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Abstract— In Programming by Demonstration, a flexible
representation of manipulation motions is necessary to learn
and generalize from human demonstrations. In contrast to
subsymbolic representations of trajectories, e.g. based on a
Gaussian Mixture Model, a partially symbolic representation of
manipulation strategies based on a temporal satisfaction prob-
lem with domain constraints is developed. By using constrained
motion planning and a geometric constraint representation,
generalization to different robot systems and new environments
is achieved. In order to plan learned manipulation strategies
the RRT-based algorithm by Stilman et al. is extended to
consider, that multiple sets of constraints are possible during
the extension of the search tree.

I. INTRODUCTION

In service robotics, anthropomorphic robot systems are
being developed, that should be able to assist humans in
their natural environment. Typical household or cafeteria
tasks are complex, i.e. the robot system has to detect and
grasp arbitrary objects, move these objects on collision free
paths, perform complex motions with the objects and apply
force to specific areas in a controlled way. Due to this
complexity, the fundamental problem of how to represent
and learn manipulation strategies arises. In recent years,
symbolic representations on the basis of atomic, predefined
operators had great success, because they allow for the
hierarchical, comprehensible representation of manipulation
knowledge, the flexible adaption to different environments
and the combination of atomic operators with different
inner representations. In Programming by Demonstration
(PbD), the demonstration of a human operator forms the
basis for the learning, i.e. parameterization, of atomic
operators and the learning of complex task structures.
In this approach, generalization and adaption to different
environments heavily depends on the representation of the
atomic operators. Purely subsymbolic representations, e.g.
based on learned trajectories or controller parameters, are
hard to generalize to different robots and environments.

In this work, a (partially) symbolic representation of
manipulation strategies is developed, that explicitly
describes the search space for trajectories consistent
with the strategy by a complex, temporal network of
robot constraints, see section IV. Based on the structure of
constraints, manipulation strategies can be efficiently learned
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using the PbD paradigm, see section VI, and generalized to
different robots, objects and environments on a symbolic
level. Recent advances in the field of constraint motion
planning are incorporated to plan robot trajectories based
on a given manipulation strategy, which will be discussed
in section VII. In section VIII, experiments on two different
robot systems are reported. The first robot system consists of
two Kuka lightweight arms with seven degrees of freedom
(DOF) and two Schunk anthropomorphic robot hands with
four fingers and 13 DOFs. The second robot system is made
up by a six DOF robot arm, a force sensor in the wrist and
a Barrett hand with three fingers and four DOFs.

II. RELATED WORK

Up to now, no standard representation of task knowledge
or manipulation strategies has become apparent in
service robotics. Tree-like representations, e.g. HTN
[1] or TDL [2], and procedural languages [3] have an
advantage over classical robot programming languages
due to the high reusability, suitability for learning and
interpretability of hierarchical knowledge. For example,
Flexible Programs (FP) [4] are a symbolic, hierarchical,
HTN-like representation of task knowledge. Similar to
this work, runtime conditions can be assigned to nodes,
but it hasn’t been worked out, how these conditions can
be considered in the planning of manipulation strategies.
In [9], a representation of goal regions for constrained
motion planning based on 6d hypercubes in cartesian
space was developed, that forms a specific instance of the
representation developed in this work.

In order to represent sequentiality and parallelism of events,
which is fundamental to the definition of manipulation
strategies, a formal representation of time has to be
introduced. Temporal constraint satisfaction problems,
which describe the temporal relationship between pairs of
temporal variables, have been investigated by Dechter et al
[5]. In recent years, disjunctive temporal constraints have
been proposed as a general framework for planning with
temporal constraints [6]. In the referenced work, partial
order planning (POP) is used as a basis to plan the execution
of STRIPS-like operators, i.e. with pre- and post conditions,
assuming disjunctive temporal constraints between the
start- and end times of actions. Due to the different search
spaces of POP and motion planners, a different approach of
planning under temporal constraints will be investigated.

The planning of manipulation motions for robot systems
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with many DOFs is highly demanding. Building on recent
advances in the field of constrained motion planning using
TC-RRTs [7], [8] constraints can be considered in the
planning process, which is fundamental for the results
presented in this work. In [8], the extend function of the
standard RRT is replaced by a constrained extend method,
which projects a small step into a sampled direction onto
the constraint manifold around a given node. In order to
calculate this projection, the set of constraints has to be
explicitly defined. In the context of manipulation strategies,
the temporal ordering of events, and therefore the set of
constraints valid at a given time point, is not known prior to
the planning process. In this work, the TC-RRT is extended
to incorporate disjunctive temporal constraints.

