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Abstract— Game theoretical approaches have been recently
used to develop patrolling strategies for mobile robots. The
idea is that the patroller and the intruder play a game, whose
outcome depends on the combination of their actions. From
the analysis of this game, an optimal strategy for the patrolling
robot can be derived. Although game theoretical approaches
are promising, their applicability in real settings is still an open
problem. In this paper, we experimentally evaluate the practical
applicability of the most general game theoretical approach
for patrolling strategies, called BGA model. Experiments are
conducted by using USARSim, with the goal of studying the

behavior of the optimal patrolling strategy returned by the BGA
model both in situations that violate its idealized assumptions
and in comparison with other patrolling strategies that can be
developed with much less computational effort.

I. INTRODUCTION

The development of patrolling strategies for mobile robots

is a topic that has received considerable attention in the

last years [1], [2], [3], [4], [5], [6]. A patrolling strategy

drives a robot around a known environment in order to

prevent intrusions. Interesting situations arise when following

a deterministic patrolling strategy (i.e., a fixed cyclic path)

allows the intruder to attack successfully a target, and the

patroller must resort to a series of randomized movements,

in order to act unpredictably for an observing intruder. A

new promising approach to develop such patrolling strategies

considers a model of the intruder within a game theoretical

framework [1], [2], [3], [5]. The idea is that the patroller and

the intruder play a strategic game, whose outcome is influ-

enced by the combination of their actions. Although game

theoretical approaches to robotic patrolling are appealing and

have already provided interesting theoretical results, they are

based on a very idealized model of the real world and their

applicability to real settings is still an open issue.

This paper has an experimental nature and aims at evalu-

ating the practical applicability of the most general game

theoretical approach for patrolling strategies, called BGA

model [2], [7]. We start from the theoretical model and move

toward an implemented system, addressing a number of

issues involved in this passage. The experimental evaluation

is conducted by using realistic simulation tools, like MOAST

and USARSim, with a twofold goal. From the one hand,

we verify if the optimal patrolling strategy returned by the

BGA model performs well also in situations that violate

the idealized assumptions of the theoretical model. From

the other hand, we assess how much the optimal patrolling
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strategy returned by the BGA model outperforms other

patrolling strategies that require much less computational

effort for their development.

The most important original contribution of this paper is

the implementation and the experimental evaluation of the

robustness of a game theoretical patrolling strategy when the

assumptions of the theoretical model do not hold. This kind

of evaluation is not usually performed for game theoretical

patrolling strategies presented in literature, which are often

evaluated only with respect to their computational efficiency.

This paper is structured as follows. The next section

surveys the mobile robot strategic patrolling literature. Sec-

tion III overviews the BGA model that is experimentally

tested in the setting described in Section IV. Experimental

results are presented in Section V. Finally, Section VI

concludes the paper.

II. STATE OF THE ART

A patrolling situation is characterized by one or more

patrollers, a possible intruder, and some targets in an

environment. The targets are areas with some interest for

both patrollers and intruder. The development of patrolling

strategies for mobile robots is a recent interesting scientific

challenge [1], [4], [6]. In general, a patrolling strategy deter-

mines the next target to patrol given an history of previously

visited targets. Usually, the patrollers adopt a patrolling

strategy that randomizes over the targets trying to reduce

the intrusion probability [1], [2], [8]. The unpredictability of

a patrolling strategy is important, because it is often assumed

that the intruder can observe the patroller for some time and

derive a correct belief on its strategy. We note that similar

strategic problems have been addressed in the pursuit-evasion

field (e.g., [9], [10]). However, some assumptions, including

the fact that the evader’s goal is to avoid capture inside

the environment and not to enter a target from outside the

environment, make the pursuit-evasion strategies not directly

applicable to our patrolling scenario.

Broadly speaking, two main approaches can be identified

in the development of patrolling strategies for mobile robots.

The first approach does not consider any explicit model of

the intruder [4], [6], while the second approach does [1],

[2], [3], [8], [11]. As shown in [3], strategies that consider

a model of the adversary, like the one we consider in this

paper, can provide the patroller a larger expected utility than

strategies that do not. Two ways have been adopted to model

an intruder: considering only its possible movements [1], [11]

and considering also its preferences [2], [3], [8].

