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Abstract— This paper tackles the problem of tracking walk-
ing people with multiple moving robots equipped with laser
rangefinders. We present an adaptation to the classic Multiple
Hypothesis Tracking method, which allows for one-to-many
associations between targets and measurements in each cycle
and is thus capable of operating in a multi-sensor scenario. In
the context of two experiments, the successful integration of
our tracking algorithm to a dual-robot setup is assessed.

I. INTRODUCTION

Tracking walking people by mobile robots has been tack-
led in many ways and under different perspectives in the
literature. As a problem, walking people tracking falls within
the general scope of target tracking. However, in contrast to
generic targets usually moving stochastically, human walking
exhibits recurrent patterns both in the behavioural level, as
people tend to follow specific paths ([1], [2]), and in the
motion level, as human body makes specific stereotyped
movements during walking ([3], [4]).

Methods for walking people tracking are mainly based on
either cameras ([5], [6]), or laser rangefinders ([8], [9], [18]),
or a combination of these two ([10], [7]). Collecting sensory
data, and fusing data from multiple sensors ([11], [12]), is
followed by either making simplifying assumptions about
human walking ([13], [9]) or explicitly modeling leg-motion
in order to detect people. Actual tracking is accomplished
with the use of a data association method like Multiple
Hypothesis Tracking (MHT) ([14], [9]) or other Probabilistic
Data Association method usually with Kalman or Particle
Filters ([6], [7]).

Tracking people by observing their legs by definition
involves handling frequent occlusion circumstances due to
the nature of human walking. In addition, as very often
people tend to walk in groups of two or more persons,
occluded legs and crossing trajectories become even more
frequent. Accommodating occlusion in human walking is a
good reason to use a group of robots instead of one robot
alone ([11], [12]).

Algorithms presented in the literature for walking people
tracking with laser rangefinders usually concern either a
single moving robot, or a set of static sensors. This paper
presents an algorithm that runs on a team of moving robots
that communicate with a central monitoring station.

In [9] we proposed a walking person tracker for laser-
equipped mobile robots based on Reid’s Multiple Hypothesis
Tracking (MHT) method ([15]), where the rangefinder scans
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at the height of the legs. In this paper we present an extension
to the MHT method which, unlike classic MHT, can fuse
tracking data from different sensors. Our contribution is the
adaptation of MHT so as to handle one-to-many associations
between targets and measurements in each step. Based on the
above we propose a people tracking algorithm, which runs
in parallel on multiple moving robots and a central station.

The rest of the paper is structured as follows: section II
outlines the main concepts of our tracking method operating
on a single robot, section III describes the proposed extension
to the MHT method and how it was used in a multi-robot
context, section IV discusses the conducted experiments
and results and section V draws the conclusion and reveals
planned future work.

II. OUTLINE OF THE TRACKING METHOD

Our method for people tracking can be roughly divided in
the following parts.

A. Data Filtering and Clustering

In the case of highly reflective or dark colored surfaces,
laser scanners are often prone to false measurements. Data
filtering considers scan points with range greater than 8
meters as outliers and eliminates them.

The scan is smoothed by employing a median filter and
then scan points are grouped into clusters. Clusters denote
sets of points which, due to their proximity, potentially
belong to the same real world object. The criterion for
clustering is the one introduced in [16] and extended in [17].

B. Shape Extraction

The shapes of interest to our algorithm are: line segments,
which help localization and background detection, and circle
arcs, which can potentially be associated to human legs. The
point groups formed by the clustering module are inspected
for these types of shapes.

The inspection procedure is based on the Ramer (Douglas-
Peucker) algorithm [19], according to which, for each cluster,
the first and last points are connected by a straight line.
For all remaining cluster points the distance to the line is
calculated and if the maximum distance exceeds a given
threshold, then the line is splitted in the point of the maxi-
mum distance and two new sets of points are created. The
difference here is that emerging point sets, when they cannot
be fit by a line segment, are checked against the possibility
of representing a leg by fitting circle arcs of dimensions
compatible to common anthropometric data.

Circle arcs assigned to human legs are used for object
tracking. The set of measurements passed to the tracking
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procedure is formed by the centroids of the corresponding
point sets. Centroids have been preferred over the centers of
the corresponding circles, as the latter can yield large errors
due to human clothing.

C. Object Tracking

MHT has been implemented based on [15] with the
difference that, as measurements represent clusters of 3 or
more points and given the sensor resolution the probability
of false alarms has been considered negligible. After all,
in the unlikely case that a false alarm initiates an object,
the latter will quickly be eliminated when the next sets of
measurements get processed.

