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Abstract—Through their ability to rapidly acquire aerial
imagery, Unmanned Aerial Vehicles (UAVs) have the potential
to aid target search tasks. Many of the core algorithms
which are used to plan search tasks use occupancy grid-based
representations and are often based on two main assumptions.
Firstly, the altitude of the UAV is constant. Secondly, the
onboard sensors can measure the entire state of an entire grid
cell. Although these assumptions are sufficient for fixed-wing,
high speed UAVs, we do not believe that they are appropriate
for small, lightweight, low speed and agile UAVs such as
quadrotors. These platforms have the ability to change altitude
and their low speed means that multiple measurements may
easily overlap multiple cells for substantial periods of time.
In this paper we extend a framework for probabilistic search

based on decision making to incorporate multiple observations
of grid cells and changes in UAV altitude. We account for
observation areas that completely and partially cover multiple
grid cells. We show the resultant impact on a number of
simulation examples.
Index Terms—Unmanned aerial vehicle, search, exploration,

target.

I. INTRODUCTION

For many applications ranging from surveillance to search
and rescue, the ability to monitor an environment and find
a target of interest is of paramount importance [4], [11].
UAVs have the potential to aid this task through rapidly
collecting aerial imagery. In the Wilderness Search and
Rescue (WiSAR), for example, the search task often consists
of finding evidence and using it to constrain the location of
a missing person [12].
UAVs are active systems and therefore the trajectory

of the UAV must be controlled to optimise information
collection. Many path planning algorithms use occupancy-
grid based representations of the environment [4]–[6], [8].
Such representations are advantageous because they can
incorporate both positive information (detection of the target)
and negative information (no detection of the target) and may
also maintain complicated spatial distributions of where the
target might be.
However, most of these algorithms utilise two common

assumptions. The first is that the altitude of the UAV remains
fixed. As a consequence, the sensor coverage region and
sensor properties are the same everywhere. Secondly, the
UAV sensors monitor the state of a single grid cell in its
entirety to determine occupancy. Both of these assumptions
are relevant for fixed-wing UAVs, where straight and level
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flight is often desired and the movement of the UAV is suffi-
ciently fast that successive measurements lie in separate grid
cells. The advent of small, lightweight, agile and low speed
UAVs has meant that changing altitude becomes a valid
control strategy. Furthermore, low speed means that many
observations can lie within the same grid cell. Changing
altitude also means that the sensor coverage at one altitude
could not cover a complete number of cells at a different
altitude. Although these difficulties may be overcome by
refining the decomposition of the environment into more
and smaller cells, this has consequences both in terms of
computational and storage costs.
In this paper we propose a generalized probabilistic search

framework that takes into account the following cases:
1) The observation region of a sensor can completely
cover multiple grid cells, and not just a single grid
cell.

2) The observation region of a sensor can partially cover
multiple grid cells, and not just a single grid cell.

3) Observations can be performed at different heights,
with different sensing qualities.

The structure of this paper is as follows. In Section II we
lay out the probabilistic search framework and discuss its
limitations. Section III extends the framework to consider the
case in which the UAV’s sensor completely observes multiple
grid cells. In Section IV we extend this analysis to include
cells which are partially observed. Although the update
solution at a single timestep can be readily formulated, it
cannot be readily formulated over multiple timesteps because
of unmodelled dependency issues between observed and
unobserved regions in a single cell. We do not address this
issue in this paper. An exploration algorithm, which utilises
height as a control variable, is discussed in Section V and
results for a simulation scenario are presented in Section VI.
We present related work in Section VII. The summary and
conclusions are discussed in Section VIII.

II. PROBLEM STATEMENT
A. Occupancy Grid Representation
The objective is to search for a single, stationary target xT

which is suspected to lie in a two-dimensional search region
A [5]. The environment itself is exhaustively decomposed
into a set of |A| disjoint (non-overlapping) regions or cells,
where the ath cell is Ca. Because the decomposition is both
exhaustive and disjoint, we have:

A =
|A|⋃

a=1

Ca. (1)
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The search task attempts to achieve two goals: to deter-
mine if xT ∈ A and, if so, to determine in which cell the
target lies. Let Pr(xT ∈ A) be the probability that the
target lies within the region A. Using the law of disjoint
probabilities and the decomposition given in Eq. 1,

Pr(xT ∈ A) =
|A|∑

a=1

Pr(xT ∈ Ca)

Pr(xT "∈ A) = 1 − Pr(xT ∈ A)

Therefore, the solution to the search task entails computing
Pr(xT ∈ Ca), ∀ a = [1, · · · , |A|]. These probabilities are
updated by a UAV which traverses the area and is equipped
with a sensor.

