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Abstract— Particle filters have been used for visual tracking
during long periods because they enable effective estimation for
non-linear and non-Gaussian distributions. However, particle
filter-based tracking approaches suffer from occlusion and
deformation of the target objects, which result in the large
difference between the current observations and the target
model. Thus, we present a Rao-Blackwellized particle filter
(RBPF)-based tracking algorithm that effectively estimates the
joint distribution for the target state and the target model; in
the proposed method, the target object is tracked by using the
particle filter while the target model is simultaneously updated
on the basis of the on-line approximation of a mixture of
Gaussians. To ensure the robustness to occlusion, we represent
the target model by 16 orientation histograms that are spatially
divided, and individually update each histogram through a
video sequence. We demonstrate the robustness of the proposed
method under occlusion and deformation of the target objects.

I. INTRODUCTION

Visual tracking is an important element in surveillance,

guidance, or obstacle avoidance systems, whose role is to

decide the position and the movement of the target objects.

The problem of visual tracking is defined as sequentially

estimating the state of a dynamic system using a sequence

of noisy observations. For this task, there has been immense

attention on particle filters [1][2][3] because, for any non-

linear or non-Gaussian dynamic estimation problem, we can

design an accurate, reliable, and fast recursive Bayesian filter

by using the particle filter.

However, particle filter-based tracking algorithms have

suffered from severe occlusion and large deformation of the

target objects. Moreover, if the target objects move randomly

and we cannot use prior information on smooth motion, this

problem is more difficult. Therefore if the target model is

fixed through a sequence of images, tracking is prone to

failure because the appearances of the target objects can

be easily changed by illumination conditions, pose changes

or occlusion. Thus, in our approach, we estimate the joint

distribution for the target state and the target model through

the image sequence to cope with the large variations between

the current observations and the appearance for the initial

target model. However, estimation of the joint distribution

for the target state and the target model is a high-dimensional

problem, and it makes the particle filter infeasible especially

Jungho Kim and Chaehoon Park are with the Department of Elec-
trical Engineering and Computer Science, Korea Advanced Institute
of Science and Technology, Korea jhkim@rcv.kaist.ac.kr,
chpark@rcv.kaist.ac.kr

In-So Kweon is a Professor of Electrical Engineering and Computer
Science, Korea Advanced Institute of Science and Technology, Korea
iskweon@kaist.ac.kr

when the target model is represented by high-dimensional

visual information. Thus, we present an efficient tracking

algorithm that adopts a Rao-Blackwellized particle filter [4],

an effective method of reducing the dimensionality of a

problem.

When one object is occluded by other moving objects,

tracking results are unstable, and unreliable.Moreover, these

unreliable results can affect the model update and tracking is

prone to failure in the subsequent frames. To prevent it, we

represent the target model by 16 orientation histograms [5]

computed from 16 sub regions and individually update the

distribution for each histogram by using the current obser-

vations.

This paper is organized as follows. Related works are

presented in Section II. In Section III, the details of the Rao-

Blackwellized particle filter are addressed. In Section IV, the

tracking method is presented. In Section V, we present how to

update the target model by using the on-line approximation

of a mixture of Gaussians. In Section VI, the performance

of the proposed method under occlusion and deformation of

the target objects is demonstrated.

II. RELATED WORKS

Many approaches have been proposed to solve visual

tracking problems. Particle filter-based visual tracking [1][6]

has been extensively studied because it has shown to yield

improvements in terms of performance over some con-

ventional methods such as Kalman filter-based approaches.

In [7][8], to solve the problem of tracking curves in a dense

visual clutter, the authors proposed a condensation algorithm

that uses factored sampling and learned dynamical models

to propagate the random samples over time.

Comaniciu et al. [9] proposed a new method for the real-

time tracking of non-rigid objects by using the mean shift

algorithm. In [10], the author proposed an efficient technique

for tracking 2D blobs through an image by using the mean

shift algorithm.

Recently, the RBPF has been applied to tracking problems.

