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Abstract The immobilization of non-rigid objects is a

relatively unexplored area in grasp mechanics. This paper

considers the immobilization of 2D serial chains of n hinged

polygons at a given placement using frictionless point fingers.

The paper sets the problem in the context of classical grasping

theory by showing that chain immobilization can only be

achieved with equilibrium grasps. In earlier work we de-

scribed an immobilization procedure for serial chains of n 6=3
polygons using n+2 frictionless point fingers. However, the

immobilization of three-link chains remained an open problem.

This paper establishes that three-link chains can usually be

immobilized with five point fingers, but certain three-link

chains can only be immobilized with six point fingers. The

paper then considers the robust immobilization of serial chains

under small contact placement errors. We describe a procedure

for robust immobilization of n-link chains that requires only

one extra contact for the entire chain, using a total of n+ 3
frictionless point fingers. The immobilization procedures and

the exceptional three-link chains are illustrated with examples.

I. INTRODUCTION

The concept of form closure ensures grasp and fixture safety

by immobilizing the grasped object with respect to the fin-

gertips or fixels [2, 3, 18]. The immobilization of non-rigid

objects is a relatively unexplored area in grasp mechanics.

Serial chains of hinged bodies can model a large set of

non-rigid objects. Such chains arise as sub-assemblies during

manufacturing operations, they appear during humanoid robot

interaction with devices such as doors and windows, and are

useful in the modeling of skeletal structures during robotic

surgery and rehabilitation [7]. This paper focuses on the

planar version of the chain immobilization problem. The paper

seeks to establish upper bounds on the number of frictionless

point fingers required to immobilize serial chains of hinged

polygons at a given placement, and to provide procedures for

synthesizing such immobilizing arrangements.

The notion of form closure, formulated by Reuleaux [12],

assumes that a rigid object is held by rigid and stationary

fingertips or fixels via frictionless contacts. It requires that

all local motions of the object be prevented by the rigidity of

the object and the surrounding bodies. (Force closure, which is

based on constraining forces rather than constraining contacts,

is dual to form closure in the absence of friction [10].) First-

order form closure achieves object immobilization based on

the contact normal directions [12]. Second-order form closure

achieves object immobilization by additionally exploiting cur-

vature effects at the contacts [14]. Both types of form closure

can be analyzed in the object’s configuration space, where

the fingertips are regarded as c-space obstacles constraining

the object’s motions. The configuration space of a 2D rigid

object has dimension m = 3. Based on first-order geometric

effects, Markenscoff et al. [8] and Mishra et al. [9] showed

that every 2D piecewise smooth object (except for a circular

object) can be immobilized with m + 1 = 4 frictionless point

fingers. Based on curvature effects, Czyzowicz et al. [6] and

Rimon et. al. [13] showed that polygonal objects with non-

parallel edges can be immobilized with m = 3 frictionless

point fingers. (The latter bound applies to general piecewise

smooth objects provided that the fingers have a sufficiently flat

curvature at the contacts [13]).

All of these results deal with rigid objects. Likewise, all

papers on the synthesis of immobilizing grasps and fixtures

focus on rigid objects (e.g. [4, 10, 17]). The literature on non-

rigid objects is mainly concerned with manipulation of large

deformable objects such as flexible metal sheets (e.g. [16]),

or the motion planning of non-rigid mechanisms such as

serpentine robots (e.g. [11]). Closer to the chain immobiliza-

tion problem is the recent work of Balkcom et. al [1] on

grasping cloth polygons with “pinching” point fingers. The

2D chains considered here can eventually serve as models for

deformable objects.

The paper first establishes that chain immobilization can

only be achieved with equilibrium grasps. Then it describes

our earlier result on second-order immobilization of 2D serial

chains of n 6= 3 polygons by n+2 frictionless point fingers.

