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Abstract— This paper suggests the idea of a universal method
for stabilizing discrete-time hybrid switched-control systems of
robot manipulators. The core of this idea is based on an on-line
trajectory generation algorithm that is able to generate continu-
ous command variables from any arbitrary state of motion. We
define a measurable criterion to on-line detect an instability or
a potential instability of the plant, and right after this criterion
is fulfilled, we switch to the on-line trajectory generator that
acts as an open-loop pose control submodule in the switched-
system. The on-line trajectory generation algorithm guides the
system under consideration of kinematic motion constraints to
a desired target state of motion that can be specified beforehand
(e.g., zero-velocity in a pre-defined position). Systems with one
and more degrees of freedom are regarded in this paper;
finally, real-world experimental results achieved with a six-joint
industrial manipulator are presented in order to demonstrate
the potential and the high practical relevance of this concept.

I. INTRODUCTION

In order to achieve future advancements in the field of

robot motion control, the integration of sensors and sensor-

based control is indispensable. Sensor-based control in this

context does not only mean the calculate motion trajectories

based on measured sensor-signals but to embed sensors in

the feedback loops, such that, for example, force/torque, dis-

tance, and/or visual servo control becomes feasible. In prac-

tice — of course — these control modes have to be combined

with common trajectory-following motions. It is of enormous

practical relevance to switch from trajectory-following mo-

tion control to closed-loop sensor-based motion control and

vice versa at unforeseen instants. Hybrid switched-control

systems are systems comprised of a family of continuously

working subsystems and a supervisory discrete system that

switches between them. Switching may be initiated by time,

by state, and or by sensor signals in order to execute a

specified task; all of them may happen at unforeseen instants,

and the control system has to switch instantaneously from

one control cycle to another.

Proving stability of hybrid switched-control systems is

a well-known and demanding task, and generic solutions

are only available for concrete system classes. Instabili-

ties of such systems can be caused by several reasons:

wrong/incomplete task specification, inappropriate switching

sequences, incorrectly chosen control submodules, unex-

pected environments, or sensor failures.

In this paper, we assume a motion control system with

one or more degrees of freedom (DOF) equipped with one or
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Fig. 1. Abstract control scheme of a hybrid switched-system for one
single DOF, that is, one single actuator. The usage of the two on-line
trajectory generation (OTG) submodules for stabilizing such control systems
in multiple DOFs constitutes the major contribution of this paper.

more sensors delivering digital and/or analog sensor signals;

each sensor may be part of the feedback control loop. Fig. 1

shows an abstract and simple scheme of a hybrid switched-

system control architecture for a one-DOF system, that is,

with one actuator only (e.g., a simple linear positioning unit).

The inner control loops (i.e., behind the switched signal) are

assumed to be Lyapunov stable. The basic idea is: If the

inner control system receives command variables from one

of the closed-loop controllers, and the overall system tends to

become instable, the supervisory switching unit selects either

the open-loop position or the open-loop velocity controller to

provide input signals for the inner loops. These two submod-

ules are on-line trajectory generation (OTG) algorithms; their

usage for stabilizing hybrid switched-motion control systems

constitutes the core part of this paper.

Before briefly introducing the basics of OTG algorithms

for one- and multi-DOF systems in Sec. III, we give an

overview about related works in the next section. Sec. IV

presents the stabilization method, and Sec. V shows real-

world experimental results achieved with industrial six-joint

manipulators highlighting the relevance of this method.

II. RELATED WORKS

This section discusses works on hybrid switched-system

control and stability analysis of such systems, which are

tightly related to this contribution.

The basic requirement for overall stability of a motion

control system as depicted in Fig. 1 is a proof of stability

for the control system in joint/actuator space. This problem

was surveyed very deeply, and we can find plenty of works

and textbooks on this topic (e.g., [1]–[6]). Designing a robot

joint control scheme is, of course, not a simple task, and

there is no golden rule for it; commonly, a tradeoff between
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performance and robustness is required, but the treatment of

this topic clearly goes beyond the scope of this paper.