For examples, in [11], the RBPF is used to integrate the

subspace coefficient in an eigen tracking problem. The RBPF

is also used to estimate the locations and identities of

multiple objects [12]. Xu et al. [13] proposed an adaptive

Rao-Blackwellized particle filter to improve the efficiency

and accuracy of a regular particle filter. In [14], the authors

proposed a tracking method to deal with face pose changes

during tracking by using the RBPF and pose-dependent

probabilistic PCA.
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Some previous works have been proposed to solve the

tracking problems for the deformation and occlusion of the

target objects. In [15], a tracking approach is addressed by

representing the template object by multiple image patches

to handle partial occlusion and pose changes. Wu et al. [16]

proposed a dynamic Bayesian network that accommodates an

extra hidden process for occlusion. Ross et al. [17] proposed

a tracking method that incrementally learns the appearance

of the target. Zhou et al. [18] proposed a tracking approach

that incorporates adaptive appearance models in a particle-

filter framework. Recently, Babenko et al. [19] addressed

the problem of learning an adaptive appearance model by

training a discriminative classifier in an online manner.

III. RAO-BLACKWELLIZED PARTICLE FILTER FOR

TRACKING

Particle-filter-based tracking approaches estimate the dis-

tribution of the target state, xt , with given observations up to

time t, Z1:t and an initial target model, M, as shown in Eq.

(1).

p(xt |Z1:t ,M) (1)

To verify the week point of the particle filter under

occlusion and deformation, we compute the likelihood values

for all possible locations in the input image. Each left image

of Fig. 1 shows the likelihood values for each corresponding

image at the right. The brighter pixels represent the higher

likelihood values. As shown in Fig. 1(c), the locations that

may correspond to the target object do not have the higher

likelihood values due to occlusion of the target object and

complex clutter in the background.

In order to track the non-rigid objects under occlusion, we

estimate the joint distribution for the target state and the tar-

get model. In our algorithm, the target model is represented

by the 128-dimensional orientation histogram [5], and that

makes the particle filter infeasible.

To solve this problem, an effective method of reducing

the dimensionality of a problem is to exploit the analytic

structure, known as Rao-Blackwellization [20]. The resulting

algorithm is referred as a Rao-Blackwellized particle filter.

The system state vector consisting of the target state xt and

the target model M1:t is first repartitioned, as referred in Eq.

(2). Thus, the problem of estimating the joint distribution

is decomposed into an estimation problem for the target

state and estimation problems for the target model that are

conditioned on state estimates.

p(xt ,M1:t |Z1:t ,d1:t) =
p(xt ,M1:t ,Z1:t ,d1:t)

p(Z1:t ,d1:t)

= p(xt |Z1:t ,d1:t) p(M1:t |xt ,Z1:t ,d1:t)
(2)

where M1:t is the target model that is updated up to time

t, and d1:t is data association between the target state and

the target model. In the Rao-Blackwellized particle filter,

each particle xi
t has its own target model Mi

1:t , as shown in

Eq. (3). Thus, d1:t simply means the previous target model

belonging to each particle and the weight for each particle

(a) initial tar-
get model

(b) similarity with initial target model before occlusion

(c) similarity with initial target model after occlusion and
illumination changes

Fig. 1. The tracking results by using the conventional particle filter when
occlusion occurs

is evaluated by comparing the current observations with the

corresponding target model in the tracking stage. We update

the target model at time t using the previous target model

for each particle and the corresponding current observations

in the model update stage.

p(xt ,M1:t |Z1:t ,d1:t)

=
N

∑
i=1

p
(

xi
t |Z1:t ,d1:t

)

p
(

Mi
1:t |x

i
t ,Z1:t ,d1:t

)

δ
(

xt − xi
t

) (3)

IV. TARGET STATE ESTIMATION

In the tracking stage, we estimate the probability (weight)

for each particle p
(

xi
t |Z1:t ,d1:t

)

involved in Eq. (3). This

posterior distribution is decomposed by using Bayes theorem,

that is the mechanism for updating the knowledge about the

target state from new data, as shown in Eq. (4).

p
(

xi
t |Z1:t ,d1:t

)

= η p
(

Zt |x
i
t ,d1:t ,Z1:t−1

)

p
(

xi
t |d1:t−1,Z1:t−1

)

(4)

where η is a normalization term that makes the sum of the

weights 1.

Suppose that the required distribution p(x j
t−1|d1:t−1,Z1:t−1)

at time t is available. The prior distribution is formulated by

Eq. (5).

p
(

xi
t |d1:t−1,Z1:t−1

)

= ∑
j

p
(

xi
t ,x

j
t−1|d1:t−1,Z1:t−1

)

= ∑
j

p
(

xi
t |x

j
t−1

)

p
(

x
j
t−1|d1:t−1,Z1:t−1

) (5)
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The prediction stage involves the motion model p(xi
t |x

j
t−1)

which evolves the target candidates at time t, and when

observations Zt become available, the update stage is carried

out.

