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Abstract— An online intention recognition algorithm for
computer-assisted teleoperation is introduced. The algorithm
is able to distinguish between phases of a typical object
manipulation task. It adopts a new advanced feature extraction
algorithm which extracts features from haptic data and uses a
Hidden Markov Model for stochastic classification. The method
is implemented and validated on a real hardware setup. The
obtained results reveal a robust and fast intention recognition.

I. INTRODUCTION

When designing a high-quality telepresence and teleaction

system, robust stability and ideal transparency are some of

the main objectives to be realized. It is, however, a well-

known fact that these objectives are contradictory and thus a

compromise has to be accepted. Indeed, many control algo-

rithms in literature, see [1] for an overview, still suffer either

from a lack of transparency or a limited robust stability. Thus,

some authors introduced computer assistance shared control

algorithms that support the operator during the execution of a

task with the aim of optimizing task performance and feeling

of telepresence [2]–[4].

For computer-assisted teleoperation not only intelligent

assistant functions, but also appropriate mechanisms for

human intention recognition are required. Only a reliable

intention recognition guarantees that the proper assistance

is applied in a certain situation. In this paper we propose a

method for human intention recognition based on the analysis

of haptic interaction signals.

A. Related Work

Only few people deal with human intention recognition

by analyzing haptic data. Most of them use a stochastic

classifier for intention recognition. This implies that time

series data cannot be handled directly, but needs to be pre-

processed. When continuous classifiers are used, probability

density functions (PDF) like Gaussian Mixture Models are

calculated. Discrete stochastic classifiers require a discrete

set of observations. In this case, features encoded in the

signal must be extracted and stored in discrete classes before

passing them to the stochastic classification.

This work is supported in part by the German Research Foundation
(DFG) within the collaborative research center SFB453 ”High-Fidelity
Telepresence and Teleaction”.

Calinon et al. [5], e.g., adopt a statistical approach based

on Gaussian Mixture Regression and a continuous Hid-

den Markov Model (HMM) to learn typical human-robot

interaction patterns. They consider the adaptation between

human and robot to be a continuous process emitting typical

communication patterns that can be encoded by an HMM

when processing haptic data in the form of position, velocity,

and force as input signals.

Takeda et al. [6] suggest a system for dance step esti-

mation, which predicts the next step by observing haptic

data. Again a stochastic model is used to classify time

series data. The principle of the step estimator can be

summarized as follows: First, features are extracted from

time series data by adopting a moving window strategy and

extracting window-related features. Then these features are

passed as an observation sequence to an HMM that calculates

the probabilities of future steps. The step with the largest

probability is chosen to be the next step. The two major

drawbacks of this method are the usage of windowing and the

adoption of a fixed sampling rate for feature extraction. The

former leads to information loss, while the latter introduces

redundant information when no changes in the input signals

occur.

In the literature, the importance of the feature extraction

algorithm is often underestimated. Some of the widely used

methods simply calculate an average over a specified number

of samples [6], search for peaks, or use gradients of the signal

as a feature [7]. There are only a few authors who consider

advanced methods for feature extraction by transforming raw

signal data into a more abstract domain [8], [9]. In this work,

we propose a new method for feature extraction which results

in a highly compressed feature vector which is a prerequisite

for fast and accurate classification.
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Fig. 1. Illustration of scenario used for intention recognition
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As our aim is to develop a robust intention recognition

algorithm for computer-assisted teleoperation based on on-

line segmentation and classification, we briefly introduce the

task our methods will be applied on. Instead of using a

teleoperation system with a real slave device, we used a

haptic interface to interact with a virtual, haptically ren-

dered object. In doing so, we are able to avoid artifacts

originating from the communication channel and can easily

perform experiments with various objects and environment

dynamics. The human can move the object by means of

the haptic interface and is instructed to perform point-to-

point movements by transferring the object from a starting

to a target position, see Fig. 1. In doing so, the operator

applies a force fh to overcome the inertia of the object and

operates against friction fr. We focus on the recognition of

two typical phases: i) the transportation phase (transportation

of the object from the starting to the target position) and ii)

the positioning phase (positioning the object at the target

location). The block diagram of the envisioned intention

recognition algorithm is illustrated in Fig. 2. It consists of

the two steps: feature extraction and stochastic classification.