B. UAV Pose and Observations
We introduce in this section the notations for the UAV

pose and the observation model we use in the remainder
of the paper. The pose k of the UAV (which includes its
position and altitude) at time t is represented by the vector
kt. The UAV is equipped with an on-board sensor, which has
an observation region O (kt). This corresponds to the region
of A which is visible to the sensor at the current time.
A sensor return dt taken at time t for a UAV position

kt is binary and corresponds to either a target detection or
target no detection event. To account for clutter and missed
detections, we use an observation model similar to the ones
described in [5] and [6]:

Pr(dt = 1|xT ∈ O
(
kt

)
) = 1 − β(kt),

P r(dt = 0|xT ∈ O
(
kt

)
) = β(kt),

P r(dt = 0|xT "∈ O
(
kt

)
) = 1 − α(kt),

P r(dt = 1|xT "∈ O
(
kt

)
) = α(kt).

(2)

where α(kt) is the probability of false alarm, and β(k t)
represents the probability of missed detection for a UAV
position kt.

C. Single Cell Observation
Chung et al. [5] considered the special case where:
1) The UAV position kt is the middle of a single grid
cell.

2) The observation region directly maps to a single cell.
3) The sensor characteristics do not change and so

α(kt) = α and β(kt) = β.
4) Observations are assumed to be independent.
Under these conditions, the recursive formulation to up-

date the occupancy probability for each grid cell can be
written as follows. Let Dt = {d1, · · · , dt} be the set of
observations from time 1 to time t. After a sensor measure-
ment by a UAV located at k at time t, the probability of
target presence in each grid cell Ca of the search area A is
updated as follows:

Pr(xT ∈ Ca|Dt) =
Pr(dt|xT ∈ Ca)Pr(xT ∈ Ca|Dt−1)

Pr(dt|Dt−1)
.

(3)

(a) Complete cell ob-
servations

(b) Complete and par-
tial cell observations

Fig. 1. Multiple complete and partial cell observations. The grid cells are
the white rectangles, the observation region is the grey square.

where:
• Pr(dt|xT ∈ Ca) is obtained from the observation model
(Eq. 2),

• Pr(xT ∈ Ca|Dt−1) represents the prior probability of
target presence in cell Ca,

• Pr(dt|Dt−1) is a normalization factor such that:
Pr(dt|Dt−1) = Pr(dt|xT ∈ A)Pr(xT ∈ A|Dt−1) +
Pr(dt|xT "∈ A)Pr(xT "∈ A|Dt−1).

Although these equations provide a Bayes optimal for-
mulation for the search problem, they introduce a number
of constraints. The most important of these is that the
observation is of a single cell. This creates many limitations
as it restricts the altitude at which the UAV should fly to
cover a fixed size region. With agile UAVs, one prefers
a more flexible solution. Therefore, a key challenge is to
remove the condition that the observation region aligns with
a single cell. Consider two cases: first the case where the
observation region completely covers multiple cells, and
second the case where it partially covers multiple cells.

III. MULTIPLE COMPLETE CELL OBSERVATIONS

Consider the situation shown in Figure 1(a): the observa-
tion region consists of the union of a set of grid cells,

O
(
kt

)
=

⋃

Ca∈O(kt)

Ca. (4)

To update the probability of target presence in a grid cell,
we need to distinguish the case where the grid cell is directly
observed, and where it is not directly observed.