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 426



We focus on works of the second kind, which exploit a

game theoretical framework to explicitly model the prefer-

ences of the intruder. The idea is to define a game in which

the patroller and the intruder compete against each other and

to find their optimal strategies by computing the equilibrium

of such game. Hence, the optimal patrolling strategy is

the strategy that the patroller plays at the equilibrium. For

example, consider the following strategic form game [12],

where the players act simultaneously:

C D
A 3, 3 5, 1
B 2, 0 4, 1

Let us suppose that the patroller is the row player (its actions

are {A,B}) and that the intruder is the column player (its

actions are {C,D}). Each element of the table corresponds

to a game outcome determined by the actions undertaken by

the two players and described by the payoffs. For example, if

the patroller plays A and the intruder plays D, the patroller

gets 5 and the intruder gets 1. The only equilibrium in pure

strategies (without randomizing over actions) of this game

is 〈A,C〉. This outcome is called Nash equilibrium and is

such that no player has an incentive to unilaterally deviate

from it [12]. To model patrolling situations, a particular

class of strategic form games is employed, called leader-

follower games. In a leader-follower game players still act

simultaneously but, before playing, the leader declares its

strategy to the follower that considers it when deciding

its strategy. The patroller is the leader and the intruder is

the follower. This assumption amounts to suppose that the

intruder can observe the movements of the patroller and

derive a correct belief on the patrolling strategy. Indeed, the

patroller, being observable, implicitly declares its strategy

and the intruder considers the observed patrolling strategy in

deciding how to act. In the above example, suppose that the

patroller decides to commit to action B and that the intruder

knows it. The intruder will decide to play action D since this

action maximizes its revenue given that the adversary will

play B. Therefore, the equilibrium outcome of the game will

now be 〈B,D〉.
A leader-follower game model is used in [5], [8], where

the authors deal with the problem of patrolling n areas by

using a single patroller such that the time it would spend

to patrol all the areas is strictly larger than the penetration

time d of the intruder, i.e., the time needed by the intruder

to enter an area. The actions available to the patroller are

all the possible routes of d areas, while the intruder chooses

a single area to enter. The optimal patrolling strategy, in

which the patroller maximizes its expected utility, is deter-

mined by computing the leader-follower equilibrium of the

corresponding game.

Another work that follows the same game theoretical

approach is reported in [2], [7] and will be referred to as

BGA model. Since in this paper we experimentally evaluate

the practical applicability of the BGA model, we discuss it

in detail in the following section.

All these game theoretical models have been experimen-

tally evaluated in very idealized settings that, for example,

do not consider uncertainty in the movements. Moreover, to

the best of our knowledge, there have been no attempts (with

the partial exception of [11]) to study the patrolling strategies

derived from game theoretical approaches in situations that

are “outside” the models, when the assumptions of the

models do not hold.

III. THE BGA MODEL

Preliminarily, we motivate the choice to consider the

BGA model. As shown in [2], it is the most general game

theoretical patrolling model currently available. It generalizes

the models in [1] (by allowing any kind of environment,

not only perimeter-like) and in [5], [8] (by considering

environments with complex topologies, not necessarily fully-

connected).

In the BGA model, time is discretized in turns and the

environment is represented as a directed graph G = (V,A)
where V = {c1, . . . , cn} is the set of nodes to be patrolled,

and arcs in A define the topology, i.e., if (ci, cj) ∈ A
then nodes ci and cj are adjacent and the patrolling robot

can directly move from ci to cj in one turn. Each node is

associated to a pair of non-negative values that represent the

importance of that node for the patroller and the intruder,

as explained later. All the nodes with positive values for

both patroller and intruder are called targets, T ⊆ V . Every

attempted intrusion in a target requires the intruder some

time to be successfully completed. Therefore, every node ci
is characterized by a penetration time di. When attempting

to intrude in a target ci, the intruder stays in that node and is

exposed to the patroller’s detection capabilities, for di turns.

