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Abstract— This paper presents an innovative spring assisted
modular and reconfigurable robot (MRR) design and control
framework, which is developed based on a synergetic integra-
tion of robot control with a brake and an embedded spring at
each modular joint. By activating the brake, static balancing
can be established, allowing reinforced delicate operation in the
neighborhood of a balanced configuration such as door opening,
as well as spring assisted lift of heavy payload. The developed
spring assisted MRR can improve the payload to weight ratio
of the conventional robot manipulators without introducing
sophisticated mechanisms. A distributed control method has
been proposed to facilitate control of the spring assisted MRR.
The developed control algorithm does not rely on a prior
dynamic models and can suppress uncertainties introduced
by module reconfigurations as well as uncertainties due to
sensor inaccuracies and noises. With the developed controller,
control parameters need not to be adjusted when adding
modules to or removing modules from an MRR, or changing
its configurations. Prototype modules have been developed, and
the experimental results have confirmed the effectiveness of the
proposed design and control.

I. INTRODUCTION

With substantial application potential especially in

aerospace sector, the development of modular and reconfig-

urable robots (MRRs) is one of the most promising research

areas in robotics [1]. However, the payload and manipulation

capability of conventional modular manipulators is severely

limited compared to their own weight, and a large portion of

the actuator output is used to compensate the weight of the

robot joints and links. Such problems become more severe

when they are expanded by adding pre-designed modules,

and the development of MRRs with improved payload to

weight ratio is essential.

In related research works on MRRs, three types of

MRRs have been reported in terms of self-reassembly, self-

reconfigurable and manually-reconfigurable modular robots.

The modular robotic concept can be traced back to 1980’s

and a generalized modular architecture for robot structures

was presented in [2]. The main concept of developing recon-

figurable robots is based on the use of modular components

as building blocks, which may result in various mechanical

modules. Conventional robot control methods are based on

known robot configuration and its associated dynamic model,

and automatic model generation for MRRs used to be a hot

research topic [3]. However, the control parameters have to
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be retuned according to the regenerated models due to the

unmodeled system dynamics caused by reconfiguration [4].

Recently in our laboratory, a distributed MRR control system

has been developed based on joint torque sensing [5].

Extensive efforts have been reported to improve the pay-

load capability of robotic manipulators. The robot weight

is substantially reduced by taking advantage of technology

advancement such as development of actuator and link

using advanced materials [6]. This approach is effective but

requires expensive hardware development and fabrication.

In the literature, static balancing with counterweights and

external springs has been used to compensate for robot body

weight, but it involves sophisticated mechanisms and restricts

the working envelope of the robot [7]–[9]. In [10], a spring

is used to counter-balance gravitational torque applied to an

MRR module, and a loading plate with a loading pin is used

to manually set the preloaded torque of the module.

This paper presents the design and control of a proposed

spring assisted MRR that has a spring and an associated

brake embedded in each joint module. The power spring

and a decoupling bearing are inserted between the brake and

the actuator shaft. By activating the brake, static balancing

can be established. The MRR manipulation capability and

payload capacity are henceforth boosted with a synergetic

integration of our proposed multiple mode MRR control

with the introduced joint brake and spring. Energy can

be accumulated in the spring and released in a controlled

manner to reinforce the robot manipulation capability. With

the assistance of the power spring, the actuators can be kept

away from saturation to maintain proper operation of the

control law when heavy payloads are handled.

Joint brakes are conventionally required to lock the robot

while power is off. The proposed design boosts the actuator

torque output by taking advantage of the existing brake

and requires minimum additional hardware and associated

weight. In this paper, a distributed control method is devel-

oped based on torque sensing to control the proposed joint

module with the spring activated or deactivated, which can

be used to control MRRs with any number of modules and

with any robotic configurations. Two prototype modules with

embedded power spring are developed in our laboratory to

validate the design concepts, and experimental results have

verified the effectiveness of the proposed design and control.

The rest of the paper is organized as follows: Section II

presents the mechanical design of the joint with brake and

spring. Section III presents modeling and motion control

design. Experimental results are presented in Section IV.

