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Abstract— The planning of grasping motions is demanding
due to the complexity of modern robot systems. In Program-
ming by Demonstration, the observation of a human teacher
allows to draw additional information about grasping strategies.
Rosell showed, that the motion planning problem can be
simplified by globally restricting the set of valid configurations
to a learned subspace. In this work, the transformation of a hu-
manoid grasping strategy to an anthropomorphic robot system
is described by a probabilistic model, called variation model,
in order to account for modeling and transformation errors.
The variation model resembles a soft preference for grasping
motions similar to the demonstration and therefore induces a
non-uniform sampling distribution on the configuration space.
The sampling distribution is used in a standard probabilistic
motion planner to plan grasping motions efficiently for new
objects in new environments.

I. INTRODUCTION

A typical service robot has to perform complex
manipulation strategies in order to assist a human in his
natural environment. The ability to grasp objects with
high accuracy and high stability is a prerequisite for most
manipulation tasks. Different grasping strategies, i.e. an
approach motion and contact points on the object, can
be pursued in order to reduce unintentional contacts with
the object and the environment, that may lead to object
displacement or failure of the grasp. The planning of such
constrained grasp motions is demanding due to the high
complexity of modern robot systems. In research, the
problem is often decomposed into the determination of a set
of contact points on the object, e.g. forward grasp planning
[1], and a subsequent motion planning step. Constrained
motion planning in high-dimensional configuration spaces is
a challenging problem itself and requires the use of clever
heuristics. In Programming by Demonstration (PbD), the
observation of a human operator performing a given task is
used to extract information about useful grasping strategies.
This information can be exploited to automatically generate
useful heuristics for motion and grasp planning.

In this work, we are concerned with learning of grasping
strategies for an anthropomorphic robot hand using the
PbD paradigm. Building on an initial mapping using virtual
fingers and local optimization, a probabilistic model based
on factor graphs is learned, which explicitly models the
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optimization and modeling errors. This learned variation
model represents a time dependent sampling distribution of
the robot configuration space, that is used in a probabilistic
motion planer to generate valid solutions for grasps of
similar objects in new environments. By explicitly modeling
the outcome of the transformation process as a stochastic
process, an automatic weighting between exploitation of the
knowledge demonstrated by the human operator and the
fast exploration of the configuration space is achieved.

II. RELATED WORK

The transformation of human grasps to a robotic hand has
to account for differences in kinematics and geometry of the
human and robot hand. In [2], [3] and [4], the concept of
virtual fingers is used to determine groups of human fingers,
which apply similar forces on the object. These sets of
human fingers describe the minimal set of actuators, which
are necessary to execute the grasp, but can also be used to
map human fingertip positions to a robot hand. The direct
mapping using inverse kinematics presented in [4] doesn’t
account for workspace limitations of the robot system but for
the mapping of the whole approach motion. Workspace and
physical limitations of the robot hand can be considered by
formulating and solving an optimization problem describing
the mapping process. In [5], global optimization is used to
map one set of contact points on the object to the robot
hand. For the presented system of equations consisting of
linear, quadratic and bilinear monomials all solutions can
be found using an iterative relaxation technique. In order to
reduce the solution space, collision constraints and the grasp
have to be incorporated, which is problematic due to the
different algebraic structure. Additionally, the investigation
of local variations of the set of contact points, which is
necessary when dealing with the imprecise transformation
from human fingertip positions to the robot system, was not
in the scope of the referenced paper. In real applications,
a service robot has to face unknown situations, e.g. scenes
with different obstacles. The search for a valid grasp
requires the calculation of collision-free approach motions,
which is a demanding problem itself and requires the
development of powerful heuristics. In telerobotics, the
direct mapping of the workspaces has been investigated,
which allows for the generation of whole grasping motions
but requires the presence of a human operator. For the
DLR/HIT hand, [6] presents a direct transformation method
relying on the human operator to generate a valid grasp by
closed loop control. In this context, it is difficult to exploit
the capabilities of the robot system, e.g. a larger joint range.
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Automatic planning of grasping motions is demanding
due to the complexity of the configuration space of the
robot hand, e.g. the SAH (including the wrist position
and orientation) has 19 degrees of freedom. In [7], the
search space for motion planning is reduced by using a
subset of the principal components of a large set of training
data. The training data is obtained by observing a human,
who teleoperates the robot hand using a dataglove. In this
work, only a single demonstration is necessary to derive
an object-depended search space reduction, which doesn’t
globally restrict the set of valid finger motions.