Note that graph-based representations of environments are

quite common in mobile robotics and can be, for exam-

ple, surveillance graphs, as in [13]. Some (self-explanatory)

examples of environments that can be straightforwardly

reduced to a graph representation are shown in Fig. 1.

At each turn, the patroller can move between two adjacent

nodes and patrol the arrival one (extending the range of the

patroller’s sensors is possible [14]). The patrolling strategy

is defined as a set of probabilities {αi,j} with which the

patroller reaches node cj if its current node is ci and

(ci, cj) ∈ A.

The intruder can stay outside the environment for some

turns observing the patroller and, when it decides to attack

a target ci, it stays there for di turns, without the possibility

to observe the patroller and to take any other action. The

intruder can directly enter in any target ci ∈ T at any time

(it is also possible to force the intruder to follow a path for

reaching a target [14]). More precisely, actions available to

the intruder are enter-when(ci, cj), i.e., attack ci at the next

turn after having observed the patroller in cj , and stay-out,

i.e., never enter the environment.

The outcome of the game, when the intruder attempts to

enter in target ci at turn t and the patroller visits ci in the

time interval [t, t+di), is intruder-capture. A second possible

outcome is penetration-ci, where the intruder successfully

completes the intrusion in ci. Finally, the last possible

outcome is no-attack, and reflects the situation in which the
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Fig. 1. The environments used in experiments, for every cell ci the
penetration time di and the payoffs (Xi, Yi) are reported

intruder never tries to enter in the environment (it plays the

stay-out action).

The preferences of the players over the environment’s

nodes are defined by the game payoffs. Each node ci is

associated to two values Xi and Yi that denote the payoffs to

the patroller and the intruder, respectively, when the outcome

is penetration-ci. X0 and Y0 are the corresponding payoffs

when the outcome is intruder-capture. When the outcome is

no-attack, the payoff to the patroller is X0 and the payoff

to the intruder is 0. (The rationale is that, when the intruder

never enters, it gets nothing and the patroller preserves the

values of all the nodes.) These values can be set freely, with

the constraints that 0 ≤ Xi < X0 and Y0 ≤ 0 < Yi for all

ci ∈ T , and Xi = X0 and Yi = 0 for all ci ∈ C/T .

Given this game model, the optimal patrolling strategy is

the set of probabilities {αij} that guarantees the patroller

the maximum expected utility when the intruder knows the

patroller’s strategy and acts as a best responder (i.e., as an

utility maximizer). Such optimal strategy can be found by

computing a leader-follower equilibrium of the patrolling

game, resorting to multiple mathematical programming prob-

lems. For full details on the computation please refer to [2],

[7]; here we give only an example: the optimal patrolling

strategy computed with the BGA model for the map3 of

Fig. 1 is shown in Fig. 2.

In this paper we aim at providing a contribution to assess

the real applicability of the patrolling strategies returned by

the described game theoretical approach. A number of issues

must be addressed when moving from the theoretical model

to a real implementation. In particular, some idealistic as-

sumptions of the BGA model must be challenged, including

the following ones.

• The intruder is supposed to be a best responder, namely

a rational agent that maximizes its utility, given the
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Fig. 2. The optimal patrolling strategy for map3 of Fig. 1

strategy of the patroller. This amounts to suppose that

the patroller is facing the strongest intruder that can

play the game. However, in real settings, the patroller

can also face weaker intruders.

• The movements and the localization of the patrolling

robot are supposed to be error-free. This is obviously

not true in a real setting.

• The penetration times di are known perfectly by both

the players. In real settings, the values di can be esti-

mated, for example, analyzing the integrity of windows

and doors in nodes ci. Hence, values di may be not

precisely known by the players.

• The intruder knows exactly the patroller’s strategy. This

assumption is realistic if we suppose, for example, that

the intruder can compute the optimal patrolling strategy

in the same way the patroller does or that it can steal the

robot’s control software. However, if we assume that the

intruder derives such knowledge only by observation,

then its knowledge of the patrolling strategy will be

approximated (at best), otherwise an infinite observation

time would be required. Note the knowing the patrolling

strategy {αi,j} does not mean to know the next action of

the patroller, but only the probability distribution with

which this action will be selected.