III. TEMPORAL CONSTRAINT SATISFACTION
PROBLEMS

In this section, we give a brief introduction to temporal
constraint satisfaction problems (TCSP) [5], which form the
basis of the developed representation of manipulation mo-
tions. In addition to temporal constraints, general constraints
on the robot motion are considered the atomic elements of
manipulation motions. By extending the definition to include
disjunctions of constraints, the TDCSP will be defined.

A. Definition

A TCSP is a tuple (X,Ctg,Ctr) with the set of variables
X = {xi ∈ [0,∞)|i = 1, ..., n}, the set of global constraints
Ctg = {(x, l, u)|x ∈ X, [l, u] 6= ∅} and the set of relative
constraints Ctr = {(x, y, l, u)|x, y ∈ X, [l, u] 6= ∅}. The
variables describe specific time points, in this case, on a
trajectory. The possible values of each variable are restricted
by global constraints, which are defined as intervals on R≥0.
Relative constraints restrict the time difference between two
variables. An assignment (t1, ..., tn) ∈ Rn≥0 of the variables
(x1, ..., xn) is consistent with the TCSP, if

ti ∈ [l, u] ∀(i, l, u) ∈ Ctg
tj − ti ∈ [l, u] ∀(i, j, l, u) ∈ Ctr

In order to describe real world problems, disjunctions of
temporal constraints have to be considered in the TCSP for-
mulation by modifying the constraint evaluation equations:∨

(l,u)
∈Ct

g(i)

ti ∈ [l, u] Ctg(i) := {(l, u)| ∃(i, l, u) ∈ Ctg}

∨
(l,u)

∈Ct
r(i,j)

tj − ti ∈ [l, u] Ctr(i, j) := {(l, u)| ∃(i, j, l, u) ∈ Ctr}

In this work, a disjunctive TCSP with domain constraints
(TDCSP) is defined as a tuple (X,Ctg,Ctr,Cdg,Cdr , θ), with X,
Ctg and Ctr as before. The set of global domain constraints on
the variables is Cdg = {(x, φ)|x ∈ X, φ : C→ {0, 1}}, where
C will be the configuration space of the robot and φ describes
a binary constraint. The set of relative domain constraints is
defined as Cdr = {(x, y, φ)|x, y ∈ X, φ : C → {0, 1}}. θ(t)

describes the configuration of the robot at time t. The set of
constraint evaluation functions is extended by∨

φ∈Cd
g (i)

φ(θ(ti)) Cdg (i) := {φ| ∃(i, φ) ∈ Cdg}∨
φ∈Cd

r (i,j)

∧
t∈[ti,tj ]

φ(θ(t)) Cdr (i, j) := {φ| ∃(i, j, φ) ∈ Cdr}

with the domain constraints Cdg (i) of variable xi and the
domain constraints Cdr (i, j) between xi and xj .

B. Arc consistency checking and AC-3

Consistency checking, which is NP-hard [5], can be solved
by searching for a valid assignment of the variables. Most
global search algorithms incrementally test assignments of
the variables using (weak) consistency requirements to prune
the domains of unassigned variables. Arc consistency [10]
is a consistency condition, that forces the domains of two
variables to be consistent, i.e. for each value in the domain
of one variable a consistent value in the domain of the second
variable has to exist and vice versa. Arc consistency can be
maintained by a simple algorithm called AC-3 [10], which
iteratively calls the function Remove-Inconsistent-Values(i,j)
to prune the domain values of the variable xi, that are
inconsistent with domain values of the variable xj . For tree
like TCSPs, arc consistency is equivalent to consistency [10].

IV. REPRESENTATION OF MANIPULATION
MOTIONS AND STRATEGIES

In this section, we motivate and discuss our representation
of manipulation motions and strategies, which is based on a
TDCSP enhanced by conditional arcs.