If we consider the actuator space control scheme as

Lyapunov stable [7], we can focus on the task space control

scheme, which contains the hybrid switched-system, and the

analysis of such systems is one of the fundamental require-

ments of the work presented here. Especially, the works of

Branicky [8], [9] and Liberzon [10], [11] provide elementary

concepts to develop and analyze hybrid switched-system

control techniques. In particular, the stability analysis is of

fundamental interest here, because the stability of a switched-

system cannot be assured by the stability of each single sub-

controller. To prove the stability of hybrid switched-systems

can be extremely difficult and many researchers are working

on analyzing such stability questions. Brockett [12] explains

this subject for motion control systems. Žefran and Burdick

[13], [14] suggest an approach, whose purpose is very similar

to the one of this paper; a system with changing dynamics is

considered and a hybrid controller is designed for handling

the system in different regimes” of dynamics.

It may happen that a set of stable subsystems becomes

unstable if the switching between them occurs inappropri-

ately [11], [15]–[17]. In the field of stability analysis, we

can distinguish between techniques for linear [11], [18],

[19] and nonlinear [7], [17], [20]–[22] switching systems.

If all control submodules behave stably, the system can be-

come unstable due to inappropriate switching sequences. The

literature on such systems commonly distinguishes hybrid

switched-systems into three subgroups [10]:

• State-dependent switching systems

• time-dependent switching systems, and

• autonomously switching systems.

The system to be regarded here (cf. Fig. 1) is an au-

tonomously switching one: The switchings occur in de-

pendence on the set-point sets and the external data. For

the field of robot manipulation control, where we have to

control a nonlinear plant, these set-points may be specified

by Manipulation Primitives [23]. Till now, there is no method

that exists to prove the stability of this class of systems.

For concrete set-ups, concrete environments, and concrete

input parameters, it is possible to apply multiple Lyapunov

functions and Lie-algebraic stability criteria — but this is not

a general solution [8]–[10], [15]. Even in this paper, we do

not provide a formal stability proof but only discuss a logical

line of arguments that leads to a heuristic and plausible result.

In this context and for the field of hybrid switched-

control of robot manipulators, we consider force/torque con-

trol submodules [24]–[27], visual servo control submodules

[28], and distance control submodules as closed-loop control

submodules, whereas the realization of the latter ones is

supposed to be a trivial task. A hybrid control approach for

visual servoing applications was presented by Gans et al.

[29]–[31]; here two visual servo controllers were suggested

as submodules in a hybrid switched-system. Assuming an

eye-in-hand camera setup, the first control module uses the

camera position to calculate an error signal in the feedback

loop of the control law and the second submodule uses

image features. Stability is proven by means of a state-

based switching scheme. Kühnlenz and Buss [32] present

a Lyapunov-based stability proof for system that switches

between several cameras.

The stabilizing method proposed in this paper is based

on a class of OTG algorithms that was introduced in [33],

[34]. How these algorithms work and what their properties

are is briefly explained in the next section. If used as control

submodules (cf. Fig. 1), Sec. IV suggests these algorithms to

stabilize hybrid switched-control systems after an instability

or a potential instability was detected.

III. BACKGROUND: ON-LINE TRAJECTORY GENERATION

An on-line trajectory generation algorithm can be con-

sidered as an open-loop position or pose controller using

the current state of motion for command variable generation

[33], [34]. Depending on the current state of motion, a

motion profile is selected from a finite set of profiles (i.e.,

Types I,II use velocity profiles, Types III – V use acceleration

profiles, and Types VI – IX use jerk profiles). Based on this

profile a system of nonlinear equations can be set up, whose

solution contains all trajectory parameters to transfer the

system from its current state of motion to a desired target

state of motion while considering given kinematic motion

constraints. Each system of equations features a proper input

domain, for which a valid solution can be found. For this

class of algorithms, it is essential that the union of all input

domains equals the entire input domain of the algorithm.

In the following two subsections, we briefly describe the

algorithms for open-loop velocity control and open-loop

position (pose) control.

