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Eulerian ZMP Resolution based Bipedal Walking: Discussions on the
Intrinsic Angular Momentum Rate Change about Center of Mass

Barkan Ugurlu and Atsuo Kawamura

Abstract— This paper is aimed at implementing Eulerian
ZMP Resolution method to bipedal walking pattern generation.
The main strategy in this method is to ensure the dynamic
balance by generating feasible ZMP-based CoM trajectories.
For this purpose, we employ ZMP equations in spherical
coordinates, so that the intrinsic angular momentum rate
change about center of mass is included explicitly in a natural
way. This fact results in two merits: 1) Undesired torso
angle fluctuation and body twists are expected to be more
restrainable comparing to other methods in which intrinsic
angular momentum information is ignored or zero-referenced.
2) The interference between motions in sagittal and lateral
planes can be extracted. In this article, we mainly investigate the
first merit and briefly discuss about the second merit. Apply-
ing the aforementioned technique, Eulerian ZMP Resolution,
we simulated bipedal walking on a 3-D dynamic simulator.
Secondarily, we conducted bipedal walking experiments on the
actual bipedal robot. In conclusion, we obtained dynamically
equilibrated bipedal walking cycles, which satisfactorily verify
the efficiency of Eulerian ZMP Resolution technique over
conventional methods.

I. INTRODUCTION

In robotics literature, the research on humanoid robots
is considered to be one of the most exciting topics as
humanoids are able to interfere within the living human
environment. Considering such human environment, peo-
ple mostly perform walking motion unless some extreme
situation occurs. It is well known that a human walks at
the average speed of 4~5 [km/h]. The fastest humanoid
walking speed, however, is measured around 3 [km/h][1].
Even though running humanoids can achieve faster motion,
there must be enhancements for bipedal walking.

Generally, there are two main approaches for bipedal
walking pattern generation: a) Whole-body coordination[2],
b) one mass concentrated methods[3][18]. In comparison,
whole-body based methods are more accurate but they need
relatively larger computation time. Considering our robot’s
computation system[15], we also follow a one mass concen-
trated approach.

Being a one mass model based approach, Zero Moment
Point[10] (ZMP) is one of the widely used bipedal dynamic
balance criteria that arouses from gravity, inertial forces
and the Intrinsic Angular Momentum Rate change' (IAMR)
about Center of Mass (CoM). Since it is comparatively
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difficult to melt the IAMR expression into ZMP equations,
researchers mostly omit this term. However, omitting IAMR
causes following problems: a) Actual stepping motion could
be unusual. The body and legs perform twisting to cancel the
angular momentum about CoM[4][5], b) it may create unnat-
ural torso angle fluctuations[16], c) the motion interference
between sagittal and lateral planes vanishes.

In order to prevent these drawbacks, we definitely need to
inject necessary amount of torques into CoM. For this pur-
pose, Kajita et. al proposed Resolved Momentum Control[4]
(RMC) in which the total momenta and joint motions are
related. Though its name evokes a control method, its func-
tion is similar to inverse kinematics block as it computes
joint motions based on referential translational and angu-
lar momentum inputs. In their method, pitch axis angular
momentum is deliberately assigned as zero but roll axis
angular momentum is included for lateral motion. As an-
other example, Sugihara and Nakamura enhanced boundary
relaxation method for 3-D hopping motion planning[3]. In
their ZMP-based approach, IAMR terms are firstly ignored
then included in the inverse kinematics stage. Dissimilarly
to these two methods, we defend that angular momentum
information could be directly included during the CoM
trajectory generation stage instead of inversing dynamics.

Since our aim is to include angular momentum information
during the CoM trajectory generation stage, we should com-
bine JAMR terms with inertial forces and gravity terms in
ZMP equations. To achieve this task, Toyota group computed
roll axis intrinsic angular momentum term simply by mul-
tiplying translational CoM velocity with an inertia element
which is obtained by trial and error[5]. Strictly speaking,
this is not acceptable as angular momentum is related with
inertia, angular CoM velocity and angular CoM acceleration.
In addition, Huang et. al expressed ZMP equations with
IAMR terms by duplicating equations in 2-D[6]. This is
also not acceptable as IAMR expressions in different planes
mutually have influence on each other in 3-D.