Other issues must be considered in a real implementation

(sensors, battery, . . . ), but we deem that those listed above,

and analyzed in the following, are among the most important

ones and represent significant elements to assess the practical

applicability of the BGA model.

IV. EXPERIMENTAL SETTING

We decided to avoid some of the problems of dealing

with a real robotic deployment and we used a realistic

simulator. We exploited the MOAST framework [15] for

developing the patrolling robot controller, that embeds the

patrolling strategies, and we performed experiments within

the USARSim robotic simulator [16]. In what follows, we

illustrate how we have translated the model described in the

previous section in the simulator.

Let us start with the graph-based environments. The

environments are 3D models with a flat ground floor and
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Fig. 3. A simulated patrolling environment

vertical walls. Nodes of the graph are associated to 3 m

× 3 m squared cells on the floor that are associated to

penetration times and payoffs (Fig. 3). We used such large

cells both because our map is not intended to represent

an accurate model of the environment but to represent the

areas of interest and because the computation of the optimal

patrolling strategy with the BGA model grows exponentially

with the number of nodes (cells), see [2], [7] for further

details. This complexity limits the application of the BGA

model to environments with few dozens of cells.

A Pioneer P2AT has been used as patrolling robot. The

intruder has been simulated through another mobile robot

equipped with a RFID tag. Correspondingly, the patrolling

robot is equipped with an RFID sensor that senses the

presence of the intruder within a given range, that has

been set to (approximately) cover a cell. The choice of

RFID is motivated by the fact that we are concerned with

patrolling strategies and not with the important, but different,

problems of detecting intruders. Note that the same technique

is employed in robotic virtual search and rescue to detect the

presence of victims.

The intruder’s controller has been developed as a separate

application that constantly “observes” the simulation and,

according to the strategy of the simulated intruder, decides

when to attempt an intrusion and in which cell. When an

intrusion is attempted, the intruder robot is inserted in the

designated cell ci. According to the theoretical model, the

simulated intruder “appears” at ci. Starting from that turn, if

the penetration time di expires before the patrolling robot can

sense the intruder’s presence, then the intrusion is considered

successfully completed and the outcome of the game is

penetration-ci. Otherwise, the intruder is detected and the

outcome of the game is intruder-capture.

To quantify the advantages of the optimal patrolling strat-

egy derived from the BGA model over simpler patrolling

strategies, we tested four different patrollers. The optimal

patroller moves according to the optimal strategy {αij}
returned by the BGA model. At each turn, the next cell

to reach is randomly chosen according the probability dis-

tribution defined by the {αij} values. Then, the patroller

moves from the center of its current cell to the center of

the destination cell. The uniform patroller determines the

next cell to patrol extracting it from an uniform probabil-

ity distribution over the cells adjacent to the current one.

Formally, if we call Ri the set of cells that are adjacent

to cell ci, the strategy of the uniform patroller is defined

as αij = 1/|Ri| if cj ∈ Ri and αij = 0 otherwise. The

random patroller selects the next cell according to a random

probability distribution. Formally {αij} are randomly chosen

with the constraint that
∑

cj∈Ri
αij = 1 and αij = 0 for

every cj /∈ Ri. Finally, the deterministic patroller cyclically

follows the shortest path that visits all the cells. The different

patrollers can be distinguished with respect to the amount of

knowledge about the patrolling setting they use to compute

their strategy. The optimal patroller has full knowledge of the

environment topology, of the payoffs, and of the penetration

times. Differently, the other patrollers have only knowledge

about the environment topology (for example, penetration

times are not considered by patrollers different from the

optimal one).

Three different intruders, with different intrusion strate-

gies, have been defined. The optimal intruder is that assumed

in the BGA model. It is the strongest intruder since it

perfectly knows the strategy of the patroller and acts as a

best responder. The proportional intruder does not know the

patrolling strategy and, at a random turn, selects a target to

attack according to a probability that is directly proportional

to the value of that target for the patroller. Formally, the

probability to attack target ci is calculated as Xi/
∑

j∈T Xj .