A. Updating Completely Observed Grid Cells

The update rule is a straightforward extension to Eq. 3,
but with the modification that the same likelihood is applied
over all cells in the observation area. Then, we only need to
compute the probability of target presence over the observa-
tion area O (kt) and redistribute this probability for all cells
Ca ∈ O (kt).
Using Bayes’ Rule, the update occupancy in the observa-

tion region is given by:

Pr(xT ∈ O
(
kt

)
|Dt) =

Pr(dt|xT ∈ O (kt))Pr(xT ∈ O (kt) |Dt−1)
Pr(dt|Dt−1)

.
(5)
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Since the grid cells do not overlap, the prior probability
of the target lying in the observation region is:

Pr(xT ∈ O
(
kt

)
|Dt−1) =

∑

Ca∈O(kt)

Pr (xT ∈ Ca|Dt−1).

P r(dt|xT ∈ O (kt)) is given by the sensor observation
model (Eq. 2) and Pr(dt|Dt−1) is a normalization factor.

B. Updating Unobserved Grid Cells
For the grid cells not in the observation area, we

apply Eq. 3 directly. Nonetheless, we need to prove that
Pr(dt|xT ∈ Ca), the probability of target detection given
that the target is in the grid cell Ca, can be obtained from
the observation model described in Eq. 2 (Theorem 1).

Theorem 1: Given that the target lies in Ca, the probability
of detection is given by:

Pr(dt|xT ∈ Ca) =

{
Pr(dt|xT ∈ O (kt)) for Ca ∈ O (kt)
Pr(dt|xT "∈ O (kt)) for Ca "∈ O (kt)

Proof: We only provide the proof of the first part of
the theorem, as the second part can be derived in a similar
manner. Marginalising, the sensor likelihood can be written
as:

Pr(dt|xT ∈ O
(
kt

)
) =

∑

Ca∈O(kt)

{Pr(dt|xT ∈ Ca, xT ∈ O
(
kt

)
)

× Pr(xT ∈ Ca|xT ∈ O
(
kt

)
)}.

(6)

Now, given that Ca is a subset of O (kt),

Pr
(
dt|xT ∈ Ca, xT ∈ O

(
kt

))
= Pr(dt|xT ∈ Ca).

Substituting into Eq. 6, the update is:

Pr(dt|xT ∈ O
(
kt

)
) =

∑

Ca∈O(kt)

{Pr(dt|xT ∈ Ca)

× Pr(xT ∈ Ca|xT ∈ O
(
kt

)
)}.

From the assumption that the detection properties are
constant throughout the detection region, Pr (d t|xT ∈ Ca)
is the same for all Ca ∈ O (kt). Therefore,

Pr(dt|xT ∈ O
(
kt

)
) = Pr(dt|xT ∈ Ca)

×
∑

Ca∈O(kt)

{Pr(xT ∈ Ca|xT ∈ O
(
kt

)
)}

= Pr(dt|xT ∈ Ca).

Finally, the normalisation term Pr(dt|Dt−1) must be
computed. Using the Chain Rule,

Pr(dt|Dt−1) = Pr(dt|xT "∈ A)Pr(xT "∈ A|Dt−1)
+ Pr(dt|xT ∈ A)Pr(xT ∈ A|Dt−1).

Although this can be applied with multi-resolution oc-
cupancy grids (and thus approximate changes in altitude),
it does not fundamentally address the case in which the
boundaries of the observation region do not align with the
occupancy grid. We now consider this case.

IV. UNALIGNED CELL OBSERVATIONS
Consider the case illustrated in Figure 1(b): the boundaries

of the observation region do not align with those of the grid
cells. We incorporate this information by first splitting the
partially observed grid cells into regions that overlap and
regions that do not overlap with the observation region. Then
we update the overlapping regions using the multiregion
update expression, and finally combine the split grid cells.

A. Splitting the Observation Region
Let O(kt) be the set of indices of all grid cells that inter-

sect with O (kt) when the UAV is located at k at time step
t. This can be decomposed into O(k t) = O1(kt)∪O2(kt),
where O1(kt) are the indices of all cells which lie completely
within O (kt) and O2(kt) are the indices of cells which only
partially lie within O (kt).
Each partially overlapped cell can be divided into the

following two regions,

Ca = Oa

(
kt

)
∪ O′

a

(
kt

)
, ∀a ∈ O2(kt).

where Oa (kt) is the part of cell Ca that is observed when
the UAV is located at k at time step t, and O ′

a (kt) is the
part of cell a that is not observed.
Therefore, the observation region can be written as:

O
(
kt

)
=

⋃

a∈O(kt)

(
Ca ∩ O

(
kt

))

=
⋃

a∈O1(kt)

Ca +
⋃

a∈O2(kt)

Oa

(
kt

)
.