Learning and evaluation of custom sampling distributions in
a probabilistic motion planning process has been investigated
by [8] et al. In [8], the sampling distribution is learned using
a grid-based frequency distribution of multiple instances
of the planning problem in one scene, reducing planning
time for future instances in the same scene. In contrast to
this approach, the variation model captures all available
information about the demonstrated grasping strategy in one
Bayesian model, allowing for the generalization to different
scenes and objects.

The definition of the variation model using factor graphs
is based on the work of Toussaint, who uses inference
methods on probabilistic models [9] to solve the motion
planning problem. In the next section, the general problem
is defined and necessary definitions are developed.

III. DEFINITIONS

In this work, a probabilistic representation of a human
grasping strategy is learned based on one set of trajectories
of the human wrist and fingertips. The probabilistic
grasping strategy represents a probability distribution on the
configuration space of the robot system, which is used in
a probabilistic motion planner to generate similar grasping
motions for an anthropomorphic robot hand. The necessary
definitions are given in this section.

The demonstrated trajectories of the wrist and fingertips
of the human operator are described by a discrete path τh
in the human configuration space Ch. Time is discretized
due to the limited frequency of sensor data (20Hz) and
the use of discrete steps in the motion planning algorithm.
The input is given by the demonstrated trajectory τh of an
example solution in the human configuration space:

τh : {1, ..., T} → Ch = R3 × SO(3)× R15 (1)

The human configuration space Ch consists of the position
and orientation of the human wrist and 20 finger joint values,
one abduction-adduction and three flexion-extension joints
for each finger. The hand model resembles the kinematic
model of the human hand. The trajectory is stored relative
to the object o with the position and orientation described by
the Gaussian distribution No(µo,Σo) on R3 × SO(3) with
mean µo and covariance Σo. Orientations are represented
in scaled-axis notation, see [10]. The robot configuration

space Cr is defined as R3 × SO(3) × Rm, where m is
the number of degrees of freedom of the robot hand. The
grasp quality is described by the measure φo : Cr → [0, 1].
In this work, φo(~k) is computed in two steps. First, in a
given configuration ~k the hand is closed with uniform speed
until all fingers have contact or the joint limits are reached.
Second, the force-closure quality measure is calculated, i.e.
the radius of the largest ball lying completely in the grasp
wrench space (centered at the origin). Constraints, that have
to be valid on all points of the trajectory, are described by
the function ψo : Cr → {0, 1}. In this work, ψo will assign
0 to collision-free configurations, 1 otherwise.

IV. APPROACH

In this section, we outline our general approach of learning
grasping strategies using Programming by Demonstration.
The PbD process is summarized in fig. 1. A human operator
demonstrates the grasping strategy on real objects in a
sensory environment [4] being observed by multiple sensor
systems including a 6D motion tracking device for the wrist
position and orientation and two datagloves measuring 22
degrees of freedom of the human hands. The sensor data is
filtered, segmented and mapped to symbolic operators. For
each grasp operator, the example-trajectory τh is obtained
by storing the wrist and fingertip trajectories relative to
the grasped object. The localization error No(µo,Σo) is
obtained by stereo-camera object localization with IVT [11].

In this work, the focus is on mapping an observed,
humanoid grasping strategy to an anthropomorphic robot
system with different kinematics and geometry. Instead
of a direct mapping of trajectories, a probabilistic model
is learned, which embodies a generalized version of the
strategy and can be used to grasp a similar object in
an environment with additional obstacles. The complete
process is shown in fig. 2. The direct transformation of
the grasping strategy to the robot hand has to take the
kinematic and geometric differences into account. In the
first step, the different number of fingers l of the robot hand
and the human hand have to be considered. For example,
the robot hand SAH, which is used in the experiments,
has a thumb and only three oppositional fingers. Virtual
fingers, see section II, are calculated in the last point on τh
to assign one demonstrated finger trajectory to each robot
finger. Due to its special role, the thumb is directly mapped
to a single virtual finger. For the oppositional fingers, the
set of l − 1 virtual fingers with minimal grasp cohesive
index is computed. From each virtual finger, a real finger is
chosen leading to the discrete path τv, which is the starting
point for the transformation of the strategy to the robot hand.