Yet another problem also appears when summing up all
individual links’ centroidal IAMR terms without projecting
them onto the CoM during ZMP computation[6][7]. Unlike
inertial forces terms, JAMR terms are not additive without
projecting them all to the CoM. A comprehensive treatise on
this issue can be examined in [8].

Considering the aforementioned facts, we composed a
method to generate bipedal motions, which may ensure the
overall dynamic balance. In our proposed method, we uti-
lized ZMP equations in spherical coordinates, so that IAMR
terms are explicitly included in our dynamic equations. Since
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these terms are included using Euler’s equations, we name
it Eulerian ZMP Resolution (EZR).

Authors group firstly proposed this method for 2-D case
to generate jumping motion on a planar robot[16]. Subse-
quently, the method is enhanced for 3-D case in order to
generate motions for bipedal robots which are assumed to
be symmetrical about principle axes[17]. As next step, we
improved the method by considering unsymmetrical robot
geometry[18]. All in these papers, inertia was updated sub-
sequently as the referential CoM trajectory is generated. In
this article, we included inertia update process concurrently
throughout CoM trajectory generation phase. Hereby, the
offline analysis and online computation of EZR become more
efficient.

In the present paper, Eulerian ZMP Resolution is explained
in section II. Simulation and experimental results are dis-
cussed in section III and finally the paper is concluded in
section IV.

II. EULERIAN ZMP RESOLUTION: REAL-TIME BIPEDAL
MOTION GENERATION

Our proposed method, EZR, is a trajectory generation
technique for motions, which include single support phases
such as running and walking. Here, the main idea of tra-
jectory planning is to obtain real-time joint motions that
ensure desired ZMP profiles through the single support phase
and ensure proper boundary conditions through the double
support phase, consecutively.

A. Single Support Phase Trajectory Generation

During the single support phase, we consider the robot
as an unsymmetrical body, rotating about a fixed point(foot
sole center, FSC) and it is in contact with the floor through
a foot which has a rectangular shape. Fig. 1 illustrates such
modeling. In this model, CoM position is defined in the
spherical coordinate frame by using the parameters CoM
length, r, angle 6 and angle ¢. For our convenience, the
spherical coordinate frame can be defined as follows[19].

1) Go r units along the 4z axis.

2) Rotate the frame through 6 about +y axis. (pitch)

3) Rotate the frame through ¢ about +x axis. (roll)

Utilizing such model enables us to combine IAMR terms
with inertial forces terms in ZMP equations. Considering

Support
Foot

Fig. 1. One Mass Model and Spherical Coordinate System on MARI-3

the z-axis CoM trajectory, z, as constant and determining
proper ZMP references, we are able to obtain 6 and ¢ angles’
trajectories in real-time as we solve ZMP equations itera-
tively. Performing a conversion from spherical coordinates
to Cartesian coordinates gives us x-axis and y-axis CoM
trajectories.

Firstly, let us analyze ZMP equations[19]:

— J?(Z +g) — Z(Jf — Xz7np) . Ly
Kemp = Gtg) m(+9) (1)
Emr:y&+g%fdﬂ—nmﬁ+r L, o

(£+9) m(Z + g)

In (1) and (2), x, y and z stand for CoM position in
Cartesian frame while L, and L, symbolize roll axis and
pitch axis intrinsic angular momentum about CoM. One dot
and two dots represent first and second derivatives with
respect to time. Further, m is the total mass and ¢ is the
gravitational acceleration. In EZR method, we are going to
group ZMP equations into two parts: Inertial Forces Terms
and JAMR Terms which are the first and second terms in (1)
and (2) respectively. Moreover, ZMP references are constant,
so that szp and }“/zmp becomes zero. Henceforward, we
are going to express these terms in the spherical coordinate
frame, namely using the parameters r, 6 and ¢.