Section II focuses on the feature extraction from time-

series data. This section is followed by a description of the

stochastic classification algorithm as well as its training and

evaluation, see Section III. The proposed online intention

recognition algorithm is finally evaluated in a real hardware

experiment which is described in Section IV. At the end, the

presented work is summarized and future work is outlined.

II. FEATURE EXTRACTION AND DATA REDUCTION

The proposed task recognition algorithm is supposed to

distinguish between the transportation and positioning phase

of a point-to-point movement. The following questions will

be treated in this paper based on the assumption that the

recorded time-series data for each of the two phases build

distinguishable patterns as shown in Fig. 3:

1) Can the specific patterns for each phase be identified

by analyzing haptic time series data?

2) Are there features that can describe the patterns accu-

rately?

This section introduces a method for feature extraction from

time series data, which is used in the next section for pattern

recognition.

A. Feature Extraction

An interesting offline approach to extract features is

introduced by Lin et al. [8]. They move a window over

priorly captured time-series data and concatenate all raw

data measurements enclosed by the time window. In doing
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Fig. 2. Schematic view of the task recognition algorithm.
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Fig. 3. Haptic time-series data: a) positioning phase, b) transportation
phase.

so, they first concatenate normalized raw motion data from

multiple heterogeneous signals to form a single vector that

contains all measurements of a certain time instant. Then,

these vectors are again concatenated to form a large super-

vector containing all measurement data enclosed by the

window. The dimension of this super-vector is reduced using

Linear Discriminant Analysis (LDA) which projects the input

vector into a lower-dimensional space. Finally, the features

obtained after LDA are evaluated with a Bayes classifier

and compared to manually segmented data. We adopt a

similar approach, but instead of concatenating raw time-

series data, we concatenate features priorly extracted from

time-series data as introduced in [10]. The proposed method

works online and results in a one-dimensional feature vector,

which simplifies the structure of the stochastic model used

for intention recognition.

To extract features from continuous data, we split each

signal into several classes according to its magnitude. In

doing so, several thresholds for each measurement are in-

troduced. The range between two thresholds is called a class

and the number of classes is denoted with C. For each signal

3 thresholds are used to produce C = 4 classes as indicated

in Fig. 4. Each data point is automatically assigned to one of

the classes. Its belonging to a certain class can be described

by a binary number N consisting of k bits. In the case of four

classes, k = 2 bits are necessary for a unique representation.

Because of noise, chattering can occur if the signal gradi-

ent is low when passing between two classes. To avoid this

effect the noise of each signal is measured in steady-state

and a value corresponding to 1.5 times the variance is set as

a hysteresis factor ε . This avoids low-pass filtering, which

would introduce a delay in the observed signals.

The following S signals are considered (according to the

TABLE I

THRESHOLDS AND HYSTERESIS APPLIED ON MEASUREMENT DATA

Signal ε Val. 1 Val. 2 Val. 3

x 0.0005 0.01 0.10 0.50
ẋ 0.0500 0.20 0.60 1.00
ẍ 0.5000 1.00 3.00 6.00
fh 0.3000 3.00 10.00 16.00
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TABLE II

LOG FROM FEATURE EXTRACTION PROCEDURE

Number Time Val Signal Class Feature
[ms] vector

(bin)

0 0000 00|00|00|00
1 1226 -3.307092 force 1 01|00|00|00
2 1474 -10.587643 force 2 10|00|00|00
3 1640 -9.660919 force 1 01|00|00|00
4 1813 -10.340996 force 2 10|00|00|00
5 1858 -1.621133 acceleration 1 10|01|00|00
6 1874 -9.635919 force 1 01|01|00|00
7 1923 -2.691566 force 0 00|01|00|00
8 1930 -0.451002 acceleration 0 00|00|00|00
9 1971 3.319868 force 1 01|00|00|00

10 1976 1.513964 acceleration 1 01|01|00|00
11 1995 2.639007 force 0 00|01|00|00
12 2050 0.497919 acceleration 0 00|00|00|00

order they are recorded): position x, velocity ẋ, acceleration

ẍ and applied human force fh. Thresholds for each signal are

estimated by considering a large number of measured train-

ing data. The selected values for thresholds and hysteresis

for each signal are shown in Table I.