In the second step, the grasping strategy has to be
transformed into the workspace of the robot hand taking
geometric, e.g. finger width, finger length, and kinematic,
e.g. joints, differences into account. Let Fi(~k) be the 3d
position of the ith finger in the configuration ~k. Hi(~k)
is the homogenous matrix describing the position and

874



user 
interaction

motion & grasp 
planning

abstraction

Pouring

G

G

M U

U

perception

segmentation & interpretation

mapping

demonstration execution

Fig. 1. Programming by demonstration: Learning of grasping strategies

mapping

Virtual fingers

Local optimization

Variation model

Marginal distributions

Motion planning

New object & scene

Grasp quality

Fig. 2. Mapping of grasping
strategies: overview

orientation of the hand in the configuration ~k and rTh is the
homogenous matrix describing the transformation from the
human hand base frame to the robot hand base frame. Ji(~k)
represents the ith joint value of the configuration ~k.

The following distance functions di : C×{1, ..., T} → R>0

are defined as:

dj(~k, t) = ‖Fj(τv(t))− Fj(~k)‖ ∀j = 1, 2, 3, 4

d5(~k, t) = ‖H(~k)−1 · rTh ·H(τv(t))‖

d6(~k, t) =

{
0, ~k is collision-free
1, otherwise

d7(~k, t) =

{
0, t ≤ 1
max

i=1,..,m
|Ji(~k)− Ji(τr(t− 1))|, t > 1

d1, d2, d3 and d4 calculate the distance of the fingertip
of the thumb, point finger, middle finger and ring finger
of the robot and human hand. d5 calculates the distance
of the human to the robot wrist (sum of positional error,
in mm, and rotational error, in degree). d6 measures,
if a given configuration is collision free. d7 calculates
the distance between two subsequent configurations.
Each distance function will be multiplied by a weight
wi ∈ R>0. The weights do not depend on the problem
instance and have been experimentally determined to be
(w1, w2, w3, w4, w5, w6, w7) = (3, 1, 1, 1, 0.1, 10000, 10)
for the SAH. The weight w1 of the thumb distance o the
demonstrated trajectory equals the summed weight of the
oppositional fingers (w2, w3 and w4). More uniform values
lead to a larger thumb offset, which is disadvantageous
since the thumb of the SAH is less flexible than the human
one and therefore large errors can’t be compensated in
the motion planning step. The weight of the wrist w5

reflects, that keeping close to the human hand pose is less
important than the distance of the finger tips. w5 can be
increased, if the shape and size of the robot hand matches
the human hand. The weight for collisions w6 has been set
to a large number instead of ∞ to allow for the traversal

of forbidden areas in the search space. Smoothness is
maintained by w7, that weights the distance of the joint
angles of subsequent time steps and therefore depends on
the temporal discretization.

Finally, an optimization problem based on the path τv,
the weights wi and the distance functions di is formulated:

∀t = 1, ..., T : τr(t) = arg min
~k∈Cr

7∑
i=1

widi(~k, t) (2)

Due to the high dimension of the configuration space,
smoothness is only considered between two subsequent time
steps and the optimization problem is formulated point-wise.

The problem is solved approximately using the Rosenbrock
method [12], which is a fast, robust, 0-order optimization
technique, and robust1 inverse kinematics f−1

i for each
finger i [13], which solves the problem of linked joints
by interpolation of reference values. In the Rosenbrock
optimization process, for each configuration ~k, inverse
kinematics are used to place the finger tips near the current
point on the demonstrated trajectory, which effectively
reduces the problem size. The joint values of the ith Finger
are calculated using

f−1
i (H(~k)−1 · rTh · Fi(τv(t)))

The result is a locally optimal discrete path τr, where
each point is modeled as an estimator of the demonstrated
fingertip positions. Based on this assumption, the euclidean
mean squared error of the optimized fingertip positions is
used to obtain the (degenerated) covariance matrices Σr(t).

In general, the learned robot trajectory τr depends on
the object and the scene in the demonstration environment.
In order to adapt the grasping strategy to different objects

1Points, that are not in the workspace of the finger are shortened, and
joint angles, that are not in the allowed range, are cut off.
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Fig. 3. Variation model: product of marginal distributions for the ham can
grasping strategy, Σm = 0

and scenes, the allowed range of variations of the strategy is
explicitly described in a probabilistic model. By following
a Bayesian approach, the employed parametric model can
be regarded as an efficient way to describe the lack of
information about the real structure of the grasping motion.
The parametric structure of the model allows to abstract
from a single demonstration using a global modeling error
and to infer information about single random variables in
the model, which will be used in the evaluation of the model
in section VI. In contrast, the frequenist approach requires
a high number of demonstrations in order to calculate a
frequency distribution of valid grasping motions.

