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Abstract— It is interesting to observe from human visually
guided tasks that visual feedback is not used for the entire
movement, but only at end phases when our hand is near
the target. We are able to move our hand from an initial
position that is not within our field of view and transit
smoothly and easily into visual feedback when the target is
near. Inspired by this natural action, this paper presents a new
task-space adaptive controller with dual feedback information.
The proposed controller consists of a Cartesian-space region
reaching controller at the initial stage and a vision based
tracking controller that is only activated when the end effector
enters an image region. A new potential energy function is
proposed such that the image region can be fixed as the
field of view of the camera and does not have to vary with
the desired trajectory. The proposed task-space controller can
transit smoothly from Cartesian-space reaching to vision-space
tracking control. The stability of the closed-loop system is
analyzed with consideration of the nonlinear dynamics. The
proposed adaptive controller is implemented on an industrial
robot and experimental results are presented to illustrate the
performance of the proposed controller.

I. INTRODUCTION

In conventional task-space control of robot, a single task-
space information in either Cartesian space or visual space is
used for the entire task. The basic idea of task-space control
is to formulate a control scheme using the Cartesian error or
visual error directly to eliminate the requirement of solving
the inverse kinematics. The first Cartesian-space regulator
was proposed by Takegaki and Arimoto [1]. It was shown
using Lyapunov’s method that the PD control plus gravity
compensation is effective for setpoint control despite the
nonlinearity and uncertainty of the robot dynamics. Inspired
by the original work [1], much progress has been achieved
in understanding the task-space regulation problems [2]–
[5]. To deal with trajectory tracking control, Slotine and
Li [6] proposed a Cartesian-space adaptive controller. Most
researches on robot control have assumed that the exact kine-
matics and Jacobian matrix of the manipulator are known.
To overcome the problem of uncertain kinematics, Cheah
et al. [7] presented an adaptive Jacobian tracking controller
with concurrent adaptation to both kinematics and dynamic
uncertainties. Recently, the problems of depth uncertainty in
image based control have been studied in [8], [9].

However, those aforementioned task-space controllers use
only single task-space information for the entire task, which
is either defined in Cartesian space [1], [6] or in image space

[7], [8]. Visual feedback control is robust to modeling and
calibration errors and also improves the accuracy of end-
point positioning [10]. However, if image information is used
for the entire task, the camera may not be able to cover
the entire workspace because of a limited field of view. In
addition, when the end-effector moves at a high speed, it is
difficult to track the image feature.

It is interesting to observe in human reaching movement
that the visual feedback is not used for the entire movement,
but only at end phases when our hand is near the target.
We are able to move our hand from an initial position that
is not within our field of view and transit smoothly and
easily into visual feedback when the target is near. The
exploration of a controller that mimic such human behavior is
an important step toward understanding dextrous movement
of robot. Recently, a new task-space control strategy that
allows the use of dual task-space information for a single
controller is proposed [11]. The task-space setpoint controller
only requires vision feedback when the end effector is
near the desired position. However, the result in [11] is
focusing on setpoint control or point-to-point control of
robot. In addition, the desired position must be defined as
the geometrical center of the image region and therefore the
image region varies with the desired position and hence can
not be fixed as the camera’s field of views.

In this paper, we propose a new task-space adaptive
controller. The main contribution is the development of
a new potential energy function such that its geometrical
center is not necessary the desired motion. Therefore, the
image region can be fixed as the field of view of the
camera and does not have to vary with the desired trajectory.
In addition, the task-space controller only requires vision
feedback when the end-effector is near the desired trajectory.
The proposed controller consists of a Cartesian-space region
reaching controller that is activated at the initial stages and a
vision based tracking controller that is only activated when
the end effector enters the image region. The proposed
task-space controller can transit smoothly from Cartesian-
space reaching to vision-space tracking control. The pro-
posed adaptive controller is implemented on an industrial
robot and experimental results are presented to illustrate the
performance of the controller.
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II. ROBOT KINEMATICS AND DYNAMICS

We consider a robot system with camera(s) fixed in the
work space. Let r ∈ �p denotes a position of the end effector
in Cartesian space as [3] [12]:

r = h(q), (1)

where h(·) ∈ �n → �p is generally a non-linear transfor-
mation describing the relation between joint space and task
space, q = [q1, · · · , qn]T ∈ �n is a vector of joint angles of
the manipulator. The velocity of the end-effector ṙ is related
to joint-space velocity q̇ as:

ṙ = Jm(q)q̇, (2)

where Jm(q) ∈ �p×n is the Jacobian matrix from joint space
to task space.