The paper next describes a procedure for immobilizing 2D

serial chains based on first-order geometric effects. Using

only one extra contact for the entire chain, serial chains of

n polygons can be immobilized by n+3 frictionless point

fingers. Moreover, these immobilizing grasps are robust with

respect to small contact placement errors. Finally the paper

considers the special case of three-link chains. Focusing on

three-link chains of convex polygons, the paper establishes that

curvature effects can usually immobilize these chains with five

point fingers. However, certain three-link chains can only be

immobilized with six point fingers.

The paper’s structure is as follows. Section II introduces

our setup and discusses the necessity of equilibrium grasps for

chain immobilization. Section III summarizes our curvature-

based immobilization procedure for serial chains of n 6=3 poly-
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gons. Section IV describes a robust immobilization procedure

for serial chains of n polygons based on first-order effects.

Section V discusses the special curvature based immobilization

of three-link chains. The concluding section discusses exten-

sion of the results to the immobilization of 3D chains.

II. PRELIMINARIES

The paper considers 2D serial chains of n rigid polygons,

denoted (B1, . . . ,Bn). Each polygon Bi+1 is attached to its

predecessor Bi by a rotational joint θi, which is located at

a common vertex of the two polygons. The joint θi allows

the adjacent polygons to rotate relative to each other, but the

two polygons may not overlap. A serial chain of n polygons

has n−1 joints and therefore n + 2 configuration parameters

(the joint angles and the position and orientation of one of the

chain’s links). The chain’s configuration space, or c-space, is

parametrized by q ∈ IRn+2. Given a non-overlapping place-

ment of the chain at a configuration q0, we wish to determine

how many frictionless point fingers suffice to immobilize the

chain. For practical reasons it is undesirable to place the fingers

at convex vertices of the polygons. Therefore we require that

the fingers contact the polygons only along edge interiors or

at concave vertices. In particular, the fingers may not contact

the chain’s joints, since every joint is a convex vertex of at

least one of the adjacent polygons.

We now introduce two types of immobility. The first type is

best described in the chain’s c-space. Let the chain be held at

a configuration q0 by k point fingers p1, . . . , pk. Each finger

pi induces a c-space obstacle, or c-obstacle, consisting of all

configurations at which the chain overlaps pi. The c-obstacle’s

boundary consists of all configurations at which the chain’s

boundary touches pi. When the chain is held by k fingers at

q0, the point q0 lies at the intersection of the k c-obstacle

boundaries. Chain immobility is defined as follows.

Definition 1: A chain (B1, . . . ,Bn) held at a configuration

q0 by stationary point fingers p1, . . . , pk is immobilized if

any local c-space trajectory of the chain which starts at q0

penetrates the interior of one of the finger c-obstacles.

Chain immobility is based on the rigidity of its links and the

constraints imposed by the point fingers. For practical reasons

we also introduce the following notion of robust immobility.

Definition 2: Let a chain (B1, . . . ,Bn) be immobilized

by stationary point fingers p1 . . . pk. The chain is robustly

immobilized if it remains immobile for any local perturbation

of the finger contacts along the edges of B1, . . . ,Bn.

We now describe two properties of k-finger grasps that will

serve to construct immobilizing grasps. The first property,

which is a key result of this paper, asserts that equilibrium

grasps are necessary for immobilization.

Theorem 1: A necessary condition for immobilization of a

chain (B1, . . . ,Bn) by k ≥ 2 fingers is that the fingers hold

the chain in a feasible equilibrium grasp.

Proof: Let the chain be held by point fingers p1, . . . , pk

at a configuration q0 ∈ IRn+2. Let ηi ∈ IRn+2 be the unit

outward normal to the ith finger c-obstacle at q0. When a

this point

bi−directional

B

B

this point
rotation about
bi−directional

v

vl

rotation about

l

l

l

2
p

1

2

2

p

p

2

1

1

C(v,p1,p2)
C(v,p1,p2)

p

(a) (b)

1

Fig. 1. The free motions of B with respect to two point fingers contacting
edges meeting at (a) a convex, and (b) a concave vertex of B.