1) Inertial Forces Terms: In order to express inertial
forces terms by using spherical coordinate frame’s param-
eters, we perform necessary coordinate transformation for
CoM nposition. Subsequently, we differentiate position ex-
pression two times and obtain CoM acceleration.

r = rsinf 3
i = #sin@+ 2r0cosf + rfcosd —rh%sinf

y = rcosfsing ()
iy o= fcos@singéffésillﬂsin¢+f9cosecos¢

76 sin 0 sin ¢ — 76 sin @ sin ¢ — 762 cos O sin ¢
—  10¢sinf cos ¢ + ¢ cos O cos ¢ + r¢ cos b cos ¢

1O sin 0 cos ¢ — rd? cos O sin ¢

z = rcosfcoso 5)

7 cos 6 cos ¢ — fésin@cosqﬁ — fécosﬁsinqﬁ

— 7fsinfcos¢ — rlsind cos ¢ — 6% cos 0 cos ¢

+  r0¢sinfsin ¢ — ¢ cos O sin ¢ — ¢ cos O sin ¢

+ 7’9(;5 sin 6 sin ¢ — rgf)

2) Intrinsic Angular Momentum Rate Change Terms:
Supposing that the friction between the floor and the foot sole
is sufficient and there is no foot rotation, we can consider
the support phase motion as a rotation of a rigid body about
a fixed point as previously stated. For this case, Euler’s
equations of motion for unsymmetrical bodies might give
us insights,
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Fig. 2. Inertia varies with respect to CoM Position
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in which I, I, and I, are moments of inertia about
principle axes, Iy, I, and I, are products of inertia, wy,
wy and w, are angular velocities about principle axes and 7,
7y and T, are rate change of angular momentums (torques)
about roll pitch and yaw axes.

In our spherical coordinate frame, second and third steps
indicate two rotational actions. Combining two successive
these rotations, we may create a rotation matrix. Subse-
quently, angular velocity vector could be derived out of the
rotation matrix as follows by using a tensorial approach[12].2

= GcosqS , w,=—fsing

=5
Wy = Qcosgb 0¢)sm¢
= —fsing — Odcos g

(7

Wg = _dl) ;
(3)

As next step, if we combine (7) and (8) in (6), it is possible
to obtain IAMR terms as shown below.

Ly = 0(I,. sin ¢— I, cos ¢)+20¢(1, sin ¢+ I, cos ¢) (9)
Lo+ ((Iyy—1I.2) sin ¢ cos p—(cos® ¢—sin® ) 1,,.)
Ly:é(fyzsin¢+ yy €08 9)0dsin (I — I,y —1..)  (10)

+ 6%sin ¢(Lyy cos p—1I,, sin gb)—&—[zy(b—l—lzszg

Having computed the IAMR about CoM, we finally com-
pute inertia tensor as it varies with respect to CoM position.

In Fig. 2, CoM of the robot moves from the initial position
130 to some arbitrary position P, In this case, B = P, —]30 is
the displacement vector. If we know the initial inertia tensor,
we can calculate the current inertia tensor as follows.

2Please note that, we need one more rotation to demonstrate the
most general case since 3 successive rotations are required to define 3-
D space. However, as we only concentrate on straight walking without
turning/curving, aforementioned definitions fit well to our case.

Icur (11)

ot [(F-B) By i A

Above, fcur, fim-t, FEs3, m are the current inertia tensor,
initial inertia tensor, 3x3 unit matrix and the total mass,
respectively. What is more, - and ® symbolize dot product
and outer product. In this case, if initial position at t = 0 is
given (xg, Yo, 20), and initial inertia tensor is obtained from
CAD data, current inertia elements could be computed as
below.

Lz = Lpao+m[(rcosfsing—yo)2+(r cos cos p—z)?]
L. = L.o+m[(rsin@—z¢)>+(rcosfsinp—yo)?]

I, = I,0+m[(rcosfcosp— 20)? +(rsin @ —x)?]

I,. = I,.0—m(rcosfsing—yo)(rcosbcosp—zy) (12)
Iy = Iyyo—m(rsinf—xo)(rcosfsinp—yg)

I.., = I.o—m(rsinf—xy)(rcosfcosp—=zp)

In (12), the underscript ”0” refers the initial condition
when ¢t = 0. Please note that, inertia elements in (9) and (10)
are calculated as expressed in (12). These equations will be
combined in the next subsection.