A. Motivation

A manipulation motion is defined as an unconditioned
motion of the robot system. The most common represen-
tation is a trajectory in the configuration space C of the
robot, that can be learned by playback programming and
directly executed on the robot system. In general, gen-
eralization to different domains, e.g. with different start,
target and object positions is not possible. In order to
improve generalization, allowed variations of the trajectories
can be learned based on multiple demonstrations. In [11],
Gaussian mixture regression is used to determine a more
flexible trajectory representation based on Gaussians. The
main advantages of purely subsymbolic representations are
fast learning times and low effort for the transformation to
the robot system. Generalization to new objects and envi-
ronments is complicated, due to the lack of understanding
of what the goals are and why the solution is structured in
a specific way. On the other hand, background knowledge
can be easily integrated into a symbolic, e.g. STRIPS-
like, representation. The symbolic description allows for the
generalization based on symbolic properties, leading to a
high degree of reusability, i.e. actions can be applied to
objects with equal properties. Due to the complexity of robot
manipulation, purely symbolic descriptions are insufficient
to represent manipulation motions as an input for motion
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planning techniques. Consider the pour-in task, which could
be described by the target relation isFilled(Glass,Water)
and runtime constraint !isWet(Table). This simple symbolic
description demands a powerful planning system taking
the water dynamics into account. By mapping the relation
!isWet(Table) to a subsymbolic constraint, that restricts
the orientation of the bottle to be ”upright”, the problem
complexity can be heavily reduced. Based on this observa-
tion, a representation capturing symbolic and subsymbolic
properties of manipulation motions has been developed. In
general, manipulation motions are heavily constrained, e.g.
pushing a button requires the robot to stay in contact with a
small part of an object. Instead of viewing constraints as a
way to restrict motions, we regard constraints as the atomic
element of manipulation motions and strategies, which can
be combined in sequence and in parallel to describe the
space of trajectories consistent with the manipulation motion.
By introducing object depended constraints, e.g. staying on
the table top, we derive a representation, that can be easily
transformed to new environments based on its symbolic
properties and easily executed based on the subsymbolic
information provided by domain constraints.

B. Formal definition

In the previous subsection, the use of constraints as the
atomic element of manipulation motions and strategies has
been motivated. Manipulation motions are described as a
network of parallel and sequential constraints, which results
in a TDCSP (X,Ctg,Ctr,Cdg,Cdr , θ), where x1 is the start
node and xn is the target node. The set Cdg(i) describes the
constraints on the node xi, that have to be valid in a specific
time point on the trajectory θ. The set of constraints, that
have to be valid for all points on θ between the time points
xi and xj is described by Cdr(i, j). In this work, a domain
constraint is defined as a tuple (o,R) with

o(θ, θ̇, t) ∈ R(θ, θ̇, t), (1)

where o is a function depending on θ, θ̇ and t with values
in a subset R of the space S. o is called constrained object,
because it will represent a symbolic property of an object,
e.g. the tip of a finger or the opening of a bottle. R is
called constrained region, because it restricts the possible
values of a constrained object. A symbolic example of a
constrained region is the top of a table represented by
a cubic region. In the context of bimanual manipulation,
this representation of constraints has been proven useful
for learning, generalization and planning of manipulation
motions and strategies. The extension to higher derivatives
is straight forward. Based on this constraint representation,
the set of domain constraints Cdr is defined as

Cdr = { (xi, xj , (o,R))|xi, xj ∈ X,
o : C2 × [0,∞]→ S, S Space,
R : C2 × [0,∞]→ P(S) }

The set of node domain constraints Cdg is defined
analogously. The constraints Cdg(n) of the target node are

TABLE I
REGION TYPES, PARAMETERS AND SPACES

Icon Type Parameters π Space
Sphere r0, r1 ∈ R≥0, r1 > r0 Rn, n ≥ 2
Cube ri ∈ R≥0, i = 1, ..., n Rn, n ≥ 1
Cone α0, α1 ∈ [0, 2π], α1 > α0, h ∈ R≥0 Rn, n ≥ 2
Cylinder r0, r1, h ∈ R≥0, r1 > r0 Rn, n ≥ 3

S

E

[l2, u2], 
{c21, ...}

[l3, u3], 
{c31, ...}

{b11, ...}

[l1, u1], 
{strategy11(x1, ...), ..., c11, ...}

1
[l4 , u4 ], {c41 , ...}

S

E

[l2, u2], 
{c21, ...}

[l3, u3], 
{c31, ...}

[l4 , u4 ], {c41 , ...}

S E

[l1, u1], {c11, ...} strategy11

[0,0] [0,0]

{b11, ...}

1

Fig. 1. Strategy graph for a manipulation strategy with conditional arc and
hierarchical reuse of a manipulation strategy (bottom)

the goal of the manipulation motion. Preconditions are
equivalent to the constraints Cdg(1) of the start node.

In the example strategies, .r describes the position of
an object, .q the orientation and .θ a part of the robot
configuration. In the learning process, constrained regions
are restricted to cones cylinders, spheres and cubes, see
table I. Cones and cylinders are aligned to the z-axis.