finger pi applies a force fi on the chain, it induces a wrench,

wi ∈ IRn+2, consisting of moments about the chain’s joints

as well as force and torque on the link containing the chain’s

reference frame. Based on the virtual work principle, it can

be verified that when fi acts along the edge’s inward normal,

wi is a positive multiple of ηi, wi = λiηi for λi ≥ 0. At a

k-finger equilibrium grasp the net wrench on the chain (i.e. the

net moment about each joint and the net force and torque on

the link containing the chain’s reference frame) must be zero:

λ1η1 + · · · + λkηk = ~0 λ1 . . . λk ≥ 0. (1)

We now show that when the chain is not held at an equilibrium

grasp, it can simultaneously escape the k fingers and is

therefore not immobilized. Let W be the collection of net

wrenches that can affect the chain at q0:

W=
{

w∈IRn+2 : w=λ1η1 + · · · + λkηk λ1 . . . λk ≥ 0
}

.

The set W forms a closed convex cone based at q0. When

the fingers do not form a feasible equilibrium grasp, W does

not contain any full one-dimensional line passing through q0

(such a line can only be generated by two opposing rays and

is associated with an equilibrium grasp involving at least two

fingers). The cone dual to W is given by W∗ = {h∈IRn+2 :
h · w ≤ 0 for all w ∈ W}. The dual cone must have a

non-empty interior, otherwise (W∗)∗ = W contains a full

one-dimensional line. Every vector h from the interior of W∗

satisfies h ·w < 0 for all w ∈ W . Let h be a vector from the

interior of W∗. Let q̇ = −h be a tangent vector representing

a particular instantaneous motion of the chain at q0. Since

ηi ∈ W for i = 1 . . . k, q̇ satisfies the inequality ηi · q̇ > 0
for i = 1 . . . k. Since the c-space trajectory q(t) such that

q(0) = q0 and q̇(0) = q̇ moves away from the k finger

c-obstacles, the chain is not immobilized by the k fingers.

Equilibrium grasp is thus necessary for immobilization. �

The following lemma bounds the area where a vertex of a

polygon can lie when it is contacted by two point fingers.

Given a vertex v and stationary point fingers at p1 and p2, let

C(v, p1, p2) be the unique circle through v, p1, and p2. Let

int
(

C(v, p1, p2)
)

denote the interior of C(v, p1, p2) including

its bounding circle; let ext
(

C(v, p1, p2)
)

denote the exterior

of C(v, p1, p2) including its bounding circle.

Lemma 2.1 (Circle Lemma): Let two point fingers fixed at

p1 and p2 contact a polygon B along two edges incident to

its vertex v. The free motions of B cause v to locally move

into int
(

C(v, p1, p2)
)

when v is a convex vertex, and into

ext
(

C(v, p1, p2)
)

when v is a concave vertex (Figure 1).

A proof of the lemma appears in [5, 15]. An intuitive feel

for the lemma can be gained with Reuleaux’s graphical tech-
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nique [12]. Let li be the line through pi directed along B’s

inward normal at pi (i=1, 2). The instantaneous free motions

of B with respect to pi are counterclockwise rotations about

points on the left of li, clockwise rotations about points on the

right of li, and bi-directional rotations about points on li. The

instantaneous free motions of B with respect to both p1 and

p2 are bi-directional rotation about the intersection point of l1
and l2, and two regions of uni-directional rotations. The bi-

directional rotation moves v along the tangent to C(v, p1, p2).
The uni-directional rotations move v into the halfplane tangent

to C(v, p1, p2) from its inside when v is a convex vertex

(Figure 1(a)), and into the halfplane tangent to C(v, p1, p2)
from its outside when v is a concave vertex (Figure 1(b)).

III. SECOND-ORDER IMMOBILIZATION OF 2D

SERIAL CHAINS

This section summarizes our curvature-based procedure for

immobilizing 2D serial chains of n 6= 3 polygons [5]. The

procedure starts with a single polygon.

Lemma 3.1 (Single-Link Chain): Every polygon with non-

parallel edges can be immobilized by three frictionless point

fingers.