For a visual servoing system, cameras are used to observe
the position of the end-effector in image space. We use
the standard pinhole camera model for the mapping from
Cartesian space to image space, which has been proven
adequate for most visual servoing tasks [10]. Let xi =
[xhi, xvi]T ∈ �2 denotes a feature point, while xhi represents
the horizontal coordinate and xvi the vertical coordinate.
Then x = [x1, x2, · · · , xi, · · · , xm]T ∈ �2m denotes a vector
of image features, where m is the number of image features.
The relationship between rate of the change of the image
features and the velocity of end-effector is represented by an
image Jacobian matrix JI(r) as [13] [14]:

ẋ = JI(r)ṙ. (3)

From equations (2) and (3), we have:

ẋ = JI(r)Jm(q)q̇ = J(q)q̇, (4)

where J(q) ∈ �2m×n is the Jacobian matrix mapping from
joint space to image space.

The dynamics of manipulator is described by [3] [12]:

M(q)q̈ + (
1
2
Ṁ(q) + S(q, q̇))q̇ + g(q) = τ, (5)

where M(q) ∈ �n×n is an inertia matrix, g(q) ∈ �n denotes
the gravity vector, τ ∈ �n denotes the control inputs, and

S(q, q̇)q̇ =
1
2
Ṁ(q)q̇ − 1

2
{ ∂

∂q
q̇T M(q)q̇}T .

Three important properties of the robot dynamics de-
scribed by equation (5) are given as follows [3] [12]:
Property 1: The inertia matrix M(q) is symmetric and
positive definite for all q ∈ �n.
Property 2: The matrix S(q, q̇) is skew-symmetric such that:

yT S(q, q̇)y = 0, (6)

for any y ∈ �n.
Property 3: The dynamic model as described by equation (5)
is linear in a set of physical parameters θd = (θd1, · · · , θdp)

T :

M(q)q̈+(
1
2
Ṁ(q)+S(q, q̇))q̇+g(q) = Yd(q, q̇, q̇, q̈)θd, (7)

where Yd(q, q̇, q̇, q̈) ∈ �n×p is called the dynamic regressor.

III. TASK-SPACE ADAPTIVE TRACKING CONTROL WITH

DUAL TASK-SPACE INFORMATION

In this section, we present the proposed task-space track-
ing controller with dual feedback signals. The basic idea is
to divide the task into two regions: a Cartesian-space region
for the reaching movement of robot’s end-effector at the
beginning stage and an image-space region for the tracking
control task at the end stage.

Let xdi(t) = [xdhi(t), xdvi(t)]T ∈ �2 denotes a desired
trajectory of the ith feature in the image region. We define
the image region as follows:

fi(Δxi) =
(xhi(t) − xdhi(t))

N

(xbhi − xdhi(t))
N

+
(xvi(t) − xdvi(t))

N

(xbvi − xdvi(t))
N

−1 ≤ 0,

(8)
where xbi = [xbhi, xbvi]T ∈ �2 represents the fixed bound-
ary of the region, and Δxi = xi(t)−xdi(t) denotes the image
error. The image region fi(Δxi) ≤ 0 denotes a superellipse
region with order N , where N is an even integer.
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Fig. 1. Example of the image region fi(Δxi) ≤ 0 with N = 20

The desired trajectory xdi(t) is specified within the image
region, and the image region is divided into four parts with
respect to xdi(t), as illustrated in Figure 1. From Figure 1,
the boundary of image region is defined by four parameters:
xhR, xhL, xvT and xvB . Hence the boundary positions in
equation (8) are set as:

xbhi =
{

xhL, xhi ≤ xdhi,
xhR, xhi > xdhi,

(9)

xbvi =
{

xvB , xvi ≤ xdvi,
xvT , xvi > xdvi.

(10)

Using the image region function (8), a potential energy
function is specified in image space as:

Pi(xi) =
ai

2
(1 − [min(0, fi(Δxi))]2), (11)

where ai are positive constants.
Note that when the order N in equation (8) varies, fi(Δxi)

and Pi(xi) also change. Let fli(Δxi) be a lower order
function of (8) with order Nl (e.g. Nl = 2) and fhi(Δxi)
be a higher order function with order Nh (e.g. Nh = 20),
where Nl and Nh are both even integers. Using fli(Δxi) and
fhi(Δxi) in equation (11), we obtain a low-order potential
energy Pli(xi) and a high-order potential energy Phi(xi)
respectively, which are shown in Figure 2 and 3.
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Fig. 2. A low-order potential energy Pli(xi) with Nl = 2
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Fig. 3. A high-order potential energy Phi(xi) with Nh = 20

From Figure 2 and Figure 3, it is observed that when
the order of the function (8) is high, the bottom part of the
potential energy becomes flat, while the top contour is close
to a rectangle. When the order is low, the bottom part of
the potential energy is a point, but the top contour is not a
rectangle and therefore can not cover a large image space.
Combining the advantages of the low-order and the high-
order functions, the overall potential energy is proposed as:

Pci(xi) = Phi(xi) + Pli(xi). (12)

The overall potential energy is illustrated in Figure 4. It
is interesting to observe that with different xdi(t), the top
contours of overall potential energy remain the same while
the bottom part of the potential energy varies (see Figure 4).