Human walking being relatively stable (usually 1.0 to
1.5m/s), and given the periodic motion of human legs, in
the context of Kalman filtering their acceleration has been
modelled as white noise. When a moving object, i.e. a leg
candidate, is lost from sensor sight, a counter is initiated and
the object is assigned the occluded status. The position of
objects in occluded status is updated by using the estimated a
priori position of the corresponding KF. When the occlusion
counter reaches a predefined number of steps, the object is
discarded.

D. People Tracking

The people tracking module exploits the object tracking
inference in order to calculate the trajectories of people
walking by. The assumption involved here is that, during
normal walking, the relative positions of the human center of
gravity (CoG) and legs satisfy the following two arguments:
a) the triangle defined by the human CoG and the feet tends
to stay isosceles with its base parallel to the ground and
b) the plane defined by that triangle is quasi-normal to the
ground. This way a human is considered to be making less
effort to keep their balance. These two arguments are valid
for the scanning plane of the laser rangefinder as well, as
the latter is normally parallel to the ground.

The people tracking algorithm maintains a Kalman Filter
for every people detected. By combining this KF with the
two KFs maintained by the Object Tracker for the two legs,
the above assumption and some basic geometry, the People
Tracker can accommodate for periods of occlusion of one
or even of both legs. It can also identify a human even in
the case when, due to occlusion, one or both legs have been
mistakenly considered by the object tracking module as new
objects and their trajectories have been reset.

III. MULTI-ROBOT MULTIPLE HYPOTHESIS
TRACKING

Multiple Hypothesis Tracking method, as usually imple-
mented ([15], [14]), and as used in our presented algorithm
above, applies to scenarios involving a single robot. There-
fore, a basic rule of MHT is that, in each step, each target can
only be associated with a single measurement. In this paper
we propose a multi-robot MHT, in the context of which a
pool is formed with measurements originating from all robots
sensors and one-to-many relationships are allowed between

targets and measurements. Thus, supposing the team consists
of n robots, up to n measurements can now be assigned to a
single target, existing or new, provided they originate from
different robots. The latter is the additional rule followed by
the MHT algorithm during the association of measurements
to possible targets.

With respect to selecting the dominant association hy-
potheses, extending the method to the multi-robot case
requires the derivation of hypotheses probabilities to be
adapted, so as to accommodate for measurements from
multiple sensors with overlapping fields of view. In the
following paragraphs a probability analysis for such a multi-
robot setup is presented.

Following the notation of the related literature, let Ωk
j

be the j-th hypothesis at time k, let Ωk−1
p(j) be its parent

hypothesis and let Ψj(k) denote a set of assignments that
associates the measurements at time k, namely Zk, to either
existing or new targets. The set Ψj(k) is combined with
Ωk−1

p(j) and so Ωk
j emerges.

The probability of the child hypothesis Ωk
j can be calcu-

lated recursively if the probability of its parent Ωk−1
p(j) and the

probability of the assignment set Ψj(k) are known [15]:

P (Ωk
j |Zk) = P (Ψj(k),Ωk−1

p(j) |Zk) =

= c · P (Zk|Ψj(k),Ωk−1
p(j)) · P (Ψj(k)|Ωk−1

p(j)) · P (Ωk−1
p(j)) (1)

The righmost term in 1 is the recursive term, i.e. the
probability of the parent hypothesis which is known from the
previous iteration, whereas c is a normalizer. The leftmost
term after the normalizer is the likelihood of the measure-
ment set Zk given the specific association hypothesis. Finally,
the central term is the probability of the assignment of
measurements to targets, given only the parent hypothesis
and if no real knowledge on the actual measurement positions
is implied.

A. Definitions and Assumptions

As stated earlier we do not consider false alarms, as mea-
surements emerge from fusing sets of scan points. Likewise,
for a given robot the probability of detection is 1.0 for all
targets lying within its field of view. We further assume that
the team consists of identical robots with identical sensors,
in this case laser rangefinders.

We define N as the number of existing targets, i.e. targets
whose existence is implied by the parent hypothesis. Mk

denotes the size of the current measurement set Zk, Mk
D

will hence denote the number of measurements of the current
measurement set that are associated with existing targets and
Mk

N the number of those measurements associated to new
targets. In the context of this paper we stick with Reid’s
notation for the MHT part, so further track statuses, like
occluded and deleted ([14]) are only considered in a later
stage of the algorithm. Therefore, under our assumptions, it
holds:

Mk = Mk
D + Mk

N (2)
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Fig. 1. Overlapping fields of view. Light grey (2) areas are concurrently
monitored by 2 robots, dark grey (3) areas by 3 robots.

which means that in each step measurements originate
from either existing or new targets.