C. Strategy graph

Manipulation motions can be visualized as a directed
graph, called strategy graph, which is shown in fig. 1. Each
node (xi, Ctg(i), C

d
g (i)) describes a variable xi with the tem-

poral constraints Ctg(i) and a set of domain constraints Cdg (i).
Arcs (xi, xj , Ctg(i, j), C

d
g (i, j)) describe relative constraints

between two variables xi and xj . In this work, temporal
constraints are described by a single interval [li, ui]. The
start and end node are highlighted as xs and xt. Conditional
arcs (xi, xj , Cdc (i, j), α), which will be explained in the next
subsection, are grey. Cdc (i, j), is a set of domain constraints.
The small number in the root of a conditional arc describes
its priority α.

D. Manipulation strategies

Atomic constraints have been motivated as a basis for
a more flexible, symbolic and subsymbolic representation
of trajectories, suitable for learning, generalization and
planning. The developed representation of manipulation
motions doesn’t include conditional branching or hierarchical
structuring. From this point of view, manipulation motions
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{H1.r ∈     (1,1,1),
G1.Θ ∈     (0)}

{H1.r ∈     (1,1,1),
G1.Θ ∈     (0)}

S X

E

1
2

1

2{H1.graspquality ∈     (0, 0.1)}

[0,∞]
{Grasp}{H1.force ∈     (0, 0, 1)}

[10,20]
{H1.r ∈     (0,1,6),

G1.Θ ∈     (0)}
[0,∞]

{}

: relative to start pose above
  object, z points down
: relative to pose at time of node X
: pose at time of node X + (0,0,5)

Fig. 2. Example: Grasping of an object using force values

subsume atomic action representations in classical symbolic
representations, like elementary operators in FPs. In order
to improve reusability of knowledge and to support closed
sensor-actor loops, hierarchical structuring and conditional
branching have to be incorporated.

Manipulation motions can be hierarchically structured
by replacing a simple constraint with a manipulation
motion. Time constraints and domain constraints are
transformed to constraints between the start and end node,
as displayed in fig. 1. Additionally, this allows for the
incorporation of arbitrary manipulation knowledge, e.g.
classical atomic actions with pre and post conditions.

Conditional branching is explicitly modeled as a conditional
arc (CA). In contrast to normal edges, a CA is instantanious,
has no temporal or domain constraints and describes a branch
in the execution. Each conditional arc has a condition, i.e. a
set of domain constraints Cdc (i, j) and a priority α, assigned
to it. When the execution stops in a node with CAs, the
condition of each CA and the set of node constraints of the
target node of the chosen CA is evaluated and the valid arc
with highest priority is taken, i.e. execution jumps to the
target node. The target node has to describe an intermediate
point of the manipulation strategy, i.e. if the target node is
removed from the graph two unconnected subgraphs will
be created. Detailed discussion of execution and online
monitoring is not in the scope of this paper.

Finally, a manipulation strategy is defined as a manipulation
motion with conditional arcs, where each unconditional arc
can be either a constraint arc or a manipulation strategy.

V. EXAMPLES OF MANIPULATION STRATEGIES
In this section, examples of manipulation strategies are

presented. The types of regions considered in this work are
summarized in table I. The objects Hi and Gi describe
manipulators, e.g. H1.r is the TCP position of a robot
arm and G1.θ the joint values of a robot hand. Units are
millimeters, milliseconds and degrees.

A. Grasping an object using force values

Objects can be grasped more robustly, when force in-
formation is used to determine the relative position to the
object. A simple strategy is to move the robot hand straight
down until the force in the counter direction is greater than

{Bottle.q ∈     (75,80,1),
Bottle.r ∈     (0,20,50)}

{Bottle.q ∈     (145,155,1),
Bottle.r ∈     (0,20,50)}

{Bottle.q ∈     (0,80,1),
Bottle.r ∈     (0,20,50)}

[0,∞]
{H2.Θ ∈     (0),
Bottle.q ∈     (0,80,1)}

{Cup.q ∈     (0,5,1),
distance(Cup.r) ∈     (300,∞)}

S

E

[0,∞]
{H1.Θ ∈     (0)}

[0,∞]
{H2.Θ ∈     (0),
Bottle.q ∈     (75,155,1),
Bottle.r ∈     (0,5)}

[0,∞]
{H2.Θ ∈     (0),
Bottle.q ∈     (0,155,1),
Bottle.r ∈     (0,5)}

[0,∞]
{H2.Θ ∈     (0),
Bottle.q ∈     (0,80,1)

: relative to 
  cup opening

Fig. 3. Example: Strategy graph for the bimanual pour-in task

a threshold, see 2nd image in fig. 13. At this point, the
fingers are closed while the fingertips keep the distance to
the table top. In general, a precalculated grasping motion
will be used in this step due to the high complexity of
anthropomorphic robot hands, see 3rd image in fig. 13. The
strategy graph is displayed in fig. 2. The strategy Grasp
follows a precalculated grasping motion.