Fig. 4. Overall image potential energy Pci(xi) with different xdi(t)

In the presence of multiple features, the image regions can
be specified as:

fh(Δx) = [fh1(Δx1), fh2(Δx2), · · · , fhm(Δxm)]T ≤ 0,

fl(Δx) = [fl1(Δx1), fl2(Δx2), · · · , flm(Δxm)]T ≤ 0.

Therefore, the overall potential energy is given in image
space as:

Pc(x) =
∑m

i=1 Pci(xi) =
∑m

i=1 Phi(xi) +
∑m

i=1 Pli(xi)
= kpαx

∑m
i=1

ahi

2 (1 − [min(0, fhi(Δxi))]2)
+kpαx

∑m
i=1

ali

2 (1 − [min(0, fli(Δxi))]2), (13)

where ahi, ali, αx and kp are positive constants. Note that
Pc(x) is also lower bounded by zero.

Partial differentiating the potential energy functions in
equations (13) with respect to Δx, we have:

∑m
i=1(

∂Phi(xi)
∂Δx )T

= −kpαx

∑m
i=1 ahimin(0, fhi(Δxi))(

∂fhi(Δxi)
∂Δx )T , (14)

∑m
i=1(

∂Pli(xi)
∂Δx )T

= −kpαx

∑m
i=1 alimin(0, fli(Δxi))(

∂fli(Δxi)
∂Δx )T . (15)

Based on equations (14) and (15), we define two region
errors as:

Δξh =
m∑

i=1

ahimin(0, fhi(Δxi))(
∂fhi(Δxi)

∂Δx
)T , (16)

Δξl =
m∑

i=1

alimin(0, fli(Δxi))(
∂fli(Δxi)

∂Δx
)T . (17)

As seen from equation (11) and Figure 4, there is no
change in potential energy with respect to position when x(t)
is outside the image region. Hence, the image region errors
Δξh and Δξl are zero when x(t) is outside image region
(i.e. fh(Δx) > 0 and fl(Δx) > 0). When the end-effector
enters the image region, they become nonzero.

Next, a Cartesian region is defined as:

f1(r1) = (r1−rc1)2

(rb1−rc1)
2 − 1 ≤ 0,

· · ·
fp(rp) = (rp−rcp)2

(rbp−rcp)2
− 1 ≤ 0,

(18)

where r = [r1, · · · , rp]T ∈ �p denotes the position of
end-effector in Cartesian space. Since the objective is to
bring the end-effector into the image region, only position
of the end-effector is sufficient and therefore p is usually
less than 3. The vector rb = [rb1, · · · , rbp]T ∈ �p represents
boundary position in individual coordinate, and the vector
rc = [rc1, · · · , rcp]T ∈ �p denotes a reference point within
Cartesian region. The Cartesian region is constituted by
several sub-regions. Other examples of region can be referred
in [16].

The total potential energy in Cartesian space is defined as:

Pr(r) =
p∑

i=1

Pi(ri) =
p∑

i=1

kpαr

2
[max(0, fi(ri))]2, (19)

where kp and αr are positive constants. An illustration of
the above function is shown in Figure 5.
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Fig. 5. A potential energy Pr(r) in 2-D Cartesian space

Partial differentiating the above potential energy function
(19) with respect to r, we have:

∂Pr(r)
∂r

= kpαr

p∑
i=1

max(0, fi(ri))(
∂fi(ri)

∂r
)T . (20)

From the definition of Cartesian region function, note that∑p
i=1 max(0, fi(ri))(

∂fi(ri)
∂r )T �= 0 when end-effector is

outside the Cartesian region. Once the end-effector reaches
the region, this term becomes zero. This is the crucial dif-
ference between the image region control and the Cartesian
region control.

Next we define a region error in Cartesian space as:

Δεr =
p∑

i=1

max(0, fi(ri))(
∂fi(ri)

∂r
)T . (21)

Since visual feedback is only used when the end-effector
reaches the image-space region, the desired trajectory in
image space is specified so that:

ẋd =
{

0, Δεr �= 0,
ẋd(t), Δεr = 0.