A. Open-Loop Velocity Control

The input and output values of the velocity-based algo-

rithm for the OTG Types III – V (cf. [33], [34]) are depicted

in Fig. 2. The current state of motion of one single DOF k at

instant Ti is represented by the position kPi, the velocity kVi,

and the acceleration kAi; the kinematic motion constraints

for jerk limited trajectories are the maximum acceleration

value kAmax
i and the maximum jerk value kJ max

i . It is the

purpose of the algorithm to transfer this DOF k to the target

Fig. 2. Input and output values of the OTG algorithm for one single
velocity-controlled DOF k (Types III – V, cf. [33], [34]; submodule n in
Fig. 1).
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Fig. 3. Complete decision tree of the on-line trajectory generation algorithm
for velocity-controlled DOFs. It is required for the control submodule n in
Fig. 1, which is furthermore detailed in Fig. 2.

velocity kV
trgt

i within the shortest possible time, that is,

time-optimally. Assuming, we start at T0, this state is reached

after N control cycles:

kVi = kV
trgt

i ∧ kAi = 0 ∀ i ∈ {q ∈ N | q ≥ N} . (1)

Hence, the input domain for one single DOF is R
6, and

the algorithm has to be capable to compute output values

for any given set of input parameters. The selection value

is controlled by the switching signal kσi, that is, the value

kSi ∈ {1, 0} is one if kσi = n, otherwise, the value is

zero (cf. Fig. 1). The algorithm is periodically executed every

control cycle, and it provides the next state of motion

k~u
(n)
i+1 = (kPi+1, kVi+1, kAi+1) (2)

that acts as command variable for the inner control loops.

Fig. 3 shows the decision tree of the algorithm, which is re-

sponsible for selecting the correct motion profile. Its develop-

ment is rather straight-forward; the finite set of acceleration

profiles consists of four elements (PosTri, PosTrap, NegTri,

and NegTrap). The two intermediate profile segments PosLin

and NegLin apply the positive or the negative maximum

jerk value to guide the acceleration to +kAmax
i , −kAmax

i ,

or zero. The PosTri profile first applies +kJ max
i without

reaching +kAmax
i and then −kJ max

i until +kAN = 0 is

reached (i.e., the profile is Triangle-shaped). The PosTrap

motion profile works in the same way, but here +kAmax
i

is reached (i.e., Trapezoid-shaped). The NegTri and the

NegTrap acceleration profiles work analogously with inverted

signs [33].

B. Open-Loop Position/Pose Control

The input and output values of this algorithm are shown

in Fig. 4. When used in Euclidian space, it is regarded as an

open-loop pose controller otherwise as an open-loop position

Fig. 4. Input and output values of the Type V OTG algorithm for multiple
DOFs (cf. [33], [34]; submodule (n − 1) in Fig. 1).

controller. In comparison to the input values of the velocity-

based algorithm, a complete target state of motion for K

DOFs at instant Ti is represented by the matrix

U
trgt
i =

(

1~u
trgt
i , . . . , k~u

trgt
i , . . . , K~u

trgt
i

)T
, (3)

that is, ∀ k ∈ {1, . . . , K}:

k~u
trgt
i =

(

kP
trgt

i , kV
trgt

i , kA
trgt
i

)

. (4)

Furthermore, the kinematic motion constraints are defined as

U
max
i = (1~u

max
i , . . . , k~umax

i , . . . , K~umax
i )

T
(5)

with ∀ k ∈ {1, . . . , K}:

k~u
max
i = (kV max

i , kAmax
i , kJ max

i ) . (6)

In the same way that the velocity-based algorithm of Fig. 2

calculated the state of motion for one DOF k, this sec-

ond algorithm computes states of motion U
(n−1)
i+1 for all

selected DOFs. Whether a DOF is selected for open-loop

pose/position control depends on the switching signal ~σi,

that is, if the k-th element kσi equals (n− 1), the algorithm

of Fig. 4 generates output values for the DOF k (cf. Fig. 1).