The immobilization of a polygon B is based on its largest

inscribed disc [6, 13]. Such a disc generically touches the

boundary of B at two or three points. When the disc touches

the boundary at three points, these points form an immobiliz-

ing three-finger equilibrium grasp. When the disc touches the

boundary at two points, one point is necessarily a concave

vertex. A local splitting of the point opposing the vertex

immobilizes B in a three-finger equilibrium grasp. The im-

mobilization procedure next considers two-link chains.

Lemma 3.2 (Two-Link Chain): Every chain of two poly-

gons with non-parallel edges can be immobilized by four

frictionless point fingers.

Proof sketch: Let the common vertex of B1 and B2 at the

joint, v, be a convex vertex of both polygons (Figure 2(a)). In

this case there exists a line l through v which separates the two

links. Let l⊥ be the line perpendicular to l at v. Construct a

sufficiently small circle centered on l⊥, which passes through

v and intersects two interior points on the edges of Bi incident

to v (i = 1, 2). Place four fingers p1, p2, p3, and p4 at the

points where the two circles intersect the edges of B1 and

B2. According to the circle lemma, v can move only inside

the circles C(v, p1, p2) and C(v, p3, p4). Since the two circles

touch only at v, this vertex is immobilized by the four point

fingers. Since each pair of fingers resists opposite rotations of

Bi about v, each Bi is immobilized with respect to v. The

case where v is a concave vertex of B1 or B2 can be treated

as depicted in Figure 2(b). �

The radii of the circles constraining the two-link chain

depend on the finger c-obstacles curvature. Hence this is a

curvature based immobilization. The three-link chains form

a striking exception and are discussed in Section V. Let

us therefore proceed with chains of n ≥ 4 polygons. The

immobilization procedure treats these chains as consisting of
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Fig. 2. Immobilization of a two-link chain by four point fingers when B1

and B2 are (a) both convex, and (b) concave and convex at the joint.

short subchains separated by two-link gaps. The following

lemma considers chains containing a two-link gap.

Lemma 3.3: Let a chain (B1, . . . ,Bn) of n ≥ 4
polygons consist of two subchains separated by two

links, (B1, . . . ,Bi) and (Bi+3, . . . ,Bn). If the subchains

(B1, . . . ,Bi) and (Bi+3, . . . ,Bn) are immobilized, the entire

chain (B1, . . . ,Bn) is immobilized.

To illustrate the lemma, consider the four-link chain

(B1,B2,B3,B4). Let v be the common vertex of B2 and B3

at the θ2 joint. When B1 and B4 are immobilized, v can only

trace the circles centered at the θ1 and θ3 joints. As these

circles intersect at two discrete points, one of which is the

nominal position of the θ2 joint, the entire four-link chain is

immobilized when B1 and B4 are immobilized.

The number of polygons of an n-link chain can be written as

n=(n mod 4) + 4N , where n mod 4 = 0, 1, 2, 3 and N is a

positive integer. Hence one can break any n-link chain into an

initial subchain having n mod 4 links, and N subchains each

having four links. However, an initial three-link subchain is

exceptional in terms of the number of point fingers required

for its immobilization. Hence we will express the number n as

n = n0 +4N , where n0 = 0, 1, 2, 7 is the length of the initial

subchain. As a preparation for the immobilization procedure,

consider the immobilization of seven-link chains.

Corollary 3.4: Every chain of seven polygons can be im-

mobilized by nine frictionless point fingers.

Proof: Partition the chain (B1, . . . ,B7) into the single-

link chains B1, B4, and B7, separated by the two-link chains

(B2,B3) and (B5,B6). Each of the single links can be immo-

bilized by three point fingers. As these links are separated by

two-link gaps, the entire chain is immobilized by nine point

fingers according to Lemma 3.3. �

Second-order immobilization procedure:

1. Partition the n-link chain into an initial subchain of n0 =
0, 1, 2, 7 links, and N four-link subchains.

2. Immobilize the initial subchain by n0+2 frictionless point

fingers using Lemmas 3.1, Lemma 3.2, and Corollary 3.4.