B. Bimanual pouring in a glass of water

In this example, a manipulation motion for pouring in a
glass of water with a bimanual robot system is discussed. In
order to reduce the size of the strategy graph, it is assumed
that the opened bottle is in H1 and the empty cup is in H2.
The manipulation motion consists of 5 sequential motions:

1) Move the cup to a pose, where the pour-in can be
performed (approximated by a minimum distance to
obstacles in the workspace), see 2nd image in fig. 11.

2) Move the bottle to the cup and place the bottle opening
above the cup opening without spilling water, see 3rd
image in fig. 11.

3) Tilt the bottle while staying above the cup opening
with the bottle opening, see 4th image in fig. 11.

4) Erect the bottle while staying above the cup opening
with the bottle opening, see 5th image in fig. 11.

5) Move the bottle to the starting pose without spilling
water, see 6th image in fig. 11.

The strategy graph is shown in fig. 3. An extension to more
powerful pouring is discussed in section VIII.

VI. LEARNING OF SIMPLE MANIPULATION
MOTIONS

In the previous section, examples of strategy graphs
have been discussed, each forming a compact, symbolic
description of the corresponding manipulation knowledge of
the robot system. For complex robot systems with multiple
manipulators and sensor systems, the generation of this
manipulation knowledge is demanding. In this section,
we give a short introduction to a novel Programming by
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Demonstration system, which has been successfully applied
to learning of simple manipulation strategies.

A simple manipulation strategy is defined as a strategy
graph, that can be transformed into a linear sequence of
nodes, see fig. 3 for an example. The novel PbD-system is
based on Rogalla et al. [12]. A human operator is observed
in a kitchen like sensory environment while performing
simple manipulation motions. Cyberglove data gloves are
used to capture 22 degrees of freedom of each human hand.
The goal is to create a strategy graph, that is consistent
with a single or multiple demonstrated trajectories φ
of the manipulation strategy. The structure of the simple
manipulation motion, i.e. the nodes and edges of the strategy
graph, is learned by segmentation of the trajectories. For
each time point, a learned Dynamic Bayesian Network is
evaluated, that calculates a probability that the trajectory
point represents a node in the manipulation strategy.

The label of the strategy graph edge (i, j), i.e. the set
of constraints between the nodes at ti and tj , are learned
by solving the following optimization problem:

inf
H
µ(RH) with o(φ, φ̇, t) ∈ RH ∀t ∈ [ti, tj ] (2)

The measure µ calculates the volume of the constrained
region R centered at the frame H ∈ R3 × SO(3). For
each frame H , the smallest region of type R is calculated,
that encloses all values of the constrained object o on the
trajectory segment. For example, when drawing a circle
on the table, the fingertip will remain in an annulus. If
o = fingertip, the result of the optimization process will be
a cylindrical constrained region with appropriate inner and
outer radius and negligible height. The optimization problem
can be solved using standard procedures like Rosenbrock,
which is a fast, local, robust, 0-order optimization technique.

The optimization problem is solved for a set of candidate
constraints. Constrained regions are restricted to cones,
cylinders, spheres and cubes, see table I. Vectors describing
forces, positions, orientations, directions and velocities
are used as constrained objects. The advantage of this
mixed symbolic and subsymbolic representation is that
background knowledge can be incorporated on a symbolic
level, since constrained regions and constrained objects are
assigned to objects in the knowledge base. For example, the
constrained region ”opening” is stored for each cup. Based
on this abstraction, the pouring-in strategy in fig. 3 can
be applied to all cups. Node constraints of a node at time
ti are learned using the same technique on the segments
[ti, ti] of the trajectory. The more demonstrations are
incorporated, constraints are refined and constraint regions
grow, leading to an increasing degree of goal abstraction
the more information is available.