B. Concatenating Features

The above-described algorithm performs an amplitude

discretization of each signal. Our next goal is to obtain a

one-dimensional feature vector. Instead of using separate

variables for each signal, the corresponding features N are

concatenated and stored by means of a single binary variable

with length L bits. The entire length L = S · k depends on

the number of observed signals S and the number of bits

k needed to encode all classes C of a signal. In the case

of S = 4 and k = 2, the feature vector is of length L = 8

bits. Consequently, the feature vector encodes m = 2L = 256

different symbols. An example log from a feature extraction

corresponding to time-series data shown in Fig. 4 is reported

in Table II. The feature vector is finally passed to the HMM

as an output sequence O.

C. Feature Compression

Typical haptic rendering algorithms require a sampling

rate of about 1 kHz [11]. Extracting a feature vector

for every time instant would consequently produce a large

amount of redundant data, which needs to be reduced in

dimension before passing it to the stochastic classification al-

gorithm. The intention of a human changes with much lower

frequency, which would suggest downsampling measured

data, but this leads to information loss. Thus, we propose

another possibility for data reduction: we add an entry to the

feature vector only when at least one of the signals passes a

threshold. This leads to an event-oriented feature extraction.

Table II visualizes the adopted procedure.

III. INTENTION MODELING

In this work, we adopt a Hidden Markov Model (HMM)

for human intention recognition.
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Fig. 4. Illustration of feature extraction procedure for the positioning phase.

A. Brief Review of HMMs

A Hidden Markov Model models stochastic processes with

unobservable (hidden) underlying states. While the observer

is not aware of the actual state of the system, the probabilities

to move from one state to another, the so-called transition

probabilities [12], and the probability that a certain symbol

is emitted by the system while being in one of its states,

the emission (or output) probability, are known. An HMM

is correctly defined if the following tuple λ = (Q,V,π,A,B)
is specified:

• Q = {q1,q2, . . . ,qn}, set of n (hidden) states;

• V = {v1,v2, . . . ,vm}, set of m output symbols;

• π(i), initial probability of being in state qi at time t = 0;

• A, n×n matrix of transition probabilities

P(q j(t +1)|qi(t)) =
{

αi j

}

of being in state i at

time t and passing to state j at time t +1;

• B, n×m matrix of emission probabilities
{

b jk

}

with b jk = P(vk for t|q j) of producing the

observation vk at time t while being in state qi.

Three canonical problems are typically solved using

HMMs [13]:

1) Given the model λ and an observation sequence

O = {o1,o2, . . . ,oτ} with oi ∈V , compute the proba-

bility that O is produced by λ .

2) Given the model λ and an observation sequence

O = {o1,o2, . . . ,oτ} with oi ∈V , find the state se-

quence S = {s1,s2, . . . ,sτ} with si ∈ Q, which most

likely has generated the emitted sequence.

3) Given a set {Ok} of k = 1,2, . . . observation sequences,

adjust the model parameters λ to maximize P(O|λ ).

Most authors who analyze motion data work on the second

problem, see e.g. [7]. Solutions for the second problem

produce good results if a low-level interpretation is desired,

e.g. when predicting the next most probable state. If a more

abstract interpretation is desired as in the case of whole

task recognition or if human behavior is totally stochastic,

solving the first canonical problem as proposed in [14]
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Fig. 5. Schematic representation of the task recognition algorithm.

is more suitable. As the goal in the current study is to

distinguish between two predefined phases (positioning and

transportation) of a given task that can be executed in

a random order, a similar approach is applied here. The

difference from the aforementioned work is that force and

position data are used directly and there is no need for online

impedance estimation, which speeds up the classification.

The following procedure is used for intention recognition:

Two HMMs are trained offline for each phase of the task.

As the observation sequence is used for both of them, the

probability that a certain observation can be explained by one

of the HMMs is dependent on the HMM parameters only.

As each HMM is trained for a concrete phase of the task, the

current phase is considered to be represented by the HMM

with the highest probability (see Fig. 5).