3) Solving ZMP Equations for 0 and ¢ Trajectories:
Before solving ZMP equations, we define T,mpz and Tompy
which come out from cross multiplications in (1) and (2) to
eliminate fractional expressions.

mzi — L
mzy + Ly

Tamps = MX zmp(Z + g) = mz(Z + g) —

. Y (13)
Tampy = MY emp(Z 4+ g) = my(Z +g) —

Secondarily, some repeating sub-expressions are defined
to ease our calculations.

ja =2mrr

o=mr
Ue = sin? ¢ Jo = mir?
iy = COS> @ ps = sin? 6
11 = sin @ cos 6 s = cos? 0

L2 = sin ¢ cos ¢ w7 = sin @ sin ¢

r=zsecfsecd  ps=zgcosbcosg
Jyz = Iyz0 — Myo2o P = 2osinf + 2py
Jrz = Iz0 — Mzog
P2 = Yo COS P — zpsin ¢

i = r(0tand + ¢ tan ¢)

Joz = Lo+ m(zd + y3)
Jow = Lugo +m(yg + 25)

Ju = IyyO -

Juy = Lzyo — MToYo
P1 = Yo sin @ + zg cos ¢
Iy, = Ippo — Lyyo

Jyy = Tyyo + m(Zg + mg)

Ps = Yo sin 6 + xq cos @ sin ¢

- IzzO

p3 = T sin 6 + yg cos Osin ¢

Finally, if we insert (3), (4), (5), (9), (10), (12) and (14)
into (13), we obtain following equations.
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Tompz = 0{0(cos ¢(ps + o sin ) + 2 cos (1 + pu4))
2, €08 ¢ — Jyy €08 b+ Jyz sin ) 4 ¢y
+ops — 2Japi sin @} + 02 {Juypz + opopao (15
— Jazpic} + 0*{Juz + 0(ps—pa) — 2Jap1 cos ¢}

+ 9(;3{4Jau5 sin ¢-+2mag sin p—4oxopuio— I, sin ¢}
—0{J, cos ¢} — ¢{Jap18in ¢} + mgrsin @

Tompy = H{me cos — Jp,sing + opysinf} + c.Z;{me
+20py cos0—2J, 3} + 92{Jyz cos 20+ Ju e (16)
+opgcosf} + 29&{2(]&”1 — Jyysing — Jy. cos ¢
—opysind — oxgcosf} — zj){jaug} + mgrui,

Equations (15) and (16) describes a pair of coupled second
order differential equations. These equations can be solved
by using Runge-Kutta method[13] in an iterative fashion
when following parameters are designed.

o z-axis CoM trajectory : z

e X.mp and Y,,,,,, input trajectories

o Initial values: 0q), ¢[q) 9[0] and (ﬁ[o]

o Initial CoM Position: xq, yg, 20

o Initial inertia tensor elements: I;z0, Iyyo, 1220, Luyos
I.0, and 1.9 (from CAD data)

o Support Phase Time Interval: (tstqrt> tstartttwidth)

o Swing Leg Parameters: Stride, Foot Height

4) The Interference Between Motions in Sagittal and Lat-
eral Planes: If one can perform a conversion from spherical
coordinates to Cartesian coordinates for (9) and (10), it could
be seen that both these terms are function of z, z, %, v,
Y, U, 2, £ and Z. Thus, we may understand that motions
in sagittal and lateral planes are strongly coupled through
the intrinsic angular momentum rate change phenomenon.
In other words, omitting IAMR terms in ZMP equations
makes these motions independent from each other as wrongly
comprehended in [9]. Therefore, we strongly believe that if
motions in sagittal and lateral planes are to be synchronized,
TAMR terms must be considered. This task needs systematic
arrangement of these equations in Cartesian frame. We are
going to investigate this synchronization task in our next
work.