VII. PLANNING OF MANIPULATION MOTIONS
The learned manipulation strategy is described by a TD-

CSP, that forces each point on the trajectory θ to be consistent

AC-3: Remove-Inconsistent-Values(e)
1 R ← ∅
2 for all [a,b] in Restrictions(e.from) do
3 for all [c,d] in Restrictions(e.to) do
4 [r,s] ← [c - e.end, d - e.start] ∩ [a,b]
5 if q.time /∈ [r, s+e.end] ∨ e.isValid(q) then
6 add [r, s] to R
7 else if q.time < s+e.start + 1 then
8 add [r, q.time - 1 - e.start] ∩ [a,b] to R
9 if r < q.time + 1 then

10 add [q.time + 1, s] ∩ [a,b] to R
11 Restrictions(e.from) ← Prune(R)
12 return Restrictions(e.from) changed

Fig. 7. AC-3: Remove-Inconsistent-Values

1 2

Partial Path

Solution 1

Solution 2

Conflict

1 2

1 2

unassigned
New Configuration

?

Fig. 8. Remove-Inconsistent-Values: Conflict resolution

with a set of constraints. If the time point ti of each node
xi is known, the set of constraints for a time point t is the
union of all constraints of all nodes and edges that cover t:

C(t) :=
⋃

i : t=ti

Cdg (i) ∪
⋃

i,j : t∈[ti,tj ]

Cdr (i, j) (3)

On the one hand, if a consistent assignment (t1, ..., tn)
is given, a consistent trajectory θ can be calculated using
constrained motion planning with the sets of constraints
C(t) for t ∈ [t1, tn]. On the other hand, the complete
trajectory θ has to be available to calculate a consistent
assignment of the variables. In this section, an algorithm
is discussed, which iteratively calculates a set of variable
restrictions in each RRT node, which covers the set of valid
assignments considering the partially planned trajectory.
In the motion planning process, the algorithm is used to
efficiently calculate sets of constraints, that are used to
extend the search tree using the ConstrainedExtend function.

The search algorithm for constraint motion planning
[7] is depicted in fig. 4. For simplification of the algorithms,
each node xi with a non-empty set of constraints Cdg (i) is
replaced by two unconstrained nodes connected by an edge
with [0, 0] as temporal constraint and domain constraints
Cdg (i). The function Constraints(q) returns the set of
constraints, that have to be valid in the current extension of
the RRT. Constraints(q) isn’t stationary, but has to respect
the ordering of constraints in the strategy graph. For each
node n in the RRT, a set of TDCSP variable restrictions is
stored, which covers the set of valid assignments given the
partially defined path θ|[t1,n.time]. In other words, if the set
of restrictions is not empty, a solution trajectory possibly
exists, that is consistent with the TDCSP and matches
θ|[t1,n.time] at the beginning. Each variable restriction is
represented as a union of disjoint closed intervals. The set
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RRT(qstart, qtarget)
1 Init(qstart)
2 while true do
3 qrandom ← RandomConfiguration(qtarget)
4 qnn ← NearestNeighbor(qrandom)
5 K ← Constraints(qnn)
6 qextend ← ConstrainedExtend(qnn, qrandom, K)
7 if GoalTest(qextend) then
8 return Path

Fig. 4. RRT search algorithm for constraint motion
planning [7]

RandomConfiguration
1 q ← Uniform sample of C
2 qnn ← NearestNeighbor(q)
3 q.time ← NextTime(qnn.time)
4 M ← Constraints(q)
5 return ConstrainedSample(M)

Fig. 5. Random generation of config-
urations

Constraints(q)
1 E ← ∅, (k1, ..., kn) ∼ Permutation {1, ..., n}
2 for i = 1 to n do
3 m ← edge with index ki in tcsp
4 if @ e in E: IsConnected(m.to, e.from) ∨
5 IsConnected(e.to, m.from) then
6 for each [a, b] in Restrictions(m.from) do
7 if q.time ∈ [a, b+m.end] then
8 add m to E
9 return List of domain constraints of edges in E

Fig. 6. Calculation of a random set of constraints

of variable restrictions is calculated using AC-3, see section
III, starting from the set of variable restrictions of the
parent node. By employing weaker consistency conditions,
in this case arc consistency, the high speed of RRT search
is maintained for TDCSPs with a moderate number of
nodes, but consistency checking has to be applied in the
GoalFunction to test, if the final trajectory θ is consistent.
The function Remove-Inconsistent-Values, which is used to
prune inconsistent domain values of the first input variable,
is shown in fig. 7. It is checked, if a combination of intervals
of the first and second variable exists, that covers the time
assigned to the new configuration. In this case, a conflict
will occur, if the constraints of the current edge are not
valid in the new configuration, and the domain of the first
variable is pruned by splitting the interval according to fig.
8. If the resulting variable restriction of one variable is
empty, the RRT node is removed.