As robots move the fields of view of their sensors often
overlap. There are areas sensed by a single robot and areas
viewed by two or more robots simultaneously as illustrated
in Fig. 1. Let Ek

i be the total area simultaneously monitored
by exactly i robots at time k. With respect to Fig. 1, for
example, Ek

2 is defined as the sum of all areas denoted by
”2”. We define Ek

ef as the total area effectively sensed by

the system, thus it holds Ek
ef =

n∑
i=1

Ek
i , where n the number

of team robots. k will hence be dropped for simplicity.
With respect to the above, we define NDi as the number of

existing targets, i.e. targets implied by the parent hypothesis,
concurrently detected by i robots. As the probability of
detection is 1.0, NDi

is equal to the number of existing
targets lying in area Ei. The total number of existing targets

detected will be denoted by ND =
n∑

i=1

NDi .

We further define NNi as the number of new targets
concurrently detected by exactly i robots. NN denotes the
total number of new targets detected by the system at time
k according to the assignment hypothesis in question and it

holds NN =
n∑

i=1

NNi .

Further, according to the above assumptions, the numbers
of measurements and the numbers of targets are connected
with the following relationships:

MDi = iNDi ⇒ MD =
n∑

i=1

iNDi (3)

MNi = iNNi ⇒ MN =
n∑

i=1

iNNi (4)

where MDi
represents the number of measurements at

time k assigned to existing targets within the areas concur-
rently monitored by i robots and MNi represents the number
of measurements assigned to new targets within those areas.

B. Likelihood of Measurements

We assume that a target associated with a measurement
Zi

k has a Gaussian probability distribution centered around
the measurement prediction. We define variable δi as being
1 if measurement Zi

k has been associated to an existing
target, 0 otherwise. NZi denotes the Gaussian distribution
corresponding to the track of the target (if any) associated

with the measurement Zi
k. We further define variable ζi as

1 if measurement Zi
k is assigned to a new target that has

already been initiated by another robot’s measurement, 0

otherwise, such that
Mk∑
i=1

ζi + NN = MN . Ns denotes a

Gaussian distribution corresponding to the sensor accuracy,
which describes the probability that a robot detects an object
at the neighborhood of an already detected target. If the
pdf of a new target emerging somewhere whithin the sensed
area is considered uniform, the corresponding probability is
denoted by 1/Eef . Thus, the likelihood of measurements,
given the parent hypothesis and the measurements-to-targets
association is expressed as follows:

P (Zk|Ψj(k),Ωk−1
p(j)) =

1
ENN

ef

Mk∏
i=1

NZi
(Zi

k)δiNs(Zi
k)ζi (5)

C. Hypothesis Probability

As there are many possible combinations when assigning
measurements to existing and new targets, there are many
possible association sets Ψj(k), each one having a probabil-
ity related to that of the corresponding assignments. Follow-
ing we derive the probability of the emerging hypotheses.

In Reid’s analysis [15] it is assumed that the number of
existing targets that are detected is given by a binomial distri-
bution, whereas the number of new targets follows a Poisson
distribution. Having assumed probability of detection equal
to 1.0, the probability of numbers ND and NN , given the
parent hypothesis Ωk−1

p(j) , will only depend on the probability
of new targets, which is considered to follow a Poisson
distribution, and the probability of targets coming out of the
total sensed area, or deleted tracks, denoted by N − ND,
which follow a binomial distribution with probability of
deletion equal to Px:

P (ND, NN |Ωk−1
p(j)) =

=
βN

NN Eef
NN · e−βN Eef

NN !
· N ! · P (N−ND)

x (1− Px)ND

(N −ND)!ND!
(6)

where the first fraction corresponds to the Poisson distri-
bution, βN being the density of new targets.

The probability of a specific assignment of measurements
to targets is determined as 1 over the number of possible
combinations satisfying Eq. 2. The number of possible such
configurations is:

(
Mk

MD1

)
·
(

Mk −MD1

MD2

)
· · ·

(Mk −
n−1∑
i=1

MDi

MDn

)
·

(Mk −
n∑

i=1

MDi

MN1

)
· · ·

(Mk −
n∑

i=1

MDi
−

n−1∑
i=1

MNi

MNn

)
=

=
Mk!

n∏
i=1

MDi !MNi !