(7)

B. Updating Cells in Unaligned Observation Region
We need consider two cases: a single update from a non-

aligned sensing region, and the effects of fusing multiple
unaligned measurements over time.
The single step update case applies the multiple complete

cell update equation (5) to the regridded cell. Once the
update has been performed, the split cells are combined,
and the probabilities computed. Specifically, consider a cell
a∈O2(kt). This has been decomposed into the cells Oa (kt)
and O′

a (kt). Given that the regions are disjoint, the proba-
bility of target presence in Ca can be expressed as follows:

Pr(xT ∈ Ca|Dt) = Pr(xT ∈ Oa

(
kt

)
|Dt)

+ Pr(xT ∈ O′
a

(
kt

)
|Dt). (8)

Therefore, using Bayes’ Rule,

Pr(xT ∈ Oa

(
kt

)
|Dt) =

A(Oa (kt))
A(O (kt))

Pr(xT ∈ O
(
kt

)
|Dt).

(9)

Pr(xT ∈ O′
a

(
kt

)
|Dt) =

(
1 − A(Oa (kt))

A(Ca)

)
Pr(xT ∈ Ca|Dt).

(10)
where the function A returns the size of the region that it
takes as a parameter.
However, although this straightforward generalisation for

the partially observed case is correct for a single update, it
is not correct for the case in which multiple observations of
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partially observed cells are carried out. Suppose a stationary
UAV continued to view the same part of the environment
with a sensor and that the sensor always returned that no
object is detected. Although the probability of occupancy
for all cells in O1(kt) will (correctly) tend to be zero, the
probability of occupancy for all the cells in O2(kt) will also
tend to zero. However, this is incorrect: only parts of the cells
observed in O2(kt), and not the entire cells themselves, have
been observed. The reason is that in Eq. 8, the occupancy
probabilities for Oa (kt) and O′

a (kt) are mixed together
across the entire cell.
The optimal solution is to propagate the decomposed

grid structure. However, as explained above, this leads to
significant computational and storage costs. We are currently
seeking a more principled approximation that is based on the
assumption that underestimating target existence probability
is a more costly mistake than overestimating it. From (8),
we can obtain that

Pr(xT ∈ Ca|Dt) ≤
A(Oa (kt))
A(O (kt))

+
A(O′

a (kt))
A(Ca)

Pr(xT ∈ Ca|Dt) ≤
A(Oa (kt))
A(O (kt))

+ (1− A(Oa (kt))
A(Ca)

). (11)

Therefore, if a cell is completely observed and if there is
a target in this cell, A(Ca)

A(O(kt)) represents an upper bound on
the probability of target presence in this cell.
In our experiments presented below we found that, given

the speed of the UAV, the detrimental effects were insignifi-
cant and did not impact the overall algorithm’s performance.
However, this is largely attributable to the fact that the
movement of the UAV was relatively fast.

V. SEARCH AND RESCUE EXPLORATION
ALGORITHM

To illustrate how partial cell observations may be exploited
for optimizing search and rescue operations, let us consider
the following case scenario. We assume that the search space
is discretized into a 10 by 10 grid, with each square cell
having 5-meter sides. To obtain observation areas of size
5x5m, 5.8x5.8m and 6.6x6.6m, we can either use camera
sensors of 2.4x2.4mm, 2.8.x2.8mm and 3.2x3.2mm, with
a focal length of 4.8mm with the UAV flying at 10m, or
alternatively use a camera sensor of 2.4x2.4mm with a focal
length of 4.8mm and the UAV flying at 10m, 11.6m and
13.2m. The variations in altitude are however not significant
enough to obtain a noticeable difference in the probabilities
of false alarm and missed detection at each altitude. We
therefore use the same values for all three altitudes. Each cell
in the grid is identified by discrete coordinates (i, j), with
(0,0) being the starting point of the UAV. We implement
a control algorithm based on a 1-step look ahead gradient
ascent strategy. Basically, the UAV chooses to move to
the neighboring cell for which the probability of presence
of the target is the highest. Although many other control
strategies can be implemented, we use this simple approach
for illustration purposes.