Given a consistent assignment of variables in the TDCSP,
the optimal result K of Constraints(q) would be C(q.time).
During the planning process, a consistent assignment
of all variables is not available and multiple sets of
constraints are possible considering the variable restrictions
of q. For example, if the time point of the varialbe xi
has to be in [a, b] and e is an edge starting at xi with
temporal constraint [e.start, e.end], e overlaps q.time, if
q.time ∈ [a, b+ e.end]. In this case, the constraints of e can
be added to K and all edges, that are in parallel to e have
to be considered iteratively to calculate K. By randomly
choosing a total order, in which the edges are checked, the
algorithm in fig. 6 computes a random set of constraints,
that is possible considering the variable restriction in q.

The set of constraints of a node in the strategy graph
is equivalent to a goal region in single tree RRTs. In
order to guide the search towards these goal regions, the
sampling process in fig. 5 explicitly generates samples
based on the constraints in the subsequent time point
of a randomly selected node in the RRT. The function
ConstrainedSample(M) chooses uniformly a constraint in
the list M , that directly restricts a degree of freedom (1),
e.g. H1.θ, or a pair of constraints, that restricts the position
and orientation of the same manipulator (2), e.g. Bottle.r
and Bottle.q. The corresponding constrained regions are
sampled uniformly based on their geometric description to
return a random value of the constrained object. For (1),

{Bottle.q ∈     (145,155,1),
Bottle.r ∈     (20,30,50)}

S

E

2

1
{Cup.level ∈     (0.8,1))}

[0,∞]
{Bottle.q ∈     (1),

Bottle.r ∈     (0,30,50),
Bottle.r ∈     (0,10,50),
Bottle.r ∈     (0,90,1),
Bottle.r ∈     (0.1,0.1)}

[0,∞]
{Bottle.q ∈     (1),

Bottle.r ∈     (0,30,50),
Bottle.r ∈     (0,10,50)}

{Bottle.q ∈     (75,155,1),
Bottle.r ∈     (0,30,50)},

[0,∞]

{Bottle.q ∈     (1),
Bottle.r ∈     (0,10,50)}

{Bottle.q ∈     (1),
Bottle.r ∈     (20,30,50)}

: relative to 
  cup opening
: relative to 
  bottle opening

Fig. 9. Experiment 2: Pouring strategy

the random values of the constrained objects are directly
mapped to joint values of the configuration. For (2), the
corresponding joint angles are calculated using inverse
kinematics. The process is repeated until the random
configuration is completely specified. Based on this random
configuration, Randomized Gradient Descent (RGD) [8]
is applied to project the configuration on the constrained
manifold described by all constraints in M .

The algorithm in fig. 4 can be extended to bidirectional
RRTs [13] by creating a separate TDCSP for the backward
tree with inverted edges to correctly incorporate the inverted
time (algorithms in fig. 7 and 6 have to be slightly modified).
When connecting the tree Ta with Tb, the last node qa of
Ta is taken as the input of the function Constraints. A
strategy graph with nodes representing subgoals, e.g. fig.
3, is decomposed to reduce complexity and plan the sub
graphs linearly.

VIII. EXPERIMENTS

In this section, four experiments on two different robot
systems are presented. In all experiments, a bidirectional
RRT with the CONNECT-heuristic has been used as the basis
of the TDCSP-RRT. In order to execute the manipulation
strategy in a new environment on a different robot system,
the constraints, i.e. the constrained regions and constrained
objects, are instantiated in the new environment, e.g. the con-
straint Bottle.r ∈ in fig. 3, Bottle.r is calculated using
the vector ”opening” stored in the description of Bottle and
forward kinematics of the robot arm. The planning times
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Fig. 10. Experiment 4: Strategies

TABLE II
PLANNING TIMES (IN SECONDS) AND SUCCESS RATES

# TDCSP-RRT, s RRT, s TDCSP-RRT, % RRT, %
A 5.3 - 90 -
B 6.2 - 98 -
C 2.7 - 100 -
D1 3.7 5.8 95 81
D2.1 1.12 ≥ 20 99 0
D2.2 3.0 ≥ 20 98 0
D2.3 9.8 ≥ 20 33 0
D3 2.2 ≥ 20 100 0

on a Core 2 Duo with 2.4GHz are summarized in table II.
The results are compared to a standard bidirectional RRT
by applying consistency checking to the result paths. In the
experiments A & B, a manipulation motion without force
interaction is evaluated. In experiment C, generalization to
a second robot system, force interaction and conditional
branching is tested. In the experiments D, planning of (non-
linear) manipulation motions with no node constraints is
evaluated. In A, B and C, the graphs are linearized, i.e.
for each arc a separate planning problem is formulated. The
focus is on the proposed representation and generalization.
In D, planning with parallel arcs, resulting in synchronous
motion of both robot arms, is evaluated.