B. Training Procedure

To distinguish between the two phases of the task, HMMs

for each of the phases need to be trained: λP for positioning

and λT for transportation. First, features are extracted from

the measured haptic data as described in Section II. Then,

the resulting feature vectors are passed as an observation

sequences to the training algorithm. Since the sequences

are one-dimensional, the HMM Toolbox of Matlab is used

for training by adopting the Baum-Welch algorithm [15],

[16]. Note, that the length of the observation sequence is

different for each recorded data set. As the states do not

have any physical interpretation, there is no deterministic

method to identify the number of required states. Thus, the

following approach is adopted: An initial rough estimate

is obtained by training a couple of HMMs with different

numbers of states and observing the rank of their transition

matrices A. If the transition matrix A loses its full rank, the

HMM contains redundant states. The HMM with the highest

numbers of states, but still with a full rank transition matrix

is used to define a region of minimal required states. In

our example, 30 training datasets are used for each of the

phases to be identified. To prove consistency of the results, a

threefold cross-validation is performed [17]. For this purpose,

the training datasets are split into equal groups, each group

containing 10 datasets. Two of them are used for training and

one for validation. Following the aforementioned procedure,

for each phase, 9 HMMs (HMMs with 3, 4, and 5 states for

each of the 3 groups of datasets) are trained using a recursive

training procedure with ε = 10−5 as tolerance.

Validation of the HMMs is performed by computing

the forward probability, i.e. the probability that a HMM

has produced a given output sequence. Since the resulting
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Fig. 6. HMM threefold-validation to determine required number of states:
Results for a) positioning phase, b) transportation phase

probabilities are very small (because of the large number m

of possible observations), the logarithmic probability {P} is

used for comparison. Fig. 6 shows the average probability for

each group of datasets when being evaluated using HMMs

with 3, 4, and 5 states. Except for the second group of

the positioning task, where some outliers caused a drop

in the recognition ratio for HMMs with 3 and 4 states,

no considerable differences in the recognition ratio were

observed when increasing the number from 3 to 4 or 5 states.

Moreover, classifiers of higher degree become too general,

which worsens the overall classification results [18]. Because

of this and to reduce computation power, HMMs with 3 states

were selected for both phases to be recognized.

C. HMM Evaluation

Stochastic classification of the two tasks is realized as

shown in Fig. 5. For evaluation, 10 sequences representing

each the transportation and positioning phase are evaluated

by using the trained HMMs. The probability {PP}(O|λP)
that the sequence O is emitted by model λP trained with

positioning data, as well as the probability {PT}(O|λT ) that

the sequence is emitted by λT trained with transportation

data are calculated using the forward algorithm.

As the task was performed with different speeds, datasets

are not necessarily of the same length. Typical datasets

for positioning result in a length of 10-12 symbols, and

datasets for transportation in 8-10 observation symbols, see

Fig. 4 and Table II for an example. Thus, each time the

Feature Extraction block provides a new symbol, 3 different

observation sequences of length 8, 10 and 12 are formed

by adding the new symbol to the already existing ones.

Then the resulting sequences are passed to the Stochastic

Classifier and the probabilities {PP}(O|λP) and {PP}(O|λP)
are determined. The pair with the biggest difference is finally

used to identify the actual human intention.

The offline evaluation results are shown in Fig. 7. On the

left the evaluation of 10 positioning sequences is illustrated.

The stars indicate the probability a sequence is produced by

the HMM for positioning λP, while the circles denote the

results for the same sequence when evaluated with a HMM

for transportation λT . On the right the corresponding results

for 10 transportation sequences are shown. Missing points

on both plots denote {P}(O|λ ) →−∞ or P(O|λ ) = 0. As

can be seen the proposed method achieves an almost 100%

classification.
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Fig. 7. Results of the cross validation test.

IV. ONLINE EXPERIMENTAL EVALUATION

The intention recognition algorithm proposed in this paper

is designed to distinguish between phases of a typical ma-

nipulation task. Object handling in a constraint environment

including phases of transportation and positioning as already

illustrated in Fig. 1 is chosen as evaluation scenario. In this

section the experimental setup used for evaluation of the

proposed intention recognition algorithm is introduced and

results obtained when applying it are presented.