B. Double Support Phase and Swing Leg Trajectories

Double support phase and swing leg trajectories are
planned in a similar fashion as proposed in [9]. Double
support phase motion is planned using 5" and 6" order
polynomials[13] to create a seamless connection between
switching single support phases, both in position velocity
and acceleration level. Swing leg motion is also designed by
considering target forward velocity.

C. CoM-based Inverse Kinematics

In order to calculate joint motions, we proposed an inverse
kinematics algorithm that is CoM-based and totally inde-
pendent from swing leg motion. Our bipedal robot MARI-
3’s[15] joint frame can be seen in Fig. 4. It has total 13 of

Fig. 3. Single Support Phases

Fig. 4. MARI—3 Frame

DOF(degrees of freedom), 6 DOF in each leg and 1 DOF at
the waist. This waist joint has no effect on the CoM position.
In each leg, hip joint is 3 DOF (yaw-pitch-roll), knee joint
is 1 DOF (pitch) and ankle joint is 2 DOF (pitch-roll). For
sake of straight walking on a flat surface, total orientation for
both yaw pitch and roll are set to zero. A heuristic relation
in this case can be expressed as follows.

=0 g7 =0 (yaw)
92+ g =0 g +q2=0 (roll) (17)
@3+q+q=0 qo+qo+aq1=0 (pitch)

In (17), ¢ symbolizes joint angles. Joint numbers can be
found in Fig. 4. Using (17), we are down to 6 variables,
namely, Q= (@2 43 g5 gs g0 qi1]T. As next step, let us
suppose that the robot is in the right foot’s single support
phase as illustrated in Fig. 3-(ii). In this figure, ]30 r and ﬁL R
are the position vectors from right foot to CoM and left foot,
respectively. As aforementioned above, Pog is computed
from ZMP equations and 13L r 1s generated by swing leg
motion. Forward kinematics expressions of these position
vectors are function of all joints, (q;...q12). If we insert (17)
into these expressions, they become only the function of Q
vector defined above. If P is assigned as P= [PC R Pr r)T
we may define a Jacobian matrix between P and Q

P =Jr0

Avoiding singularities, (18) could be solved for Q by using
Newton-Raphson method[13].

However, this method always needs ]30 r and ﬁL R vectors,
which are defined with respect to right foot. When the robot
is in the left foot’s single support phase, we would have ]3(; L
and Py which are the CoM and right foot position vectors
with respect to the left foot as seen in Fig. 3-(i). In order to
calculate 130 r and ]3L Rr by using ﬁc 1, and ]33 I We may use
vector subtractions, indicated in LCR triangle, Fig. 3-(i).

(18)

Pcr = Pcor— Pre

19)

Having obtained }30 r and ﬁL r out of ]30 1 and ﬁR L, We
can use (18) and compute all joint motions. Please note that,

Prr = —Pgg
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the above transformation can only be used when orientation
references are substituted to zero as we performed in (17).
For non-zero orientation references, refer to [20].

When the robot is in the double support phase, Py R 1S
fixed and remains constant. In that case, ]30 R is derived by
using polynomials as we mentioned above. Thus, we can
compute all joint motions simply by using (18).

ITII. SIMULATION AND EXPERIMENTAL RESULTS

To be able to validate our proposed method, we firstly
simulated bipedal walking motion on a 3-D dynamic
simulator[14] using the realistic model of our bipedal robot.
Furthermore, we conducted bipedal walking experiments on
MARI-3[15].

A. Simulation Results

In this simulation, single and double support phases are
planned as 0.4 [s] and 0.2 [s]. Referential ZMP inputs are
not time varying and they are substituted as 0.045 [m] and
4+ 0.02 [m] for x-axis and y-axis, respectively. Results may
be observed from Fig. 5 to Fig. 10.

In Fig. 5 Ground Reaction Force variations for right
foot(red) and left foot(blue) are shown. Switching between
right and left feet can be observed in this figure.

Torso angle variation for roll and pitch axes are plotted
in Fig. 6. In this figure, solid red and solid blue lines are
illustrating torso angle variations for roll axis and pitch axis
while IJAMR terms are included. In contrast, dot green and
dot magenta lines indicate torso angle variations while IAMR
terms are zero-referenced. Comparing these two cases, we
can observe that torso angle fluctuation can be suppressed
when IAMR terms are included.