Finally, the uniform intruder selects, at a random turn, the

target to attack with a uniform probability.

The patrolling games have been simulated in the three

environments represented in Fig. 1.

We call configuration a combination of an environment

to be patrolled, of a patrolling strategy, and of a type of

intruder. For every configuration we simulated 100 patrolling

games, each one with a randomly selected starting cell for

the patroller. Every game ends either with the detection of

the intruder or with a successful intrusion. In order to allow

every type of intruder to actively participate in the game,

we did not consider patrolling settings where the optimal

strategy of the intruder is to never attack. At the end of a

game, payoffs are assigned to the players as described in

Section III.

We computed different metrics, averaging over the games

played in each configuration. The most important metric we

consider are the patroller’s and intruder’s average utilities

(assigned payoffs), called Up and Ui, respectively. The higher

the average utility of a player, the better its strategy in the

considered configuration. Moreover, we considered also the

coverage percentage, which is calculated as the number of

cells that are visited (at least once) by the patroller in a game,

with respect to the total number of cells in the environment.

This metric is related to the cost of patrolling, since the more

cells a robot covers, the more it spends in terms of time and

energy.

V. EXPERIMENTAL RESULTS

The first set of experiments is focused on testing the be-

havior of the patroller against an intruder that is not optimal,

as assumed in computing the optimal patrolling strategy with

the BGA model. From the model, the expected patroller’s

utility for the optimal patrolling strategy is guaranteed to
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Fig. 4. Intruder’s average utilities in map1

be maximum when facing the optimal intruder; however, the

model does not say anything for other types of intruders. We

measured the performances of the optimal patroller when

facing the proportional and the uniform intruders defined

in Section IV. In Table I, the average (over 100 games)

utility Up for the patroller in the environments of Fig. 1 is

reported with the corresponding variance (in parentheses).

No significative worsening in Up can be observed when

changing the intruder’s type. The optimal strategy is able

to effectively protect the environment from intrusions even

when facing intruders different from that assumed in its

computation. In this sense, we can say that the optimal

patrolling strategy computed with the BGA model is robust.

The topology and the payoffs of map2 are such that the

optimal patrolling strategy tends to visit more frequently

the targets with large Xi, explaining the worst performance

against a uniform intruder. A somehow expected result is that

the weaker the intruder, the more often it is detected by the

optimal patroller, as shown in Fig. 4, where Ui for map1 are

reported for each type of intruder. A decrease in Ui (when

facing the optimal patroller) can be observed when moving

from the optimal intruder to the proportional one and to the

uniform one. Similar trends have been obtained for other

environments. These results further confirm the robustness

of the optimal patrolling strategy calculated with the BGA

model: it performs better and better as the intruder becomes

weaker and weaker.

Environment Results

map1

Intruder Up

optimal 0.8020 (0.0004)

proportional 0.8130 (0.0125)

uniform 0.8520 (0.0108)

map2

Intruder Up

optimal 0.8120 (0.0023)

proportional 0.8397 (0.0635)

uniform 0.7567 (0.0436)

map3

Intruder Up

optimal 0.6200 (0.0077)

proportional 0.8034 (0.0249)

uniform 0.8360 (0.0228)

TABLE I

OPTIMAL PATROLLER’S AVERAGE UTILITIES

When dealing with real situations, other idealistic assump-

tions of the BGA model should be considered. For example,

movement errors affect the performance of a real mobile

Fig. 5. Optimal patroller’s average utilities in map1 with movement errors

Fig. 6. Optimal patroller’s average utilities in map1 with uncertain di

robot. In order to start to evaluate the impact of these errors,

we defined a probability value p as the probability with

which the simulated patroller will not succeed in executing

the movements prescribed by its patrolling strategy. More

precisely, if at turn t the strategy prescribes to reach and

patrol cell cj from the current cell ci, at turn t+1 the robot

will move to cell cj with probability 1 − p while it will

remain in its current cell ci with probability p. No dramatic

worsening in Up is observed for increasing values of p, as

shown for example in Fig. 5, where the results obtained in

map1 are reported.