The modeling error, e.g. differences in the kinematics and
geometric of the human and robot hand, is approximated
by a Gaussian distribution on Cr with zero mean and
empirically determined covariance Σm. Due to the structure
of the optimization problem, learning of precision grasps is
in general more accurate than learning of power grasps, see
mean squared error in table I. For precision grasps, Σm is
based on the standard deviation of the fingertip positions
8mm (to consider the finger width of the robot hand), 5mm
for the wrist position and 2◦ for the wrist orientation, which
approximates sensor noise of the tracking device [14]. For
power grasps, the exclusion of the finger curveture in the
optimization process has to be explicitly considered by
enlargement of the finger tip and wrist position standard
deviation by 10mm. Based on the learned robot trajectory
τr(t) with optimization error Σr(t), the modeling error Σm,
the object localization error Σo and smoothness constraints
the variation model M is calculated, see section V.

The variation model represents a preference on a range
of variations of the direct mapping of the demonstrated
grasping strategy. In a new scene with different obstacles,
this generalization is necessary to generate a collision free
grasping motion fulfilling the goal criteria. For example,
in fig. 3 the demonstrated strategy was to grasp the ham
can straight from above while keeping the fingers close to

the object. The paths of the individual fingers will have
to be adapted if a slightly different can is grasped or
additional objects in the scene block the motions of the
direct transformation. The complexity of the configuration
space of the robot Cr (≥ 19 dofs) requires a powerful
heuristic to search for a valid grasping motion. In state of
the art motion planners, a powerful way to represent prior
knowledge is to use non-uniform sampling distributions to
focus search on relevant parts of the configuration space. In
this work, the transformed grasping strategy and the allowed
range of variations is explicitly modeled as a time dependent
sampling distribution on Cr based on the learned variation
model. Sampling from this distribution in a probabilistic
motion planner leads to a concentration on grasping motions
similar to the demonstrated grasping strategy, which is a
powerful task-dependent heuristic. Different strategies can
be considered simultaneously by superimposing the learned
sampling distributions. The motion planning process will
be described in section VII. Due to the interaction of the
Gaussian error models and the collision and smoothness
constraints, sampling from the variation model is time
consuming. In section VI, an approximation of the sampling
distribution, that can be precalculated based on the marginal
distributions, will be discussed.

V. VARIATION MODEL

In this section, the variation model is introduced based
on factor graphs, which allow for efficient modeling using
single influences on random variables. The variation model
combines the error models Σr(t), Σm and Σo with smooth-
ness constraints in one joint probability distribution on the
set of discrete paths of length T in Cr. The structure of the
graph is chosen in a way to condition the joint probability
distribution on the direct transformation τr but allowing for
variations. The variations are restricted by incorporating the
smoothness constraint, which forces similar values on neigh-
boring trajectory points. The constraints ψo are incorporated
in the constraint motion planning step.

A. Definition of the variation model based on factor graphs

The variation model is described by the factor
graphs in fig. 4, which resemble the joint distribution
P (O)P (X1, ..., XT |O). An introduction to factor graphs,
which also points out the relation to Dynamic Bayesian
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Fig. 4. Variation model: factor graphs for object localization (a) and the
demonstrated grasping strategy with smoothness constraints (b), (T=3)
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Networks, can be found in [15]. In this work, factor graphs
have been chosen because the marginal distributions of the
variables Xi can be efficiently calculated and a complex
joint probability distribution can be defined based on a set of
probability distributions on a subset of the random variables.

The nodes Xt ∈ Cr describe the robot configuration
at time t. The position and orientation of the object
is represented by O. The factors fit and g11 describe
influences on the random variables. The factor f1t models
the dependency of Xt on the learned direct mapping τr(t)
and describes the expected deviation of the real value xt

from τr(t). A smooth transition between neighboring points
Xt and Xt+1 is enforced by the factor f2t, which forces
xt+1 to be near xt. The factor g11 describes the dependency
of O on the object localization. The smoothness covariance
St depends on the discretization of τr, e.g. St = 102 · I3.
In order to efficiently calculate the marginals P (Xt), the
factors are modeled as Gaussian:

f1t(xt) = Nxt
(τr(t),Σr(t) + Σm)

f2t(xt, xt+1) = Nxt+1(xt, St)
g11(o) = No(µo,Σo)

In general, additional constraints have to be considered in the
transformation of the human grasp to the robot system, e.g.
collision avoidance or safety constraints. Constraints, that
can be approximated by a linear model, e.g. using Taylor
expansion, can be incorporated in the factor graph, which
will be explained in the next subsection.