A. Pour-in task

The PbD system was used to learn a manipulation motion
for pouring-in a glass of water using the bimanual robot
system, see fig. 11. The learned strategy graph is displayed
in fig. 3. The cylindrical region is a predefined region for all
cups, where the inner radius is fixed at 0 and the origin of
the cylinder is centered at the center of the cup opening.
The cones for the orientation of the bottle Bottle.q are
relative to the world frame. The manipulation motion has
been transformed to the robot system using the bidirectional
TDCSP-RRT planer. See the 2nd row in fig. 11 for a planning
solution substantially different to the demonstrated trajectory.
A different cup has been used and the environment contained
different obstacles than in the demonstration.

B. Pour-in task: powerful pouring

The pour-in strategy of the first experiment has been
extended by a pouring strategy, which replaces the third
edge in the strategy graph. The pouring strategy is displayed
in fig. 9. The bottle is placed at a greater distance to
the cup, tilted, moved very fast straight to the cup (while
keeping the orientation) and moved backwards. The planned
manipulation motion was executed on the real robot system,
see fig. 12. The velocity and acceleration constraint were
considered in the robot controller.

C. Grasping objects using force values

A small object lying on a table is grasped. In order to
determine the correct position of the object, force values
returned by a force sensor mounted to the TCP of the second
robot are used. The manipulaton strategy has been discussed
in section V, see fig. 2. The planned manipulation strategy
was executed on the real robot system, see fig. 13.

D. Planning of non-linear strategy graphs

The strategy graphs in fig. 10 can’t be decomposed due to
the lack of node domain constraints. The first strategy (D1)
is applied to the problem of moving two grasped objects
at the same time, which results in the sequential motion of
both robot arms. The second (D2) and third strategy (D3)
describe motions on a table: moving to a target and bypassing
a point or moving to a target in parallel to the coordinate
axis and bypassing an area. In D2.1, the orientation is fixed.
In D2.2, rotation around the z-axis is permitted. In D2.3,
the orientation of the object is not restricted. Planning time
of D2.2 is larger than D2.1 since the dimensionality of the
planning problems differ. Planning of D2.3 fails in 67%
attempts since the projection on the constraint manifold
isn’t collision free in nearly all cases. D2.1, D2.2 and D2.3
show, that the representation can be flexibly adapted to the
capabilities of the motion planner, trading generality with
planning time, by modifying the strictness of constraints.

IX. CONCLUSION

In this work, a novel representation of manipulation strate-
gies, called strategy graph, on the basis of atomic constraints
has been presented. For each constraint, a formulation known
from motion planning has been employed, which restricts
the set of valid configurations by testing if a constrained
object stays within a constrained region. In the PbD system,
learning of new manipulation motions reduces to learning the
parameterization of a specific region type, which optimally
covers the trajectory of a predefined constrained object. By
assigning constrained regions to objects, the representation
is partially symbolic, which can be efficiently exploited
to reproduce the manipulation motion on different robot
systems in different environments. In the pour-in experiment,
the learned manipulation motion was automatically trans-
formed into a new environment with different obstacles and
a different cup. Using the developed TDCSP-RRT, consistent
trajectories were planned, that differ fundamentally from the
demonstrated trajectory, indicating that the relevant features
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Fig. 11. Experiment 1: Demonstration, learning and planning and execution on bimanual robot system (from top to bottom)

Fig. 12. Experiment 2: Execution on bimanual robot system

Fig. 13. Experiment 3: Execution on the second robot system

of the manipulation had been learned. The representation can
be flexibly adapted to the capabilities of the planning system,
trading generality with planning time. Preconditions and
constraints are valuable to decide, when a given manipulation
strategy can be executed and to monitor its execution.

X. FUTURE WORK

In order to reduce planning time, tighter consistency
conditions, e.g. k-consistency, have to be tested to replace arc
consistency in the node extension step. In general, planning
time heavily depends on the structure of the strategy graph.
Properties of the strategy graph have to be deduced, that
allow for shorter planning times. For example, a graph, that
can be divided into two unconnected graphs by removing
one node, can be planned linearly, see fig. 3.
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