(3),(4)
=

Mk!
n∏

i=1

(iNDi)!(iNNi)!
(7)
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Therefore the corresponding probability is:

P (configuration|ND, NN ) =

n∏
i=1

(iNDi)!(iNNi)!

Mk!
(8)

For a given configuration, there are many ways to assign
the ND detected targets to the N existing targets. The
number of possible assignments is given by N !

(N−ND)! .
And the corresponding probability is:

P (assignment|configuration) =
(N −ND)!

N !
(9)

Finally, the probability of the assignment of measurements
to targets given only the parent hypothesis is the product of
Equations 6, 8 and 9:

The probability of the child hypothesis Ωk
j can now be

expressed by the following formula, where many terms, in-
cluding the exponentiated effectively sensed area ENN

ef , have
been canceled out and where c′ incorporates all terms that
do not depend on the choice of the assignment hypothesis
(like Mk!, Eef etc.):

P (Ωk
j |Zk) = P (Ωk−1

p(j)) · c
′ ·

Mk∏
i=1

NZi(Z
i
k)δiNs(Zi

k)ζi

 ·
·βN

NN P
(N−ND)
x (1− Px)ND

NN !ND!
·

[
n∏

i=1

(iNDi
)!(iNNi

)!

]
(10)

which is the equation we propose to be used throughout
the hypothesis selection procedure.

Once the dominant hypotheses have been nominated, the
position of each target is calculated by merging all the two-
dimensional Gaussian distributions, which correspond to the
measurements assigned to each target.

D. System Overview

The tracking algorithm is divided in two parts, one imple-
mented onboard the robots, identical on each of them, and
the other functioning on a desktop computer, hence called
central station. Reliable communication between the system
components is assumed.

Robot side, scan points received from the local laser
rangefinder are processed up to the point when actual moving
or static objects are extracted through the locally imple-
mented MHT-based data association module. Information on
objects position provided by the local Object Tracker reflects
the robot’s individual view of the environment and, although
referring to the global coordinate system of the map, it
corresponds to the time when the local rangefinder carried
out the measurement. A synchronization module undertakes
the conversion of locally tracked object positions to the time
point requested by the central station.

The central station requests object positions with a con-
stant frequency (e.g. every 250ms or 4Hz frequency),
whereas on each robot scans are assigned a timestamp
denoting the global time they were acquired. Given that the
local Object Trackers associate measurement data to tracked

Fig. 2. Paths followed by the walking persons and the robots during the
two experiments (1 and 2).

objects, the synchronization module can interpolate object
positions to the exact time requested by the central station.

Data association information is not forwarded to the
central station. The latter, through the global object tracking
module, performs a separate data association using the multi-
robot MHT method presented in Section III.

IV. EXPERIMENTAL EVALUATION

The presented method was tested in the context of two
experiments involving two moving robots and three walk-
ing persons, whose paths followed are depicted in Fig. 2.
Robots followed a repeated pre-programmed moving pattern
at a speed of 20cm/s, which attempted to approximate the
movement style of a service robot within a populated area.
Ground truth was provided by camera mounted on a bridge
crane at a height of 8, 5m over the experiments area.

The data collected during the experiments were processed
by two versions of the tracking algorithm: a single-robot
version, considering data recorded by one of the robots and
a dual-robot version, based on the proposed extended MHT
algorithm and considering data from both robots.

It should be stressed that the recorded positions concern
each time the dominant MHT hypothesis (set of associa-
tions between measurements and targets), in other words
the branch of the MHT hypotheses tree with the highest
probability, which might change at a later stage as more
than one hypotheses survived from one processing cycle to
the next. With respect mainly to the single-robot case, such
hypothesis switches are visible in resulting graphs in the
form of sharp path changes: due to extensive occlusion the
algorithm temporarily misses the actual path of the tracked
person, however the path is corrected based on later data.

A. First Experiment

The first experiment involved three persons walking in
circles in front of the robots as depicted in Fig. 2, part 1. Due
to its pattern, the movement of the walking persons yielded
multiple instances of occlusion, however each person was
each time clearly seen by at least one robot.

With reference to Fig. 3, the path produced for person A
(similar for B and C) when the algorithm ran on one robot
is reflected on the left graph. Circle-shaped signs following
the lines coming out of the path (Fig. 3, left graph) denote
instances when person A was occluded by another person
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with reference to the measuring robot. As mentioned in the
algorithm overview, during that period the Kalman Filter
assigned to person A, in lack of a real observation, was being
updated with its own a priori estimated position.