The algorithm internally generates a trajectory to transfer

the current state of motion Ui to the target state of motion

U
trgt
i under consideration of constraints U

max
i in the short-

est possible time (i.e., time-optimally). An important prop-

erty is that all selected DOFs reach their target acceleration

and their target velocity synchronously in their target position

or pose at instant TN (cf. eqn. (1)). As also mentioned in

the previous subsection, it is of major importance that the

algorithm is capable to compute output values for the entire

input domain, that is, R 9K × B
K with B = {0, 1}.

IV. STABILIZING HYBRID SWITCHED MOTION CONTROL

SYSTEMS

This section introduces a little background information

about discrete-time hybrid switched-system control and ex-

plains the method for stabilizing such systems.
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A discrete-time hybrid switched-control system with K

decoupled DOFs can generally be represented by a set of

difference equations

k~xi+1 = kf
(

k~xi, k~u
(kσi)
i

)

∀ k ∈ {1, . . . , K} , (7)

where k~xi is the state of DOF k at instant Ti, k~u
(kσi)
i is the

output of the control submodule with the index kσi, and kf

is a set of n distinct functions corresponding to the n control

submodules of the system (cf. Fig. 1). kσi is a discrete signal

that switches among the set {1, . . . , n} ⊆ N.

We have to ensure that

• if any closed-loop control submodule with an index l ∈
{1, . . . , n−2} is not able to control one or more DOFs

of the system stably or

• if one or more DOFs of the system tend to be become

instable due to inappropriate switching squences,

a safe backup controller can be provided that is capable to

generate command variables for the lower-level controller

from any arbitrary state. This is either done by

A) the velocity-based OTG algorithm (Sec. III-A) or

B) the position/pose-based OTG algorithm (Sec. III-B).

To apply this strategy, a set of possible criteria is required

to detect an instability or a potential instability:

• The rate of switchings for one DOF k among the n

control submodules is greater than a certain frequency

threshold.

• The amplitude of one motion state variable (i.e., an

element of k~xi) overshoots a predefined maximum

value.

• The signal of a motion state variable transformed into

the frequency domain is greater than a predefined max-

imum frequency.

• A sensor value (e.g., a measured force/torque value) is

outside of the metering capacity of the sensor. In order

to prevent any system or sensor damage, the system has

to be switched to another safe control submodule.

• The motion system tends to leave its workspace.

• Maximum actuator forces and/or torques are reached.

• A sensor malfunction of one of the sensors in the

feedback loop of one of the (n−2) control submodules

is detected.

• Further user-defined criteria and combinations of the

above criteria (i.e., the user may define any undesired

state to which he wants the system to react).

All these criteria can be freely set up by users. In the control

cycle of instability detection Td, in which one or more of

these instability criteria become true for at least one DOF

k, the switching signal kσd is either set to kσd = (n − 1)
or to kσd = n. This depends on the stabilization strategy,

such that one of the OTG algorithms instantaneously takes

over control for the DOF k. As described in Sec. III, such

an algorithm is able to generate a kinematically time-optimal

trajectory within one control cycle, here: the control cycle,

in which the instability was detected (i.e., between Td and

Td+1).

Compared to the other (n − 2) control submodules, the

OTG algorithms of the modules (n − 1) and n are the only

ones that are capable to provide steady command variables

for any motion state while taking motion constraints into

account.

In any case, it is of major importance that the input

parameters of the OTG algorithms (cf. Figs. 2 and 4) are

adequate at the moment of switching. Using either solution,

the discrete-time hybrid switched-system can be considered

as a standard non-switched-system, such that the same

methods as mentioned in Sec. II can be utilized during the

design and parameterizing procedure of the overall system

[1]–[6]. We can transform the problem of hybrid switched-

system analysis to a stability analysis problem of a trajectory-

following control scheme. The challenge and particularity of

this analysis is that we have to consider an arbitrary initial

state of motion: The state of motion that has been achieved

by the control submodules at the instant the instability or

potential instability is detected. This motion state depends on

sensor signals. Thus, the analysis result only depends on one

parameter (i.e., the motion state), that is, for a formal proof of

stability, one would have to bound the allowed motion state,

that is, the velocity and the acceleration values of the plant.