3. In each four-link subchain, (Bi,Bi+1,Bi+2,Bi+3), immobi-

lize its distal two-link chain, (Bi+2,Bi+3), by four frictionless

point fingers using Lemma 3.2.

The following theorem asserts that the procedure immobilizes

the n-link chain with n + 2 frictionless point fingers.

Theorem 2 (2’nd Order Form Closure): The above proce-

dure immobilizes every 2D serial chain of n 6= 3 polygons

with non-parallel edges using n+2 frictionless point fingers.
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Proof: The procedure immobilizes the initial subchain by

n0+2 point fingers. In each subchain (Bi,Bi+1,Bi+2,Bi+3),
(Bi+2,Bi+3) is immobilized by four point fingers. Since

(Bi,Bi+1) forms a two-link gap between (Bi+2,Bi+3) and

the previous subchain, the entire n-link chain is immobilized

according to Lemma 3.3. Substituting N = 1

4
(n−n0), the total

number of point fingers is (n0+2)+4 · 1

4
(n−n0) = n+2. �

IV. ROBUST IMMOBILIZATION OF 2D SERIAL CHAINS

This section describes a robust immobilization procedure for

serial chains of n polygons using first-order geometric effects.

We will use the following notation. The normal line to a

polygon edge at pi is denoted n(pi). The force line of a

finger pi is the line n(pi) directed along the edge’s inward

normal. The edges of a polygon Bi incident to the joint θi−1

are denoted e−
i

and e+

i
, according to the sign of the moment

generated about the joint by the edge’s inward normal. The

line passing through the joints θi−1 and θi is denoted hi for

i > 1. For i = 1, h1 is the line through the joint θ1 and the

center of B1’s maximal inscribed disc.

The procedure accepts as input a serial chain (B1, . . . ,Bn)
with joints θ1, . . . , θn−1 at a given placement. The polygons

B2, . . . ,Bn can have any shape, but B1 must have non-parallel

edges (this assumption is relaxed in [15]). The procedure first

places two point fingers on Bn, then one point finger on each

Bi for 1 < i < n, and finally three point fingers on B1.

Robust immobilization procedure:

1. Starting with Bn, consider the parallelogram spanned by

the normals to the edges e−
n

and e+
n

incident to θn−1. The

joint line hn−1 partitions the parallelogram into at most two

regions. Select any point xn in the interior of these regions.

Place the fingers pn and p′
n

at the points on e−
n

and e+
n

such

that the normal lines n(pn) and n(p′
n
) intersect at xn. Denote

by ln−1 the net force line of pn and p′
n

, which is based at xn

and acts on Bn−1 through the θn−1 joint (Figure 3).

2. Consider each Bi for 1<i<n in order of decreasing index.

The net force line li does not coincide with the joint line hi.

Hence li generates a non-zero moment about θi−1. Set ei =e−
i

when li generates a positive moment about θi−1, and ei =e+

i

when li generates a negative moment about θi−1. Consider

the line segment Ii ={n(p) ∩ li : p∈ei}. The next joint line,

hi−1, partitions Ii into at most two subsegments. Select any

point xi from the interior of one of these subsegments. Place

the finger pi at the point on ei such that n(pi) ∩ li = {xi}.

Denote by li−1 the net force line of pi and li, which is based

at xi and acts on Bi−1 through the θi−1 joint.

3. Immobilize B1 as follows. The maximal inscribed disc of

B1, D1, generically touches its boundary at two or three points.

When D1 touches the boundary at three points, place the

fingers p1, p′1, and p′′1 at these points. When D1 touches the

boundary at two points, one point is necessarily a concave

vertex of B1 (since B1 has non-parallel edges), while the

opposing point lies on an edge of B1. Place the finger p1 at

the concave vertex. Place the fingers p′1 and p′′1 at the opposing

point, then perturb their position to both sides of this point.