(22)

Next, a reference vector is introduced as:

ẋai = [ẋdhi − ẋdhi
xhi−xdhi

xbhi−xdhi
, ẋdvi − ẋdvi

xvi − xdvi

xbvi − xdvi
]T .

Let ẋa = [ẋa1, · · · , ẋam]T ∈ �2m, a sliding vector is defined
as

s = q̇ − q̇r = q̇ − J+
m(q)J+

I (r)ẋa

−αxJ+
m(q)JT

I (r)(Δξh + Δξl) + αrJ
+
m(q)Δεr, (23)

where J+
m(q) is the pseudo-inverse matrix of Jm(q), J+

I (r)
is the pseudo-inverse matrix of JI(r) and JT

I (r) is the
transpose matrix of JI(r).

The task-space tracking controller with dual feedback
information and the dynamics update law are proposed as:

τ = kpαxJT
m(q)JT

I (r)(Δξh + Δξl)

−kpαrJ
T
m(q)Δεr − Kvs + Yd(q, q̇, q̇r, q̈r)θ̂d, (24)

˙̂
θd = −LdY

T
d (q, q̇, q̇r, q̈r)s, (25)

where Kv ∈ �n×n is a positive definite matrix. Ld is a
positive definite matrix and θ̂d is the vector of estimated

dynamic parameters. The Cartesian region described by
fr(r) ≤ 0 is slightly overlapped with the image region
fh(Δx) ≤ 0, such that the gradient of the overall potential
energy Pc(x) + Pr(r) does not reduce to zero. Therefore,
the first and second term on the right side of equation (24)
do not reduce to zero at the same time during the transition
from Cartesian space to image space.

Using equation (23), the robot dynamics is presented as:

M(q)ṡ + (
1
2
Ṁ(q) + S(q, q̇))s + Yd(q, q̇, q̇r, q̈r)θd = τ. (26)

Substituting the control law described by equation (24)
into equation (26), we obtain the closed-loop equation as:

M(q)ṡ + (1
2Ṁ(q) + S(q, q̇))s

−kpαxJT
m(q)JT

I (r)(Δξh + Δξl) + kpαrJ
T
m(q)Δεr

+Kvs + Yd(q, q̇, q̇r, q̈r)Δθd = 0. (27)

A Lyapunov-like function is defined as

V =
1
2
sT M(q)s + Pc(x) + Pr(r) +

1
2
ΔθT

d L−1
d Δθd. (28)

Differentiating equation (28) respect to time, we get:

V̇ = sT M(q)ṡ + 1
2sT Ṁ(q)s

−kpαx

∑m
i=1 ahimin(0, fhi(Δxi))(ẋ − ẋa)T (∂fhi(Δxi)

∂Δx )T

−kpαx

∑m
i=1 alimin(0, fli(Δxi))(ẋ − ẋa)T (∂fli(Δxi)

∂Δx )T

+
∑p

i=1 kpαrmax(0, fi(ri))ṙT (∂fi(ri)
∂r )T

− ˙̂
θd

T

L−1
d Δθd. (29)

Then substituting equation (22), (23), (25) and (27) into
equation (29) and using Property 2, we obtain:

V̇ = −sT Kvs

−kp[αrΔεr − αxJT
I (r)(Δξh + Δξl)]

T ×
[αrΔεr − αxJT

I (r)(Δξh + Δξl)] ≤ 0. (30)

We can now state the following theorem:
Theorem : The adaptive control law (24) and the parameter
update law (25) for the robot system (5) guarantee the
convergence of the tracking errors. That is x(t) → xd(t),
ẋ(t) → ẋd(t) as t → ∞.
Proof: Since M(q) is uniformly positive definite, V in
equation (28) is positive definite in s and Δθd. Since V > 0
and V̇ ≤ 0, V is bounded. Hence, s, Δθd, Pr(r) and Pc(x)
are bounded. Thus fi(Δxi) and fi(ri) are also bounded, and
∂fi(Δxi)

∂Δx , ∂2fi(Δxi)
∂Δx2 and ∂fi(ri)

∂r , ∂2fi(ri)
∂r2 are also bounded.