Figure 2 shows the evolution of the maximum probability
of target presence across the cells of the search area for three
different UAV altitudes. Initially (up to the first 23 steps), the
UAV that flies at the highest altitude (h3=13.2m) and reaches
a higher maximum detection probability than the other two
UAVs operating at lower altitudes. However, the situation is
gradually reversed as UAVs continue to fly. The UAV flying
at h2=11.6m outperforms the other two, between steps 23
and 98, whereas the lower flying UAV (h1=10m) becomes
the best after step 98. We can see that, although the belief
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Fig. 2. Evolution of the maximum probability of target presence for
different UAV altitudes.

of the presence of a target increases faster when a larger
observation area is used (at a higher altitude), the maximum
confidence on the presence of the target is lower.

We therefore derive a search and rescue exploration al-
gorithm (Alg. 1) using partial cell observation and varying
altitude. We assume a conservative approach and uniformly
distribute the target location probability over the search area
if no prior knowledge of the target location is given. Let
h0, .., hm be the set of heights at which a UAV may fly. For
each given height hi (0 ≤ i ≤ m) we define a threshold
for the detection probability Thresholdhi that should be
less than A(Ca)

A(O(kt)) . This threshold represents the maximum
confidence that can be achieved on the presence of target
when the UAV is flying at this particular height. After
each observation, the UAV evaluates from its occupancy
grid the maximum probability MaxBelief on where the
target lies. If this probability is greater than a probability
MaxThreshold, which represents the upper bound on the
probability at which a target is declared as detected, or if it is
less than a probabilityMinThreshold, which represents the
lower bound on the probability at which a target is declared
as absent from the search area, the mission is aborted. If
MaxBelief does not provide conclusive evidence of target
presence or absence, we use the values of the thresholds
Thresholdhk to determine at which altitude the UAV should
fly.
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Algorithm 1: Advanced search algorithm
Init: start exploration at height hk(0 ≤ k ≤ m)
while true do
if (MaxBelief > MaxThreshold) ||
(MaxBelief < MinThreshold) then

terminate mission
else if (MaxBelief < Thresholdhk) &&
(MaxBelief > Thresholdhk+1) then

keep exploring at the same height hk

else if (MaxBelief > Thresholdhk)&&(hk > h0)
then

reduce altitude from hk to hk−1 to reduce
observation area

else if (MaxBelief < Thresholdhk+1) &&
(hk+1 < hm) then

increase altitude hk to hk+1 to increase
observation area

end
end

VI. EXPERIMENTS AND RESULTS
We compare two approaches for target search: a basic

search strategy where UAVs operate at a fixed height h1

and where only completely covered cells are considered;
and an advanced search strategy where UAVs can operate at
two heights h1 and h2, and exploit partial cell observations
(Alg. 1). In our simulations, we set h1 = 10m and h2 =
11.6m. We fixed Thresholdh1 to 0.3 and Thresholdh2 to
0.95. These value have been selected as they are between
the prior (0.01 for a uniform distribution in a 10x10 grid)
and the maximum threshold value ( A(Ca)

A(O(kt)) = 1 for h1, and
0.79 for h2). MaxThreshold was set to 0.95. A careful
study of how threshold values must be selected will be part
of future work. We also consider that the UAV position is
perfectly known and that the UAV is able to move from the
center of a cell to the center of another cell. We assume that
exactly one target exists in the search region but without
any prior information on its actual possible location. The
prior probabilities of target position are equal over the search
area. We evaluate the time to target detection in terms of the
number of moves from one cell to the next adjacent cell.
In each cell, a picture is taken and a sensing algorithm is
used to determine the presence of an object of interest. The
feature-based sensing algorithm we implemented makes use
of the Speeded-up Robust Features (SURF) transform [1].
This algorithm calculates a collection of points in the image
that are most likely to be robust against changes in lighting,
scale, rotation and perspective. SURF features were obtained
for the template set images from a sample video frame. The
features in each template image were individually paired
with the best matching feature in the video frame. Weak
correspondences were culled and those template images with
a low total number of correspondences were discarded. The
correspondence set was then passed to an implementation of
RANdom SAmple Consensus (RANSAC), which calculated
the best-fitting projection of the template image into the
scene [9]. The template object with the greatest number
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Fig. 3. Distribution of the number of moves required to find the target
for both the basic and advanced search strategy. The data was acquired by
exhaustively testing all possible target positions.