4. Obtain a robust immobilization of B1 as follows. When

D1 touches the boundary of B1 at two points, the grasp

obtained in Stage 3 is already robust. When D1 touches the

boundary of B1 at three points, n(p1), n(p′1), and n(p′′1) meet

at the inscribed disc center x1. Consider the net force line

l1 acting on B1 through the θ1 joint. When l1 generates a

positive moment about x1, perturb the three point fingers (in

the same direction) such that n(p1), n(p′1), and n(p′′1) would

generate a negative net moment about x1. When l1 generates

a negative moment about x1, perturb the three point fingers

such that n(p1), n(p′1), and n(p′′1) would generate a positive

net moment about x1. In either case, the perturbations should

be sufficiently small to prevent the triangle bounded by n(p1),
n(p′1), and n(p′′1) from intersecting the force line l1.

Example: Consider the four-link chain of Figure 3. The first

step is to place the point fingers p4 and p′4 in a way that

resists rotations of B4 about θ3. The net force line of p4 and

p′4, l3, acts on B3 through the θ3 joint and generates a negative

moment about θ2. Hence the point finger p3 is placed on the

edge e+
3 of B3. This is followed by a placement of p2 on the

edge e−2 of B2. Finally, the inscribed disc of B1 touches its

boundary at three points. The point fingers p1, p′1, and p′′1 are

first placed at these points. Since the net force line l1 generates

a negative moment about the disc’s center, x1, the three fingers

are perturbed in counterclockwise direction as to generate a

positive net moment about x1. The resulting seven-finger grasp

immobilizes the chain as stated in the following theorem.

Theorem 3 (1’st Order Form Closure): The above proce-

dure immobilizes the serial chain (B1, . . . ,Bn) using n+3

frictionless point fingers.

Proof sketch: Consider the chain’s polygons from Bn to B1.

The fingers pn and p′
n

jointly prevent rotations of Bn about

θn−1. So when θn−1 cannot move the polygon Bn is immo-

bilized. Similarly, the net force line li and the point finger

pi prevent rotations of Bi about the joint θi−1. So when

θi−1 cannot move the polygon Bi is immobilized for i > 1.

Finally, when B1 has non-parallel edges its maximal inscribed

disc induces an immobilizing three-finger grasp [13, 17].

This result also extends to the case where B1 has parallel

edges [15]. Once B1 is immobilized its joint θ1 is immobilized.

It now follows by induction that the n + 3 point fingers

p1, p
′

1, p
′′

1 , p2, . . . , pn−1, pn, p′
n

immobilize the entire chain. �

The following proposition asserts that the immobilizing grasps

are robust with respect to small finger placement errors.

Proposition 4.1 (Robust Immobilization): The above pro-
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cedure robustly immobilizes the serial chain (B1, . . . ,Bn).

Proof sketch: Any perturbation of pn and p′
n

along the edges

e−
n

and e+
n

continues to prevent rotations of Bn about θn−1.

The distance of the intersection point of n(pn) and n(p′
n
),

xn, from the line hn−1 is ǫn > 0. Hence a sufficiently small

perturbation (depending on ǫn and the orientations of e−
n

and

e+
n

) of pn and p′
n

will prevent the perturbed intersection point,

x̃n, from crossing the line hn−1. Hence the perturbed net

force line, l̃n−1, still generates the same moment sign about

θn−2. Similarly, any small perturbation of pi along the edge ei

induces a perturbed force line l̃i which still generates the same

moment sign about about θi−2 (or x1 if i = 2) for all i > 2.

Finally, suppose D1 touches three edges of B1. All sufficiently

small perturbations of p1, p′1, and p′′1 will keep the center of

D1 within the triangle bounded by n(p1), n(p′1), and n(p′′1),
as well as keep the triangle from crossing the perturbed force