CoM trajectories for x-axis and y-axis can be seen in Fig.
7 and Fig. 8. In these figures, solid red and dot green lines
are symbolizing CoM trajectories’ referential and response
values with respect to the right foot. In the same manner,
solid blue and dot magenta lines are symbolizing CoM
trajectories’ referential and response values with respect
to the left foot. Based on these figures, we can say that
trajectory responses follow their references well. In addition,
transition between left/right single support phases and double
support phases are tied successfully.

x-axis and y-axis ZMP responses of right foot are illus-
trated in Fig. 9 and Fig. 10. In these figures, yellow areas
symbolize single support phases. As it may be observed,
ZMP responses are always within the support polygon
boundaries. Additionally, we do not plot right foot’s ZMP
responses during left foot single support phases.

B. Experimental Results

Having obtained successful walking simulations, we con-
ducted bipedal walking experiments on the actual robot
MARI-3. Walking parameters are determined in the same
fashion as determined in the simulation. Results can be seen
from Fig. 11 to Fig. 16.

Right foot’s ZMP responses are plotted in Fig. 11 and Fig.
12. Solid red, dot blue and dot green lines are indicating ZMP

response and support polygon boundaries, respectively. As
ZMP responses both for x-axis and y-axis are always within
the support polygon, we obtained dynamically equilibrated
bipedal walking cycles. Furthermore, light orange areas
symbolize the right leg swinging periods. Since the right
foot has no contact with the floor while swinging, we do not
plot its ZMP. Please note that, left foot’s ZMP response is
identical to right foot’s ZMP response.

x-axis and y-axis CoM trajectories’ response values may
be observed in Fig. 13 and Fig. 14. In these figures, blue and
cyan lines are pointing out CoM trajectories with respect to
right foot and left foot, respectively. These plots may indicate
that transitions between left/right foot single support phases
and double support phases are connected seamlessly.

Finally, roll and pitch axis torso angle variations are
shown in Fig. 15 and Fig. 16. Similar to the comparison
that is performed in the simulation, we also measured torso
angle variations both for with and without JAMR terms
included. When we force JAMR about CoM to be zero,
roll axis torso angle varies between + 6 degrees and pitch
axis torso angle varies between + 10 degrees as cyan lines
indicate. Furthermore, MARI-3 suffered undesired stepping
motions between 2.8 seconds to 4 seconds, indicated with
gray areas. In contrast to this situation, torso angle variations
are suppressed well if IAMR terms are included. This case is
plotted with blue lines in these figures. Moreover, there was
no undesired stepping motion. Based on this comparison,
one can argue that the JAMR is a very important index for
feasible bipedal motion planning.

IV. CONCLUSION

To sum up, we proposed a systematic way of generating
ZMP-based CoM trajectories for bipedal motion generation
without ignoring or referencing intrinsic angular momentum
information. Unlike other methods in which IAMR around
CoM is forced to be zero, certain amount of undesired torso
angle fluctuation is reduced. This certainly enables us to
obtain more feasible bipedal motion planning.

Moreover, inertia update process is combined with our
dynamic ZMP equations. Hence, the offline analysis and real-
time computation of EZR-based bipedal trajectory generation
become more efficient.

Nonetheless, we validate Eulerian ZMP Resolution by
conducting bipedal walking simulations and experiments.
Since we already employed EZR for running, jogging and
jumping trajectories in our previous works[18][17][16], we
may say that our method is suitable for most of the bipedal
motion generation. Furthermore, we believe that Eulerian
way of resolution could be applied to other methods which
represent robot dynamics by considering the rate change of
angular momentum vector.

Having obtained successful bipedal walking simulation
and experimental results, our next work is to employ Eulerian
ZMP Resolution to succeed faster motions on the bipedal
robot MARI-3. Additionally, we are going to discuss about
the synchronization of motions in sagittal and lateral planes
in a systematic manner.
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