A. Motion Model

To define a probabilistic model for the state evolution

between time steps, we adopt a random walk that is based on

a uniform density of the previous state and the uncertainties

as follows:

p
(

xi
t |x

j
t−1

)

∼U
[

x
j
t−1 −b,x j

t−1 +b
]

(6)

where b represents our uncertainty about the incremental

changes of the target object in the image. To reduce the

computational cost in the computation of the orientation

histograms for newly generated particles, we calculate the

minimum range of the image that includes all predicted

particles, as shown in Eq. (7). It is used when constructing

the integral images, as introduced in Section 4.2.

umax = max
[

ui
t + si

t

]

, umin = min
[

ui
t − si

t

]

vmax = max
[

vi
t + srs

i
t

]

, vmin = min
[

vi
t − srs

i
t

]

i = 1,2, · · · ,N

(7)

where ui
t and vi

t are the coordinate for a particle xi
t , and si

t

and sr are the scale of the particle (a half of the width) and

the fixed scale ratio (height / width) that is determined by

the initial target region. N is the number of particles.

B. Observation Model

In the update stage, the observations Zt are used to

modify the prior distribution to obtain the required posterior

distribution for the current target state. For this purpose we

use the 128-dimensional orientation histogram zi
t that assigns

a consistent orientation based on local image properties

within the region defined by each particle xi
t . The orientation

histogram is formed from the gradient orientations within

a region around the target location and it has shown to

give reliable feature matching over a wide range of scale

and illumination changes. Recently, orientation histograms

have also been used for human detection [21]. Moreover,

we can reduce the computational cost for computing the

orientation histograms by constructing the integral images.

The integral images have been used for face detection

and feature detection to reduce the computation time, as

introduced in [22][23]. Even though we compute numerous

histograms (3000 histograms when managing 3000 particles),

the computation does not require much time because, in this

algorithm, a majority of the computation time is devoted to

computing integral images 1. Moreover, when constructing

the integral images, we use the minimum range defined in

Eq. (7).

1In our implementation, the computational costs for computing 100 and
3000 histograms are 0.016 sec and 0.031 sec, respectively. (The image
resolution is 640 × 480 pixels.)

Image

One patch defined by one particle
1h 2h 3h 4h
5h 6h 7h 8h
9h 10h 11h 12h
13h 14h 15h 16h

Image

One patch defined by one particle
1h 2h 3h 4h
5h 6h 7h 8h
9h 10h 11h 12h
13h 14h 15h 16h

Fig. 2. Observation z = [h1h2 · · ·h16]
T , hi is an 8-dimensional vector, and

we individually normalize the orientation histogram for each sub region i.e.

‖hi‖ = 1/16

Because our target model is represented by a mixture

of Gaussians (MoG), as mentioned in Section V-A, the

likelihood is determined by

p
(

Zt |x
i
t ,M1:t−1

)

=

exp

(

−
1

2G

B

∑
j=1

G

∑
k=1

(

z
i, j
t −µ

i, j,k
1:t−1

)T (

Σ
i, j,k
1:t−1

)−1 (

z
i, j
t −µ

i, j,k
1:t−1

)

)

(8)

where G is the number of Gaussians for one MoG, and B is

the number of sub regions. z
i, j
t is one histogram correspond-

ing to the jth sub region for the ith particle (i.e. h j). µ
i, j,k
1:t−1

and Σ
i, j,k
1:t−1 are the mean and the covariance corresponding to

the kth Gaussian for the jth sub region, that are updated up

to time t −1, respectively.

V. TARGET MODEL ESTIMATION

A. Target Model Representation

While the Gaussian distribution has some important ana-

lytical properties, it suffers from significant limitations when

it comes to modeling the real dataset. Thus, we represent the

target model by a mixture of Gaussians.

When the target objects are partially occluded or de-

formed, that causes large dissimilarity between the previous

target model and the current observations. What is worse,

if the occluding object contains highly textured regions, the

occluded parts strongly affect the tracking results because

we generally use the normalized histograms. In this case,

occlusion of the small portion causes a large change in the

orientation histograms. However, by maintaining the spatially

divided histograms for each target model that are individually

normalized and by individually updating each histogram, the

proposed algorithm is not strongly influenced by the effect

of occlusion.