line l̃1. It follows that the n-link chain is robustly immobilized

by the n+3 point fingers. �

V. THE SPECIAL CASE OF THREE-LINK CHAINS

Let us focus on three-link chains of convex polygons and show

that a large class of these chains can be immobilized by five

point fingers. Consider a three-link chain, (B1,B2,B3), with

joints θ1 and θ2. Let (i, j, k) denote the number of fingers

assigned to the three links. Since the fingers must form an

equilibrium grasp, the fingers contacting B1 must generate

zero net moment about θ1, while the fingers contacting B3

must generate zero net moment about θ2. Assuming that the

edge normals of B1 and B3 do not pass through the θ1 and

θ2 joints, equilibrium requires that B1 and B3 each be held

by at least two fingers. The possible five-finger equilibrium

grasps are thus (2, 1, 2), (2, 0, 3), and (3, 0, 2). Let (2∗, 1, 2)
and (2∗, 0, 3) denote grasps in which two fingers contact the

edges of B1 incident to θ1. Let (2, 1, 2∗) and (3, 0, 2∗) denote

grasps in which two fingers contact the edges of B3 incident to

θ2. The following lemma describes how to immobilize three-

link chains using (2∗, 0, 3) or (3, 0, 2∗) equilibrium grasps.

Lemma 5.1: When a chain of three convex polygons with

non-parallel edges can be held in a (2∗, 0, 3) or a (3, 0, 2∗)
equilibrium grasp, there exists an immobilizing five-finger

grasp of the chain (Figure 4).

Proof sketch: Let the chain be held in a (3, 0, 2∗) equilibrium

grasp. Let the fingers p4 and p5 contact the edges of B3

incident to θ2. Equilibrium grasp requires that the net force

line of p4 and p5 pass through the θ2 joint. Since the middle
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Fig. 5. A three-link chain held in a (2∗, 1, 2) equilibrium grasp.

polygon B2 is held in equilibrium grasp, the net force line

of p4 and p5 must also pass through the θ1 joint and hence

coincide with the line passing through the two joints, denoted

l. The edge normals at p4 and p5 thus intersect on l, and in this

case the center of the circle C(v, p4, p5) also lies on l [15].

Now re-locate the three fingers contacting B1 such that this

polygon would become immobilized (Lemma 3.1). The vertex

v of B3 at the θ3 joint can only trace a circular arc, γ, centered

on the θ1 joint. Since the center of C(v, p4, p5) lies on l, γ

is tangent to C(v, p4, p5) at v. Since v is a convex vertex

of B3, it can locally move only inside the circle C(v, p4, p5)
(Lemma 2.1). Let l⊥ be the line perpendicular to l at v. When

γ and C(v, p4, p5) lie on opposite sides of l⊥, v is clearly

immobilized (Figure 4(a)). When γ and C(v, p4, p5) lie on the

same side of l⊥, one can slide the fingers p4 and p5 toward the

θ2 joint until the radius of γ is strictly larger than the radius

of C(v, p4, p5). In this case, too, the vertex v is immobilized

(Figure 4(b)). Once B2 is immobilized, B3 is also immobilized

since p4 and p5 resist opposite rotations of B3 about θ2. �

The remaining five-finger equilibrium grasps are (2, 1, 2) ar-

rangements. The next lemma describes how to immobilize 3-

link chains using (2∗, 1, 2) or (2, 1, 2∗) equilibrium grasps.

Lemma 5.2: When a chain of three convex polygons with

non-parallel edges can be held in a (2∗, 1, 2) or a (2, 1, 2∗)
equilibrium grasp, there exists an immobilizing five-finger

grasp of the chain (Figure 5).

Proof sketch: Let the chain be held in a (2∗, 1, 2) equilibrium

grasp. Let p1 and p2 contact B1, p3 contact B2, and p4 and

p5 contact B3. Let v be the vertex of B1 at the θ1 joint.

Since v is a convex vertex, it can locally move only inside

the circle C(v, p1, p2). Let u be the vertex of B2 attached to

v at the θ1 joint. From u’s perspective C(v, p1, p2) forms a

fixed “obstacle,” O1, constraining its motions. As illustrated

in Figure 5, the obstacle O1 lies on the exterior of C(v, p1, p2)
and is therefore concave at its contact with u. Let u′ be the

vertex of B2 at the θ2 joint. The fingers p4 and p5 contacting

B3 also induce a fixed “obstacle,” O2, constraining the motions

of u′. However, the boundary of O2 can have any shape at u′.