B. Constraints in the factor graph

The gray parts of the factor graph in fig. 4 show, how
the constraint function ψo can be incorporated in the factor
graph. The value of the constraint function at time t is
represented by Ct. The factor f3t describes the deterministic
evaluation of the constraint function on Xt. At each time
step, a specific range of constraint values, given by the mean
rt and covariance matrix Rt, can be enforced by including
a prior f4t on Ct. The additional factors are defined as

f3t(xt, ct) = δ(ct − ϕ(xt))
f4t(ct) = Nct(ψo(τr(t)), Rt)

using Nx(a, 10−10) to approximate the Kronecker δ(x− a).

Arbitrary constraints are considered in the motion planning
process and not in the factor graph, since the evaluation
of a factor graph with a non-linear constraint ψo is time
consuming and approximative, see section VI.

VI. EVALUATION OF THE VARIATION MODEL

The learned grasping strategy, i.e. the variation
model, describes a joint probability distribution
P (O)P (X1, ..., XT , C1, ..., CT |O). In order to calculate the
non-uniform sampling distribution on the robot configuration
space Cr, which will later be used in the motion planner to
guide the search process, samples have to be drawn from

the conditional joint marginal distribution P (X1, ..., XT |O)
respectively the conditional marginal distribution P (Xt|O).
In this section, the evaluation of the variation model using
belief propagation to calculate the marginal distributions
will be discussed.

A. Sampling from the variation model

The probabilistic motion planner, see section VII, requires
a sampling distribution, that is defined on the configu-
ration space Cr. In order to guide the search using the
learned grasping strategy, configurations are drawn from the
marginals P (Xt|O) since the distribution P (X1, ..., Xt|O) is
defined on trajectories on Cr. P (X1, ..., XT |O) is implicitly
approximated by the product of the marginal distributions∏T

t=1 P (Xt|O), which has two important consequences:
1) The marginal distributions are Gaussian, which leads

to a high sampling rate
2) Each null set of the product distribution is a null set of

the joint distribution, therefore no relevant sub spaces
of the search space are cut off in the probabilistic
motion planning process

In a cycle-free factor graph, marginal distributions can be
calculated using belief propagation, which is a standard infer-
ence algorithm [15] based on message passing between con-
nected nodes. For factor graphs with non-linear constraints,
see the gray parts in fig. 4, the non-linear factors have to
be linearized to calculate the Gaussian transformation. In
general, the linearization point will depend on the current
estimation of the marginal distribution P (Xt|O), leading to
an implicit loop in the factor graph. Loops can be considered
in belief propagation by iteratively calculating messages
based on the values of the previous iteration step, see loopy
belief propagation [16].

B. Calculation of the marginal distributions

In this work, the marginals P (Xt|O) are calculated using
belief propagation and the constraints ψo are considered in
the probabilistic motion planning process. In general, there
are two ways of calculating messages. A message µn→f from
node n to factor f is computed as

µn→f (x) =
∏

s∈neighbors(n)\{f}

µs→n(x) .

A message µf→n from factor f to node n is calculated as

µf→n(x) =
∫

X\x
f(X)

∏
s∈neighbors(f)\{s}

µs→n(x) .

Since Gaussian distributions are closed under product,
division and marginalization, messages representing a
Gaussian distribution, so called Gaussian messages, will be
obtained, if the factors are itself Gaussian.

The belief Nxt
(bxt

, Bxt
) of the marginal distribution

P (Xt) is calculated by multiplying all incoming messages:

Nxt
(bxt

, Bxt
) = µf1t→xt

(xt) · µf2t→xt
(xt) ·

µf2t+1→xt
(xt) · µf3t→xt

(xt) (3)
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Equation 3 can be reordered to calculate each message on
the right hand side based on the current belief, see [9],
exploiting the fact that Gaussians are closed under product
and division. In loopy belief propagation, the resulting
recursive formula are used to update the beliefs iteratively
by calculating new beliefs or messages based on the values
of the previous step.