For each particle, we individually update the distribution

for its target model by using the corresponding current ob-

servations 2. The target model M1:t is composed of 16 MoG

that are equally weighted, i.e. M1:t = [m1
1:t ,m

2
1:t , · · · ,m

16
1:t ], as

shown in Eq. (9).

2For simplicity, we omit the index of the particle
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p(M1:t |xt ,Z1:t ,d1:t) =
B

∏
j=1

p
(

m
j
1:t |xt ,Z1:t ,d1:t

)

p
(

m
j
1:t |xt ,Z1:t ,d1:t

)

=
1

G

G

∑
k=1

g
(

m
j
1:t ,µ

j,k
1:t−1,Σ

j,k
1:t−1

)

g(m,µ ,Σ) =
1

(2π)
n
2 |Σ|

1
2

exp

(

−
1

2
(m−µ)T Σ−1(m−µ)

)

(9)

Also, the covariance matrix is assumed to be the form:

Σ
j,k
1:t−1 =

(

σ
j,k

1:t−1

)2

I (10)

B. Target Model Update

We update the posterior distribution for the target model

by using on-line approximation of a mixture of Gaus-

sians introduced in [24]. When computing likelihood val-

ues for particles, as explained in Section IV-B, we com-

pare the current observations for each sub region z
j
t

with the G Gaussian distributions that are represented by

µ
j,1

1:t−1,Σ
j,1
1:t−1, · · · ,µ

j,G
1:t−1,Σ

j,G
1:t−1. In this step, as shown in

Fig. 3, we select the nth and lth Gaussian distributions

corresponding to most and least probable distributions with

the current observations by Eq. (11).

n = argmaxc

[

g
(

z
j
t ,µ

j,c
1:t−1,Σ

j,c
1:t−1

)]

l = argminc

[

g
(

z
j
t ,µ

j,c
1:t−1,Σ

j,c
1:t−1

)] (11)

If none of the G distributions match the current observa-

tions, which means g(z j
t ,µ

j,l
1:t−1,Σ

j,l
1:t−1) < Tg, this least proba-

ble distribution is replaced with a distribution defined by the

current histogram z
j
t as its mean and the pre-defined initial

variance. Tg means a threshold value for determining whether

the Gaussian distribution matches the current observations or

not.

Otherwise, the µ and σ parameters of the nth Gaussian

distribution that matches the new observations are updated

as follows:

µ
j,n

1:t =
(

1−ρ j,n
)

µ
j,n

1:t−1 +ρ j,nz
j
t

(σ j,n
1:t )2 = (1−ρ j,n)(σ j,n

1:t−1)
2 +ρ j,n(z j

t −µ
j,n

1:t )T (z j
t −µ

j,n
1:t )

(12)

where ρ j,n = βg(z j
t ,µ

j,n
1:t−1,Σ

j,n
1:t−1) and β is a constant for

the learning rate.

To prevent the drift problem caused by inaccurate tracking,

the first Gaussian distribution which is computed from the

initial model image remains same, i.e. we find two Gaussian

distributions in Eq. (11) among the G distributions except

the first Gaussian distribution.

The model update step is performed when generating

the new particles at the time t because we do not use

all the particles maintained at time t − 1. We generate

new particles xi
t according to the weights of the previous

particles, wi
t−1. Which means that the previous particles that

are evolved to the current state are determined by the re-

sampling process [1] whose role is to eliminate samples with

M M M M

L

L

L

L

11g 12g 13g Gg1

21g
31g

22g 23g Gg 2

1Bg 2Bg 3Bg BGg

32g 33g Gg 3

1z
2z
3z

Bz

target modelobservation

M M M M M

L

L

L

L

11g 12g 13g Gg1

21g
31g

22g 23g Gg 2

1Bg 2Bg 3Bg BGg

32g 33g Gg 3

1z
2z
3z

Bz

target modelobservation

M

Fig. 3. Model update for each sub region by using the current observations,
z1,z2, · · · ,zB. where g jk means one Gaussian whose mean and covariance
are µ jk and Σ jk , respectively.

low importance weights and to multiply samples with high

importance weights. Therefore, to reduce the computation

time, the update for the target model is performed during

the re-sampling process.

The proposed algorithm that simultaneously tracks the

target object and updates the target model can be summarized

as Algorithm 1.