With reference to the right graph of Fig. 3, the dual-
robot version of the algorithm clearly produces a much more
accurate path for the person tracked as successive occlusions
are compensated by the presence of two measuring robots.

B. Second Experiment

The second experiment intended to reveal the advantage of
the multi-robot version of the algorithm over the single-robot
version in a circumstance frequently observed when people
walk in groups. The experiment involved two persons, A and
C, walking in front of the robots the one next to the other
as illustrated in Fig. 2, part 2. The third person followed the
opposite path direction. The paths followed by A and C were
parallel, the distance between the two being approximately
80cm. Due to the latter fact there were moments when two
legs of two different persons were closer than the legs of
a single walking person. In addition, the algorithm had to
accommodate for the continuous occlusions of the legs. The
paths produced by the two versions of the algorithm are
depicted in Figures 4, 5 and 6.

The single-robot version, which was run on the upper-
left robot with respect to 2, exhibited no difficulty to follow
person A in real-time as the latter was clearly seen by the
robot all the way.

Concerning person B, the algorithm eventually produced
a consistent track, in terms that it did not get confused
about the number of persons and also kept a continued
track for the person’s path from the beginning to the end.
However, a difficulty of the single-robot version, to follow
the tracked person in real-time in occlusion circumstances
is implied in Fig. 5. As for person C, the single-robot
version of the algorithm failed to produce a continuous
path and the corresponding track was stopped several times.
Tracking was eventually re-established, but different persons
were implied. This is because, due to occlusion, person C
repeatedly remained out of robot sight for longer than the
algorithm could handle.

In contrast, the dual-robot version of the algorithm suc-
cessfully tracked all three persons, as it used scan data from
two different perspectives, thus practically eliminating legs
occlusion.

C. Single-robot vs dual-robot algorithm

Table I illustrates the mean values of the offsets of the
paths measured by the existing single-robot tracker and the
multi-robot tracking algorithm, which is based on the pro-
posed extension of the classic MHT method. With respect to
the former, and in order for a comparison to be meaningful,
for the track that was mistakenly split in parts, offset values
in the table refer to the corresponding combined paths.

Values measured for the multi-robot algorithm denote an
improvement varying from 26% to 66%. Although offset
values are not suitable for an absolute assessment of the

Fig. 3. First experiment. Person A. Left graph refers to the single-robot,
right graph refers to the multi-robot version.

Fig. 4. Second experiment. Person A. Left graph refers to the single-robot,
right graph refers to the multi-robot version.

algorithm, as they are subject to robots localization errors,
the difference in accuracy between the paths produced by
the single-robot and the multi-robot methods is significant.
Equally important is the improvement in the capability of the
system to discern walking legs and to disambiguate observed
objects in occlusion circumstances.

V. CONCLUSIONS AND FUTURE WORK

This paper presented an algorithm for tracking walking
people suitable for systems comprising a team of multiple
moving robots and a central station. An extension to the
classic Multiple Hypothesis Tracking method was presented,
which can handle measurements coming from multiple sen-
sors. The main contribution of this paper is the probability
analysis for the multi-sensor MHT method, resulting in Eq.
10, which is used throughout the hypothesis selection proce-
dure. The proposed method was evaluated in two experiments
involving two moving robots and three walking persons.

A. Conclusions

The conducted experiments revealed that, when changing
from the single-robot to the multi-robot algorithm, there is
a significant improvement of the paths calculated for the
tracked walking people. In addition the experiments revealed
that, in circumstances where people walk close to each other,
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Fig. 5. Second experiment. Person B. Left graph refers to the single-robot,
right graph refers to the multi-robot version.

Fig. 6. Second experiment. Person C. Left graph refers to the single-robot,
right graph refers to the multi-robot version.

there are cases when only the multi-robot version of the
algorithm can successfully track the occluded persons.

B. Future Work

We are currently enhancing the proposed algorithm by
adapting the multi-robot MHT implementation so as to
handle situations where the probability of detection is lower
than 1.0. The latter, by invalidating Eq. 3 and 4, involves a
thorough probability analysis for the assignment of measure-
ments to targets where a target in a Ei area could potentially
be tracked by 0 up to i robots.

The proposed method for multi-robot walking person
tracking will soon be tested and evaluated in the context of an
experiment of a larger scale. Its effectiveness will be assessed
in a more demanding out-of-laboratory environment.

Our efforts and interest are directed towards implementing
a completely decentralized approach, in the context of which
each robot will be running its own global object and people
tracker, much like in the single-robot case, but this time
sharing object tracking information with the other team
robots in real-time.
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