Therefore, (Δξh + Δξl) and Δεr are bounded. Then from
equation (23), qr is also bounded. q̇ in equation (23) is
also bounded since s is bounded. The boundedness of q̇
guarantees the boundedness of ẋ and ṙ since both Jm(q) and
JI(r) are trigonometric function. Since ∂fi(Δxi)

∂Δx , ∂2fi(Δxi)
∂Δx2

and ∂fi(ri)
∂r , ∂2fi(ri)

∂r2 are bounded, (Δξ̇h + Δξ̇l) and Δε̇r

are bounded. Then q̈r is bounded. From the closed-loop
equation (27), we can conclude that ṡ is bounded. Thus,
q̈ is bounded since ṡ = q̈ − q̈r. Thus, V̈ is bounded since
ṡ, s, (Δξ̇h + Δξ̇l), (Δξh + Δξl), Δε̇r, Δεr are bounded.
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Therefore, V̇ is uniformly continuous. Applying Barbalat’s
lemma [15], we have V̇ → 0 which also indicates:

(αrΔεr − αxJT
I (r)(Δξh + Δξl)) → 0, (31)

and s → 0.
If the end-effector is located outside the image region,

then Δεr �= 0, Δξh = 0 and Δξl = 0, which contracts
with equation (31). If the end-effector is located within the
overlapped region, then Δεr �= 0, Δξh �= 0 and Δξl �= 0.
Since the gradient of overall potential energy is not zero, the
end-effector can not settle down. Therefore, the end-effector
can only settle down within the Cartesian region and image
region. Then Δεr = 0 and from (31) (Δξh + Δξl) = 0.

Since Nh and Nl are both even integers, Nh − 1 and
Nl − 1 are both odd integers. Therefore the signs of the pair
of entry in (∂fhi(Δxi)

∂Δx )T and (∂fli(Δxi)
∂Δx )T are always the

same. Then the signs of Δξh and Δξl in equation (16) and
(17) are always the same. Hence (Δξh +Δξl) = 0 indicates
that Δξh = 0 and Δξl = 0. From equation (16) and (17)
only (∂fhi(Δxi)

∂Δx )T = 0 and (∂fli(Δxi)
∂Δx )T = 0 can ensure

that Δξh and Δξl reduce to zero, which mean Δx → 0
and x(t) → xd(t) as t → ∞. From the definition of s in
equation (23), x(t) → xd(t) and Δεr → 0 indicate that
ẋa → ẋd(t). Therefore, s → 0 and ẋa → ẋd(t) implies
ẋ(t) → ẋd(t) as t → ∞. ���

Remark: For Pli(xi), when Nl > 2 the bottom part
becomes a flat area, hence Nl = 2 is usually chosen as the
order of Pli(xi). For Phi(xi), if Nh is too small, the top
contour is not a rectangle and hence can not cover a large
image region. Therefore, Nh is chosen larger than 20. From
equation (8), note that the order of denominator is not less
than that of numerator in (∂fi(Δxi)

∂x )T and fi(Δxi). When
the end-effector starts from an initial position outside the
image region, the region errors Δξh and Δξl are always
zero regardless of the order. When the end-effector is inside
the finite image region, the tracking error is also finite and
hence the region errors are bounded.

IV. EXPERIMENT

The proposed adaptive tracking controller was imple-
mented on an industrial robot. The experimental setup con-
sists of a PSD camera: C5949 and a Sony SCARA robot.
An end-effector is attached to the second joint of robot.
The PSD camera is used to measure the position of end-
effector in image space in the unit of voltage [17]. The
image region is defined by a superellipse: fh(Δx) ≤ 0 with
N = 20, and the size of the rectangle with smoothed corners
is 0.13V × 0.13V . The order of fl(Δx) ≤ 0 is N = 2, and
the Cartesian region is slightly overlapped with the image
region. The control gains are set as: aph = 0.01, apl = 0.1,
Kv = 0.0001, αx = 0.001, αr = 3 × 10−8, kp = 1000 and
Ld = diag(0.01, 0.01).

In the first experiment, the desired trajectory is specified
as:{

xdh = −0.55 − 0.002(t− tr)(1 − e−k(t−tr)),
xdv = 0.71 − 0.002(t− tr)(1 − e−k(t−tr)),

Fig. 6. Experimental setup

where tr is the time taken for the end-effector to reach
the Cartesian region, and k is a positive constant. The
experimental results are shown in Figure 7 - Figure 9. tv
is the time when the end-effector enters the image region.

In the second experiment, the desired trajectory is specified
as:{

xdh = −0.57 + 0.026cos(12(t− tr) + π)(1 − e−k(t−tr)),
xdv = 0.69 + 0.028sin(12(t− tr) + π)(1 − e−k(t−tr)),

the experimental results are shown in Figure 10 - Figure 12.

V. CONCLUSION

In this paper, a new adaptive controller that allows the
use of visual feedback at the end stage, has been presented.
The proposed task-space controller can transit smoothly from
Cartesian-space feedback at the initial stage to vision-space
tracking control when the end effector enters the image
region. Experimental results have been presented to illustrate
the performance of the proposed controller.
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