In off-line analysis, 
optimization was done using the 0-degree data or data from 
all configurations and then used to estimate the force in the 
same set. 

In the real-time force estimation experiments, the initial 
recording and manual muscle testing were performed again 
and the additional thumb-tip force data from four 
configurations not included in the regular set were used for 
optimization because the placement of electrodes was 
different from off-line experiments. Once the parameters 
were calibrated, two sets of experiments were performed 
during 80 seconds. The experimental setup for real-time 
estimation is illustrated in Figure 2. While subjects exert 
thumb-tip force under four configurations, the force was 
estimated in real time with four methods simultaneously, 
whereas the robotic thumb was controlled only with the signal 
from the proposed method. The control board (PCI-7354, 
National Instrument TM, USA) was used to rotate a DC motor 
(RE-40, Maxon motor, Switzerland) which generated current 
signal output which was directly proportional to the motor 

TABLE II 
MEASURED MUSCLE FORCES AND THUMB-TIP FORCES 

IN PALMAR DIRECTION [1] 
Muscle  Force Muscle Force Muscle Force 

AP 14.4, 
1.3 DIO 12.6, 

3.51  FPB 12.6, 
1.1 

FPL 26.1, 
5.6 APL 30,  

0.1 OPP 18.3, 
-0.2 

EPL 12.6, 
-0.9 APB 10.5, 

0.5 EPB 7.8, 
-0.9 

§ In force column, upper value and lower value means muscle force (N) 
and corresponding thumb-tip force (N), respectively. 

 

  
Fig. 2. Experimental setup for real-time estimation 
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1.1 

FPL 26.1, 
5.6 APL 30,  

0.1 OPP 18.3, 
-0.2 

EPL 12.6, 
-0.9 APB 10.5, 

0.5 EPB 7.8, 
-0.9 

§ In force column, upper value and lower value means muscle force (N) 
and corresponding thumb-tip force (N), respectively. 

208



 
 

 

torque. The force control algorithm using a PD controller is 
shown in (6). 

 
( ) ( )e e eP DdF F K F F K F F= + − + −           (6) 

where eF  is the estimated force from the proposed model, 
F  is the current force of the slave part, and dF  is the control 
input. Feedback gain PK  and DK  were fixed to 0.05 and 
0.008 respectively through empirical tuning, and motor 
command updates were sent to the controller every 100ms. 
The Matlab data acquisition toolbox and external interface 
link were used to control the machine simultaneously with the 
acquisition of SEMG signals.  

 

III. RESULTS AND DISCUSSION 
The off-line and real-time results are shown in Table II and 

III. The real-time results presented in these tables were based 
on the estimated force, not the measured force from the 
robotic thumb. The performance was quantified using two 
criteria: the RMSE and the correlation coefficient (CORR). 
The Hill-based muscle model (HBMM), linear regression 
(LR), ANN_1 trained with 0-degree data, and ANN_2 trained 
with all configurations data were then compared.  The 
measured force from the robotic thumb is plotted in Figure 3. 
The gray solid line, black solid line and black dotted line 
indicate the measured force from the subject part, the 
predicted force by the proposed method and the measured 
force from the robotic thumb respectively. 

In the off-line analysis results, HBMM showed better 
performance than the LR method. LR showed acceptable 
error in 0 and 15 degrees, but the performance decreased as 
the configurations changed. ANN_1 showed the highest 
performance at 0 degree, but the performance rapidly 
decreased as the configurations changed. On the other hand, 
HBMM showed a smaller error and a higher correlation than 
LR or ANN_1 even under other configurations. These results 
are identical to those in [13] where ANN showed high 
performance in a training set, while HBMM showed 
acceptable error in general cases. It is also noted that the 
performance of ANN_1 was better than ANN_2 at 0 degree 
even if ANN_2 was trained with data from all configurations, 
while the overall performance of ANN_2 was the highest 
from all angles  

Real-time estimation showed that the estimation error 
increased in every method compared to the off-line analysis 
results, but HBMM has the lowest increasing rate of error. 
From this, it can be concluded that the physical model-based 
estimation method is more robust to real-time environments 
than LR or ANN. From the Table III, the proposed method 
has better performance than LR and ANN_1 in the real-time 
experiments as well. The predictions by ANN_1 and ANN_2 
were somewhat hampered because the input signals in the 
real-time experiments were different from the data used in the 
training session. The error of ANN_1 and ANN_2 at 0 degree 
is relatively larger than other configurations, because 
over-fitting problems occured. The overall performance of 
ANN_2 was still better than that of the other methods in 

real-time experiments. LR showed the biggest error in all 
conditions except 0 degree. HBMM had a high correlation 
value in every experimental case, which is very important 
because high correlation means that the force intension of the 
subject was conveyed to the robot well. The LR method 
showed poor performance in most experimental cases, 
because LR only depends on the muscle signals from one 
muscle, and the estimation performance is very sensitive to 
the condition of the muscles selected. 

IV. CONCLUDING REMARKS 
The present study describes an HMI offering isometric 

thumb-tip force control of a thumb robot using the Hill-based 
muscle model. The proposed HMI was tested under four 
different thumb configurations and was compared with other 

TABLE III 
OFF-LINE ANALYSIS RESULTS 

Degree HBMM  LR 
RMSE (N) CORR RMSE (N) CORR 

0 1.87  0.98  3.43  0.97  
15 3.30  0.98  3.49  0.97  
30 3.45  0.98  7.32  0.97  
45 4.43  0.98  9.63  0.97  

Degree ANN_1  ANN_2 
RMSE (N) CORR RMSE (N) CORR 

0 1.16  0.99  1.62  0.99  
15 4.87  0.90  1.44  0.99  
30 7.48  0.78  1.33  0.99  
45 8.53  0.78  1.28  0.99  

 
TABLE IV 

REAL-TIME ESTIMATION RESULTS 

Degree HBMM LR 
RMSE (N) CORR RMSE (N) CORR 

0 5.28  0.97  7.97  0.92  
15 4.10  0.99  11.18  0.97  
30 4.71  0.98  16.04  0.97  
45 3.87  0.98  16.12  0.96  

Degree ANN_1  ANN_2 
RMSE (N) CORR RMSE (N) CORR 

0 9.99  0.64  6.15  0.88  
15 7.58  0.87  3.98  0.96  
30 8.50  0.87  3.41  0.97  
45 10.69  0.73  3.53  0.96  

 

 
 

Fig. 3. Force trajectories of subject 1, set #1 in real-time estimation 
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force estimation methods such as a linear regression and 
ANN for evaluations. The proposed method based on the 
physical model showed acceptable errors in every 
experimental case and had high correlation value while the 
performance of linear regression and ANN- trained was 
reduced as the configuration changed. ANN trained with the 
data from all configurations showed the best overall 
performance, but it is necessary to gather data from every 
configuration which the thumb can make in order to have 
good performance in every situation.  

The main contribution of this study is the first physical 
muscle model-based thumb-tip force estimation. It was 
demonstrated to be an efficient method capable of estimating 
force in other configurations even with parameters which are 
calibrated at a specific angle, and it is more robust to real-time 
environments. Our interface can also be extended to other 
muscles for the other four fingers. Therefore, it is concluded 
that the proposed HMI is useful for force control in partial 
finger prostheses.  
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