These actuator space velocity and acceleration constraints

are the same as the ones that have been used for the proof

of Lyapunov stability of the actuator space control scheme.

This line of arguments leads us to the (expected and trivial)

result that we have to ensure that the resulting velocities and

accelerations that are computed in or for the actuator space

are limited during the entire operation time of the plant.

To emphasize it again: This is not a formal proof of

stability but only a logical line of arguments that leads to

the heuristic and plausible result of stability. Of course, this

result is solely due to the OTG algorithm: Before the system

becomes instable, one of the two backup modules, n or

(n−1), takes over control and generates command variables

for the system being in any arbitrary state of motion.

V. REAL-WORLD EXPERIMENTAL RESULTS

To highlight the practical relevance of the method pro-

posed in the previous section, we now show real-world ex-

perimental results. For the experiments, the following hard-

ware setup has been used: The original controller of a six-

joint Stäubli RX60 industrial manipulator [35] was replaced,

and the frequency inverters were directly interfaced. Three

PCs running with QNX [36] as real-time operating system

perform a control rate of 10 KHz for the joint controllers; a

hybrid switched-system controller is used for Cartesian space

control and runs at a frequency of 1 KHz. The output signals

of the switching system

Ui =
(

x~ui, y~ui, z~ui, fx ~ui, fy ~ui, fz ~ui,
)T

(8)

are transformed into joint space, whereas the translational

DOFs are indexed by x, y, z, the rotational ones by
jx , jy , jz . The following two subsections explain the usage

of the velocity-based OTG algorithm and of the pose-based

OTG algorithm for this setup.
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Fig. 5. Stabilizing a discrete-time hybrid switched-system with the velocity-
based OTG algorithm of Sec. III-A: At t = 3293 ms, the instability is
detected (caused by the velocity signals), the system sets kσ3293 = n− 1
for all six DOFs, and the velocity-based OTG algorithm takes over control
to guide all DOFs to zero-velocity. Fig. 6 shows the same trajectories for
3293 ms ≤ t ≤ 3641 ms in state space.

A. Stabilizing a Robot Manipulator with the Velocity-Based

OTG Algorithm

Figs. 5 and 6 show, how the velocity-based OTG algorithm

of Sec. III-A is used to stabilize an unstable system. As

described in the previous section, it is of major importance

to setup correct input parameters

kV
trgt

i , kAmax
i , kJ max

i

∀ (k, i) ∈
{

x, y, z, jx , jy , jz
}

× Z .
(9)

In the simplest case,

~V
trgt

i = ~0 ∀ i ∈ Z (10)

Fig. 6. On-line generated trajectories drawn in the velocity-acceleration-
plane of the state space generated by the velocity-based OTG algorithm for
the time interval 3293 ms ≤ t ≤ 3641 ms (corresponding to Fig. 5). The
requirement for achieving stability here is to let all trajectories terminate in
an equilibrium point of the underlying control loops.

holds. If we denote the maximum actuator forces or torques

at an instant Ti as ~F max
i , we can calculate the maximum ac-

celeration value from the differential equation of the forward

dynamics [37]

~Amax
i = ~f

(

~Pi, ~Vi, ~F max
)

. (11)

~J max
i may be determined in dependence on the current task.

For the experiment of Figs. 5 and 6, first, a sensor-guided

motion is executed, that is,

∀ (k, i) ∈ { x, y, z, jx , jy , jz } × {0, . . . , 3292} :

kσi ∈ {1, . . . , n − 2} .
(12)

The potential instability of one of the control submodules

is detected in the control cycle of instant T3293 due to

the velocity signals in or more DOFs. At this instant, the

OTG algorithm of Fig. 2 took over control to guide all

DOFs to zero-velocity. The pose, velocity, and acceleration

progression can be seen in Fig. 5; the respective trajectories

in the velocity-acceleration-plane of the state space are

shown in Fig. 6. As one can see here, the OTG algorithm

itself can be regarded as a switching system that switches

the jerk in-between

{−kJ max
i , 0, +kJ max

i }

∀ (k, i) ∈ { x, y, z, jx , jy , jz } × Z .
(13)

To guarantee system stability, it is required that the Lyapunov

stable inner control loops are guided to an equilibrium point.