A. Hardware Setup and Scenario

To simulate the virtual object a haptic rendering algorithm

is used which implements a rigid object of mass m = 3 kg

that can slide horizontally over a rigid surface. In order to

increase the realism of the simulation, the following friction

model is implemented:

f f = fst + fk + fv with

fst =

{

− fh for fh < µs fN

0 for fh ≥ µs fN

fk = µksgn( fh)

fv = µvẋ

where fst is the static, fk the kinetic and fv the viscous fric-

tion and µs = 0.5, µk = 0.2 and µv = 0 are the corresponding

friction coefficients. The human interaction force is denoted

with fh, the normal force with fN (in the considered 1 DOF

case, the normal force has the meaning of a threshold). No

visual feedback of the object is provided. The velocity signal

is obtained by derivation of the position signal, acceleration

is measured by an additional acceleration sensor. The result-

ing model simulates a 3 kg heavy steel object that can be

moved on a wooden surface (see [19]).

Experiments are performed using a 1 DOF haptic interface

controlled by position-based admittance control, see Fig. 8.

The interface uses linear actuator which is equipped with

a force sensor and hand knob. Its control is implemented

in Matlab/Simulink and executed on the Linux Real Time

Application Interface RTAI. The haptic rendering runs on

another computer, and communication is realized by a UDP

connection in a local area network.

B. Results

The proposed intention recognition algorithm was ap-

plied to three random sequences (each one minute long)

Target

Handle
Force sensor

Fig. 8. 1 DOF linear haptic interface used in experiments.

of transportation and positioning tasks performed online,

see Fig. 9 for an example. The thick line refers to the

recorded position signal while the thin dotted line indicates

the estimated human intention. As can be observed the

proposed algorithm enables a very fast recognition while

simultaneously achieving a high recognition rate of 89%. As

long as features with a reasonable compression rate are used,

a very important property of HMMs holds, the invariance to

local time warping [20]. This explains the high robustness

of the proposed intention recognition algorithm.

Finally, we would like to highlight the importance of

using force data for intention recognition when performing

a haptic-related task. A great number of studies exist that

focus on the classification of free space motion only and thus

limit their analysis to motion data. When manipulation in a

constraint environment is considered, not only the trajectory

of motion, but also the impedance contains information about

the human intention [14]. Although we do not estimate the

human impedance explicitly, changes in the impedance are

encoded in our feature vector. Hence, the presented approach

gives the possibility for accurate intention recognition at an

early stage even when the differences between positioning

and transportation phase are not that expressive when ob-

serving motion data only. For illustration we adopted the

same proposed algorithm using motion data only and used

the same training and test data. The obtained results are

illustrated in Fig. 10. One can see that the recognition rates

(75%) are comparable to the ones obtained when also force

is considered, but as expected the task cannot be recognized

at an so early stage of execution than when using haptic data.

V. CONCLUSION

In this work, an intention recognition algorithm to be

applied in computer-assisted teleoperation was introduced.

A new method for feature extraction was proposed, and

the used stochastic classifier was presented. The proposed

classifier is trained offline and then evaluated on a real hard-

ware setup by online classification of a randomly performed

task consisting of transportation and positioning phases. The

new proposed method is based on an event-based feature

extraction and uses an HMM for stochastic classification. The

obtained results indicate a very fast and accurate recognition

of different phases of the task.

A major drawback of the proposed method, however, is

the usage of a discrete stochastic classifier, which requires

discrete observation signals. Thus, time-series data needs to
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Fig. 9. Experimental results when using haptic data for intention recogni-
tion. Intentions are immediately recognized.

be discretized first. Since probability density functions allow

a better approximation, we expect an even better recognition

rate when using continuous HMMs.

The application of the algorithm is not limited to tele-

operation only, but can be similarly applied for intention

recognition in human-robot interaction scenarios where the

robot is supposed to physically interact with the human.

Thus, applications range from rehabilitation (where the robot

is supposed to guide the human on a certain path), industrial

assembly (where the robot is supposed to assist the human

in transporting and positioning heavy objects) to training

in medicine or sports (where skill acquisition by adopting

shared control algorithms is of concern).

Future work will be focused on improving robustness

of the proposed approach with respect to changes in the

environment or different object properties. We also seek

after methods allowing fast adaptation to different human

operators.
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