As discussed in Section III, in a real setting, the pen-

etration times di would be characterized by some degree

of uncertainty. We studied the behavior of the optimal pa-

trolling strategy when penetration times are random variables

with a normal probability distribution with mean value di.
This amounts to say that the penetration times d̄i used in

a simulated game are determined only when the intruder

attacks, and their value is calculated as d̄i = di + ǫ where

ǫ ∼ N (0, σ2) is a random variable drawn from a zero mean

normal distribution. As Fig. 6 shows, the optimal patrolling

strategy performs well also in presence of increasingly

uncertain di.
The next issue we consider in our experimental eval-

uation is the exact knowledge of the patrolling strategy

that characterizes the optimal intruder. To investigate the

behavior of the optimal strategy when this assumption is no

longer valid, we defined an approximated optimal intruder,

which is an intruder working with a noised knowledge about

the patrolling strategy. In practice, the intruder knows a

patrolling strategy that is obtained from the real one with

the addition of a random noise from a normal distribution

with µ = 0 and σ = 0.2. Table II shows that the Up of the
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Fig. 7. Patroller’s average utilities in map2

optimal patroller does not decrease when the optimal intruder

has an imprecise knowledge of the patrolling strategy.

Intruder Up

optimal 0.6320

proportional 0.7980

uniform 0.8340

approximated 0.6420

TABLE II

OPTIMAL PATROLLER’S AVERAGE UTILITIES IN map3

The last set of experiments evaluates the performance

of the optimal strategy returned by the BGA model when

compared with other patrolling strategies. From the one hand,

the optimal strategy is theoretically guaranteed to be the best

one under the assumptions of the BGA model but, from the

other hand, it requires a significant computational effort to

be determined. (For example, the optimal strategy of Fig. 2

has been computed in about 30 minutes.) Therefore, it is

important to assess if the adoption of the optimal strategy can

bring significative advantages with respect to non-optimal

strategies (like the uniform, random, and deterministic pa-

trolling strategies) that are much easier to compute. Averag-

ing over all configurations, the Up of the optimal patroller

is 13%, 15%, and 30% larger than those of the uniform,

random, and deterministic patrollers, respectively. Fig. 7

shows, as a representative example, the results for map2.

Note that the advantage of the optimal strategy over the

other patrolling strategies is more evident with the optimal

(strongest) intruder (this advantage is statistically significant,

according to the one-way ANOVA test [17]). Note also that

the deterministic strategy was not tested with the optimal

intruder since, in these configurations, the optimal intruder

will always attack as soon as the time needed by the patroller

to reach the attacked target from its current position is larger

than the penetration time of that target. The outcome of the

game is therefore predetermined.

In order to understand from where the advantage of the

optimal patrolling strategy comes from, it is interesting to

look at how many cells a strategy covers. For example, in

map2 the optimal patrolling strategy was able to achieve its

good performance with a coverage of about 60% of the cells

of the environment, while the other strategies needed a 100%
complete coverage (similar results have been obtained for

other environments). The main reason behind this result is

that the optimal patrolling strategy restricts its routes to an

essential subset of interesting cells, avoiding to visit cells that

do not contribute to prevent intrusions (for example, cells 05
and 08 of the map3 of Fig. 2).

VI. CONCLUSIONS

In this paper we have implemented in USARSim the

patrolling strategy returned by a game theoretical approach,

called BGA model, to experimentally evaluate its practical

applicability. The results have shown that the optimal pa-

trolling strategies returned by the BGA model perform better

than alternative, less computational demanding, strategies in

a number of situations and continue to perform good even

in situations that go beyond the assumptions of the game

theoretical model.

Further work is required to reach the final goal of having

a game theoretical-based patrolling robot. Among the most

significant issues that will be addressed in the future there

are the sensors for detecting intruders and more realistic

movements for the patroller and the intruder.
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