The beliefs of the marginal distributions are used to
calculate the joint product distribution, which approximates
the true joint distribution. In the next section, a non-uniform
sampling distribution will be derived based on the joint
product distribution. The sampling distribution represents the
learned grasping strategy, that has been generalized from the
direct transformation by using the modeling, transformation
and object localization error to generate allowed variations
while satisfying the smoothness constraint.

VII. HIGH-DIMENSIONAL MOTION PLANNING

In the presence of obstacles, planning of grasping motions
is a demanding problem due to the dimensionality of the
configuration space. Powerful heuristics are needed to
plan motions in real environments. The learned grasping
strategy can be regarded as a learned heuristic for the
probabilistic motion planning process, which guides
the search for grasping motions to motions similar to
the human demonstration. In this section, a sampling
process is presented, that weights the exploitation of the
user demonstrated knowledge and the exploration of the
configuration space by drawing a sample configuration y
according to a non-uniform sampling distribution P (Y ).
Multiple demonstrations of the same grasping strategy are
combined by superimposition of the learned distributions.

In this work, a Rapidly-exploring random tree (RRT)
[17] is used to search the high-dimensional configuration
space Cr, which is composed of the position and orientation
of the wrist of the robot hand and the m finger joint angles.
In contrast to uniform sampling of the configuration space
of the robot, sampling from P (Y ) concentrates search on n
learned grasping strategies, which are described by the factor
graphs P (Oi)P (Xi1, ..., XiTi

|Oi), i = 1, ..., n. Let P (S) be
a discrete probability distribution on the set S = {0, .., n}.
In this work, the item 0 represents the uniform strategy
and 1 to n represent the learned strategies. In the uniform
strategy, the length T0 is 1, P (O0) and P (X01|O0) are
uniform. P (S) assigns the probability β ∈ (0, 1] to the
uniform strategy. In the experiments, all learned variation
models of one strategy were assigned the same probability.
The sampling distribution is implicitly defined by the
following scheme:

1) Draw strategy s ∼ P (S)
2) Draw object position and orientation os ∼ P (Os)
3) Draw time point k ∼ U(1, ..., Ts)
4) Calculate kth marginal distribution of factor graph s
5) Draw configuration y according to the kth marginal

distribution, y ∼ P (Xsk|os)

Fig. 5. Ham can: demonstration of the grasping strategy

Fig. 6. Objects (left to right): chips, ham can, jam jar, small cup, salt box

The kth marginal distribution is static for factor graphs
without additional constraints, leading to high sampling
rates. β weights exploitation of the learned knowledge and
random exploration of the search space, i.e. in β · 100%
of all cases, a uniformly drawn configuration is used, in
(1 − β) · 100% of all cases, a configuration will be drawn
based on the learned probability distributions. Due to the
high dimensionality of the problem, uniform sampling
(β = 1) produced no valid paths in clustered environments.
Probabilistic completeness is maintained, if β > 0.

The sampling distribution is used to extend the RRT,
guiding search towards solutions similar to the direct
transformation τr but allowing for variations in compliance
with the smoothness constraint. If the RRT was extended
by a sample with k = Ts, i.e. the last step of a grasping
strategy, the quality measure φo will be evaluated. If the
resulting quality is ≥ ε, a valid solution has been found.

VIII. EXPERIMENTS

We conducted two series of experiments: grasping objects
on a table with and without multiple obstacles. A human
operator demonstrated grasping strategies for five different
objects, see fig. 5. The objects are shown in fig. 6. Based
on the demonstrated discrete paths, virtual fingers were
calculated to map the five human fingers to the four fingers
of the SAH. The variation models were learned and the
marginal distributions calculated using belief propagation
and the object localization error Σo = 32 · I3. The motion
planer was integrated into the simulator GraspIt! [18].

In the first experiment, we evaluated the approach on
grasp planning without additional obstacles and tested the
generalization of a learned grasping strategy to different
objects. In the second experiment, the generalization to
scenes with additional obstacles was investigated. The
quality measure φo(~k) is computed by placing the robot
hand at ~k, closing all fingers using the autograsp function
of GraspIt! and calculating the Epsilon quality measure
(L1 norm, unit ball TWS). The default friction coefficients
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TABLE I
SUMMARY OF THE FIRST AND SECOND EXPERIMENT (LAST FOUR ROWS)