Let us analyze the free motions of B2 as a free body

held by the “fingers” O1, O2, and the point finger p3. The

forces generated by O1 and O2 act on B2 at u and u′.

Since B2 is held in a three-finger equilibrium grasp, the finger

force lines must intersect at a common point, p0, such that

their directions positively span the origin of IR2 (Figure 5).

The only instantaneous free motion of B2 with respect to
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Fig. 6. A likely counter example of a three-link chain that cannot be
immobilized by five point fingers.

the three fingers consists of pure rotation about p0. When

curvature effects prevent this instantaneous rotation, B2 is

immobilized by the three fingers. One needs to verify that

the c-space relative curvature form [15] is negative along this

instantaneous rotation. The obstacle O1 is bounded by the

circle C(v, p1, p2). This circle can be made arbitrarily small

by sliding the fingers p1 and p2 toward the θ1 joint. Since

the curvature of O1 attains an arbitrary large negative value

during this sliding, the c-space relative curvature becomes

negative (hence immobilizing) for all placements of p1 and

p2 sufficiently close to θ1 [15]. �

A likely counter example: Three-link chains of convex

polygons can usually be immobilized by five point fingers

based on Lemmas 5.1-5.2. However, Figure 6(a) depicts a

symmetric three-link chain which does not satisfy the require-

ments of these lemmas. The chain cannot be held in a (2∗, 0, 3)
equilibrium grasp, since the edges of B1 adjacent to θ1 do not

support a net force line passing through both joints. Let us

verify that the chain cannot be held in a (2∗, 1, 2) equilibrium

grasp. All the net force lines generated by the edges of B1

adjacent to θ1 point into the (−x, y) quadrant at the θ1 joint

(Figure 6(a)). The single finger contacting B2 can only apply a

vertical force. Hence B2 is held in equilibrium grasp when the

net force line of the two fingers contacting B3 points into the

positive (x, y) quadrant at the θ2 joint. However, none of the

net force lines associated with the edge pairs of B3 points into

this quadrant at the θ2 joint. It follows that the chain cannot

be held in a (2∗, 1, 2) equilibrium grasp.

A full investigation of the chain’s free motions is under

progress. One has to determine all possible (3, 0, 2) and

(2, 1, 2) equilibrium grasps of the chain, then verify the

existence of free motions in each of these grasps. Figure 6(b)

shows a feasible (2, 1, 2) equilibrium grasp, as well as a mo-

tion which allows the chain to escape the contacting fingers.

VI. CONCLUSION

This paper considered the immobilization of 2D serial chains

of n polygons by frictionless point fingers. The paper es-

tablished that chain immobilization can only be achieved

with equilibrium grasps. Then it described two immobilization

approaches based on first and second-order geometric effects.

Based on curvature effects, all serial chains of n 6=3 polygons

with non-parallel edges can be immobilized by n+2 frictionless

point fingers. Based on first-order geometric effects, all serial

chains of n polygons can be immobilized by n+3 frictionless

point fingers, such that the grasps are robust with respect to

small contact placement errors. Note that a linear joint can

be modeled as a rotational joint with axis at infinity. The

immobilization techniques of this paper thus extend to serial

chains having any mix of rotational and linear joints.

Our current work focuses on the immobilization of 3D serial

chains of n polyhedral bodies. In contrast with 2D chains,

there is a rich variety of joint types as well as inter-link

attachments. A single 3D rigid polyhedron can be immobilized

by four frictionless point fingers based on curvature effects,

and by seven frictionless point fingers based on first-order

geometric effects. What would be the corresponding bounds

for 3D serial chains? A more practical objective concerns with

the immobilization of the human spine for robotic surgery

and rehabilitation. Which 3D serial chain is most suitable for

modeling the spine? Which immobilization objectives are most

useful for such medical applications? These are challenging

problems that we plan to pursue in future research.
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