Algorithm 1 Tracking and Model Update using a Rao-

Blackwellized Particle Filter

Input :
{

xi
t−1,w

i
t−1,M

i
1:t−2,z

i
t−1

}

i=1,··· ,N

• FOR i = 1 : N

– Determine i∗ for i by re-sampling process

– Draw xi
t ∼ p(xt |x

i∗
t−1)

– If Mi∗
1:t−1 is not updated by zi∗

t−1

∗ Update Mi∗
1:t−1 using Mi∗

1:t−2 and zi∗
t−1

– Copy Mi
1:t−1 from Mi∗

1:t−1

• END FOR

• FOR i = 1 : N

– Compute orientation histogram zi
t for xi

t

– Calculate weight : wi
t ∼ p(xi

t |Z1:t ,M
i
1:t−1)

• END FOR

• FOR i = 1 : N

– Normalize weight: wi
t = wi

t

∑ j w
j
t

• END FOR

Output :
{

xi
t ,w

i
t ,M

i
1:t−1,z

i
t

}

i=1,··· ,N

VI. EXPERIMENTAL RESULT

A. Tracking Result

We tested our tracking algorithm on several challenging

sequences, and some of them are publicly available, using a

2.4 GHz CPU. For all sequences the number of Gaussians

for one MoG was fixed (G = 10) and 500 particles were used

for each target object. The proposed algorithm can process

about 14 frames per second when it tracks 3 objects and a

total of 1500 particles are used for 3 objects, as shown in

Table I.
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Fig. 4. The tracking results under occlusion

Fig. 5. The tracking results under occlusion using the face sequence used in [15]( Frame 167, 216, 235, 305, 369, 568, 745, 791 )

TABLE I

COMPUTATIONAL COST WHEN USING 2.4GHZ CPU AND 640 × 480

IMAGES (MS)

the number total mean max min
of frames

793 56164 70.825 94 31

The first two sequences, as shown in Fig. 4 and 5, show the

robustness to occlusion. The image sequence in Fig. 5 was

obtained at the website of [15]. In both cases, our tracker

was not strongly influenced by severe occlusion during about

300 and 800 frames in that the first result, as shown in the

top-left figure is almost consistent with the last result in the

bottom-right figure. In Fig. 6, we present more experimental

results from two more sequences that are from the CAVIAR

database [25]. The first is a sequence that includes two

occluded persons by another person, and the second shows

results for scale changes of the target object with partial

occlusion.

B. Performance Evaluation

To analyze the performance in terms of the robustness to

occlusion, deformation and random motion, we used a video

sequence that has three moving people, as shown in Fig.

8. All of the people wandered randomly, and each person

was occluded by the others or trees. For this sequence we

manually marked the ground truth (every third frame). In

Fig. 9, we plotted the position errors of our tracker and of

other methods3 which are the mean shift-based tracker [26],

two methods introduced in [18], [19], and the RBPF that did

not divide the region into 16 sub regions.

For human 1 who is inside the red box in Fig. 8, all other

methods failed to track after occlusion with human 2 who is

inside in the blue box. For human 2, three methods had the

similar performance until 300 frames because he was not

occluded. However, the proposed method shows the better

performance in the last frame, as shown in Fig. 7 and 8. In

the case of human 3 who is inside the green box in Fig. 8,

some methods tracked a part of a tree instead of human 3

because the initial region partially contained the tree, thereby

producing large errors for other methods, as shown in Fig.

9(c). Finally, the proposed method could successfully track

3For all particle filter-based approaches, we selected one particle corre-
sponding to the maximum weight and compared it with the ground truth
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(a) Tracking results of the CAVIAR database at http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/OneLeaveShopReenter2cor.tar.gz

(b) Tracking results of the CAVIAR database at http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/WalkByShop1cor.tar.gz

Fig. 6. The tracking results under occlusion using the CAVIAR database

Fig. 7. The tracking results for a video sequence that has three people by using [19] (Frame 2, 40, 167, 793(last))

three people under these conditions.

VII. CONCLUSION

We have presented an efficient tracking algorithm that

simultaneously estimates the movement of the target object

and the distribution for the target model by adopting a Rao-

Blackwellized particle filter. In the proposed method, the

particle filter-based tracking method and the model update

based on the on-line approximation of a mixture of Gaussians

are combined. To ensure the robustness to occlusion, we rep-

resent the target model by 16 histograms computed from 16

sub regions and individually update the posterior distribution

for each histogram through the incoming observations. We

have demonstrated the robustness of the proposed method

through various experiments.
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