In this example, all six DOFs are switched simultaneously

to the velocity-based OTG algorithm (~σ3293 = n − 1);

depending on the task, it would, of course, also be possible

to switch only a selection of DOFs.

B. Stabilizing a Robot Manipulator with the Pose-Based

OTG Algorithm

Here, we repeat the experiment, but instead of the velocity-

based OTG algorithm, the pose-based one is applied; the
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Fig. 7. Position, velocity, and acceleration progressions. The instability
of the system is detected at t = 662 ms, that is, the system switched
from sensor-guided motion control to open-loop pose control (i.e., ~σ662 =
(n, n, n, n, n, n)T ). All six trajectories coinstantaneously reach their
desired target state of motion at t = 2816 ms. Fig. 8 depicts these
trajectories in the velocity-acceleration-plane of the state space.

results are shown in Figs. 7 and 8. Starting with a sensor-

guided motion, the instability is detected at Td = 662 ms

and was caused by the great amplitudes of the acceleration.

As mentioned in the previous subsection, it is essential that

appropriate input parameters U
trgt
i and U

trgt
i are setup in

the moment of switching all elements of ~σi to n. ~Amax
i

may be calculated from the local forward dynamics again

(cf. eqn. (11) and [37]), ~V max
i commonly is given through

mechanical system properties, and ~J max
i may be setup with

regard to the current task again. The simplest way to setup

Fig. 8. Corresponding to Fig. 7, this diagram illustrates the six trajectories
from the moment of switching on (i.e., in the interval 662 ms ≤ t ≤

2816 ms). As in Fig. 6, all trajectories terminate in an equilibrium point of
the underlying control loops.

U
trgt
i would be to choose

~V
trgt

i = ~0 and ~A
trgt
i = ~0 ∀ i ∈ Z (14)

again. The desired pose ~P
trgt

i should be set to a safe pose

in workspace, such that no collisions and no singularities

occur during the motion. Depending on the task, it can also

be reasonable to specify desired target velocity vectors in

space ~V
trgt

i unequal to zero (e.g., in order to synchronize

the system with cooperating one or to achieve a defined state

of motion from which a safe motion can be continued).

Fig. 7 depicts the position, velocity, and acceleration

progressions for all six DOFs { x, y, z, jx , jy , jz }, and

Fig. 8 displays the corresponding trajectories the velocity-

acceleration-plane of the state space from the moment of

switching on. As one can clearly see in Fig. 7, the trajectories

of all six DOFs are continuous, and they reach their desired

target state of motion U
trgt
i coinstantaneously at TN =

2816 ms. Furthermore, Fig. 8 shows that all six trajectories

terminate in an equilibrium point of the inner control loops as

eqn. (14) was applied in this experiment (i.e., it is a Type III

trajectory, cf. [33], [34]). As can be seen in Fig. 7, eqn. (13)

holds again. Furthermore, it would also be possible to switch

only a selection of DOFs instead of all DOFs.

VI. CONCLUSION

A method for stabilizing discrete-time hybrid switched

motion control systems in multiple DOFs is presented.

Two different on-line trajectory generation algorithms are

introduced that are both able to generate trajectories from

arbitrary states of motion and to time-optimally transfer the

system to a desired state. The method consists of two steps:

1) Detecting an instability or potential instability.

2) Switching to an on-line trajectory generation algorithm

and guiding the system to an equilibrium point.

Real-world results achieved with a six-joint industrial ma-

nipulator underline the practical relevance as safe switchings

from sensor-guided motions (e.g., force/torque control, visual
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servo control, or distance control) to trajectory-following

motions that are possible now, such that it is always possible

to reach a safe and stable state of motion. This is in particular

relevant for robot manufacturers, because it is a safe strategy

to react to sensor failures or malfunctions.
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[33] T. Kröger. On-Line Trajectory Generation in Robotic Systems, vol-
ume 58 of Springer Tracts in Advanced Robotics. Springer, Berlin,
Heidelberg, Germany, first edition, 2009.
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