of correspondences was chosen as the best fitting object,
with its centre point being given by the planar projection.
We derived our observation model from videos taken at
10m using Hummingbird quadrotor UAV from Ascending
Technologies1 and Point Grey Camera. In our observation
model, we derived 0.2 and 0.3 as probabilities of false alarm
and missed detection respectively.
Figures 4 and 5 show the evolution of the probability of

the target presence at different time steps. They show how the
belief of target presence decreases in regions that have been
observed. When the target has been detected, the probability
of target presence progressively increases until a predefined
threshold is reached.
Figure 3 shows the distribution of the number of moves

required when the target is positioned in each of the cells of
the search area. It shows that the advanced search strategy
typically finds a target faster than the basic strategy.
Hence, we conclude that a hierarchical approach to search

and rescue operations with UAVs operating at different
heights drastically improves the time to target discovery. In
the advanced search strategy, a UAV starts at a higher altitude
where it obtains a rough approximation of the target location
and gradually decreases its altitude to refine its estimate.
This can be accomplished either by changing a single UAV’s
position or by collaboration between multiple UAVs.

VII. RELATED WORK
Similarly to our work, Goodrich et al. have also considered

the tradeoff between coverage and detection quality as the
altitude of the UAV varies [12]. The higher the UAV flies
the larger the observation area, but the less accurately one
can detect the presence or absence of the target. Our work
differs in three respects: 1) We introduce a different notion
of degradation of sensing quality as a function of altitude.
As altitude increases, the observation area includes more
cells, and it becomes more difficult to distinguish the actual
cell where the target lies. 2) Using a feature-based sensing
algorithm we derive realistic probabilities of missed detection
and false alarm, which we take into account in the search
task. 3) We propose a search algorithm in which UAVs can

1Ascending Technologies Hummingbird, http://www.asctec.de
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(c) Step 50
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(d) Step 100

Fig. 4. Evolution of the updates of the probabilistic occupancy grid with basic search strategy (fixed UAV altitude and fully observed cells).
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(c) Step 20
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(d) Step 25

Fig. 5. Evolution of the updates of the probabilistic occupancy grid with advanced search strategy (varying UAV altitude and partially observed cells).

dynamically and autonomously alter their altitude in response
to their belief of the target presence. Goodrich et al. selected
a fixed UAV altitude so that human operators can clearly see
the target in the pictures that UAVs generate.
The use of occupancy grids to maintain and share in-

formation has been very popular to address localization
or navigation problems due to its scalability to large-scale
environments [3], [8]. They have also been used for search
and detection of individuals. For instance, Berclaz et al.
proposed an approach that uses a synthetic model of a
background to estimate the presence of pedestrians [2], [10].
Closer to our work, Chung et al. proposed a probabilistic

framework to the search problem for multiple UAVs search-
ing for potentially multiple targets [5]–[7]. We extended this
framework to support observations of multiple grid cells by
a single UAV, observations of partial grid cells (for a single
update step), and to support changes in UAV altitudes.

VIII. CONCLUSION AND FUTURE WORK
In this paper we addressed the problem of extending a

probabilistic search framework to account for the properties
of agile UAVs. Specifically, we considered observations of
multiple grid cells by a single UAV, observations of partial
grid cells (for a single update step), and to support changes in
UAV altitudes. We showed that developping a search strategy
exploiting the tradeoff between size of the observation area
and confidence in a target presence can improve the average
time-to-target detection.
In the future, we shall examine alternative, non-grid based

approaches such as the Probabilistic Hypothesis Density
Filter. We should also consider changes in detection prob-
abilities and coverage size as a function of altitude and we
will evaluate the performance of our algorithm extensively
with non-uniform prior distributions of the target location.
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