Object Quality ETA (s) Nodes MSE (mm) ETA0 (s)
Ham 0.25 1.3 774 6.52 0%
Jam 0.24 0.65 817 8.72 2.1
Chips 0.17 1.5 469 13.42 3.2 (4%)
Salt 0.12 1.29 972 13.82 8.3 (53%)
Small cup 0.19 1.8 636 7.62 9.0 (65%)
Bottle 0.07 3.0 530 − 0%
Big cup 0.12 2.0 813 − 1.5 (45%)
Ham 0.25 6.1 502 − 0%
3 Chips 0.08 6.9 207 − 0%
Chips 0.08 5.6 179 − 0%
Jam 0.13 3.2 290 − 2.3 (78%)

of GraspIt! were reduced by 0.4 to approximate the real
finger friction. For motion planning, a standard RRT with
the CONNECT heuristic and the learned non-uniform
sampling distribution P (Y ) has been used to plan 100
grasping motions for each object in each experiment. In
each trial, a set of 100 start nodes has been created by
sampling from N(b1, B1). The parameter β was set to
0.05. In order to compare the planning result to a standard
approach, a simple RRT planner, which uses N(bT , BT ) to
create target configurations with a probability of 0.1, has
been implemented in GraspIt!. The averaged results of all
experiments are summarized in table I. The value Quality
describes the best quality of all trials. ETA characterizes
the motion planning result, i.e. the planning time until
a valid goal configuration ~k (with φo(~k) ≥ 0.05 =: ε)
is encountered. Additionally, the table shows the average
number of nodes and the mean squared error of the direct
transformation τr. The result of the standard RRT is
described by ETA0 with percentage of success in brackets.

A. Grasps without additional obstacles

In the first series of experiments, the objects were placed
on a table without additional obstacles. The calculation of the
virtual fingers for the five grasping strategies yielded that the
combination of the middle and ring finger is optimal for the
ham can and the combination of the pinky and ring finger
is optimal for the other strategies. The generalization of the
learned grasping strategy to similar objects was tested on a
big cup using the grasping strategy for the small cup and
on a small bottle using the strategy for the chips can. Four
experiments are shown in fig. 7. The learned grasps were
successfully executed on the real robot system, see fig. 8.

B. Grasps with multiple obstacles

In the second series of experiments, generalization to
situations, where a direct mapping of grasps would fail, was
evaluated on four scenes with additional obstacles. The ham
can was approached on an arc, the chips can and the jam jar
on a straight line. The first two investigated scenes, see fig. 9,
contained narrow passages, leading to a demanding planning
problem due to the high-dimensionality of the configuration
space (19 dofs). The variance described by the variation
model was necessary to move the fingers on a collision
free path between the object and the obstacles. The last two
scenes required an adaptation of the fingertip locations on
the object. The chips can lay flat on a table, so the fingers
couldn’t wrap the object anymore and a precision grasp had
to be established. The jam jar had been placed in a hole and a
grasp a few cm above the demonstrated grasping position had
to be found. By using the learned distributions, all problems
were solved in ≤ 7 seconds. The standard RRT yielded no
solution except for the jam jar.

IX. CONCLUSION

In this work, a novel approach to learning of grasping
strategies using Programming by Demonstration has been
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Fig. 8. Execution on the real robot system (left to right): big cup and small bottle, jam jar, chips can, salt box, ham can

Fig. 9. Grasping in the presence of obstacles: ham can (top left), chips can (bottom left), chips can (top right), jam jar (bottom right)

presented. In order to account for modeling errors, object
localization errors and errors in the transformation of the
grasping strategy from the human operator to the robot hand,
a stochastic counterpart of the grasping strategy, called vari-
ation model, is automatically learned. The variation model,
which resembles a soft preference for grasping motions simi-
lar to the demonstration, is efficiently evaluated by sampling
from the product distribution of the marginals, which are
calculated using loopy belief propagation. This non-uniform
sampling distribution is used in a standard probabilistic
motion planner as a heuristic to guide the search process,
allowing for the automatic weighting between exploitation
of the learned task-dependent knowledge and the exploration
of the search space. The incorporation of variations into the
strategy representation allows for the flexible application of
the learned strategy to different objects and environments.
The generality of the approach has been demonstrated on
two different experiments on a real anthropomorphic robot
system with seven different objects.

X. FUTURE WORK

In the future, multiple demonstrations of grasping strate-
gies will be used to derive an estimation of the modeling
covariance error Σm, which has been experimentally deter-
mined and globally fixed for all experiments.
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