Concluding remarks and discussions are given in Section V.
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II. MRR MODULE WITH EMBEDDED SPRING

Several MRR modules are developed in our laboratory

recently. Each module consists of components such as actu-

ator, encoder, speed reducer, joint torque sensor and a brake.

Besides these common components, the newly developed

module with an embedded power spring is as shown in Fig. 1.

As illustrated in Fig. 1), the power spring is inserted between

the brake rotor and the actuator shaft through a decoupling

bearing. One side of the spring is connected with the actuator

shaft, and the other side to the rotor of the brake. If the

brake is in the released state, the spring and brake rotor rotate

together with the actuator shaft. When the brake is activated,

the brake rotor is brought to a halt, but the actuator shaft

can still rotate. As a result, the spring generates a moment

that grows with the shaft position change from the position

when the brake was activated (locking position). The spring

generated moment (SGM) can then be used to assist the

actuator in robot operations.

(a)

Fig. 1. Mechanism design for a spring-assisted modular joint.

The torque vs. deflection relationship for a power spring

can be approximated by [11]:

τk

Tkmax

≈ 1 −
( u

Umax

− 1
)2

(1)

where τk is the SGM; u denotes the deformation of the

spring; similarly, Tkmax and Umax represent the maximum

SGM and the maximum deformation of the spring.

The brake can be activated at any joint position by the

controller to set the locking position ql. Thereafter at any

joint position q, the SGM can be calculated as

τk = Tkmax

{

1 −

[

γ (ql − q)

Umax

− 1

]2
}

(2)

where γ is the reduction ratio of the speed reducer. ql and q

are defined as the link side positions.

III. CONTROL DESIGN AND APPLICATION OF MODULE

WITH EMBEDDED SPRING

A. Dynamic Model Formulation

Consider MRRs with the proposed modules installed in

series as illustrated in Fig. 2. Each module provides a

rotary joint. Modules close to the base module are named

Link i

Link i-1

Joint i iq

Torque sensor

Speed reducer

Motor rotor

Brake rotor

Torsional spring

siτ

iτ

Fig. 2. Schematic diagram of a proposed MRR

lower modules, and modules close to the end-effector are

called upper modules. To derive the dynamic equations, the

following assumptions are made: the rotor is assumed to be

symmetric with respect to the rotation axis; flexibility of the

joint shaft and the speed reducer is assumed to be negligible,

which is reasonable for harmonic drive, a kind of “zero”

backlash gearhead; it is assumed that the torque transmission

does not fail at the speed reducer, and the inertia between

the torque sensor and the speed reducer is negligible; inertial

moment of the spring and brake rotor is assumed to be

negligible compared with that of the actuator rotor and shaft.

Based on the dynamic equations of a rigid robot manip-

ulator with n rotary joints and joint torque sensing [5], the

dynamic equations for MRRs with embedded spring can be

formulated as follows:

For the base module, i = 1

Im1γ1q̈1 − τk1 + f1(q1, q̇1) +
τs1

γ1
= τ1 (3)

For the second module from the base, i = 2

Im2γ2q̈2 − τk2 + f2(q2, q̇2) + Im2z
T
2 z1q̈1 +

τs2

γ2
= τ2 (4)

For the upper modules, i ≥ 3

Imiγiq̈i − τki + fi(qi, q̇i) + Imi

i−1
∑

j=1

zT
i zj q̈j

+ τsi

γi
+ Imi

i−1
∑

j=2

j−1
∑

k=1

zT
i (zk × zj)q̇k q̇j = τi

(5)

In the derived dynamic equations (3)–(5), Imi is the

moment of inertia of the rotor about the axis of rotation;

τsi is the coupling torque with the upper modules at the

torque sensor location; and τi is the actuator output torque;

and the SGM for the ith module τki can be derived from (2)

as follows:

τki =

{

ki1γi (qli − qi) + ki2γ
2

i (qli − qi)
2
, brake engaged

0, brake released
(6)

where ki1 = 2Tkimax

Uimax
and ki2 = −Tkimax

U2
imax

.

The joint friction, fi(qi, q̇i), is assumed to be a function

of the joint position and velocity [12]:

fi(qi, q̇i) =
[

fci + fsi exp(−fτ iq̇
2
i )

]

sgn(q̇i)

+biq̇i + fqi(qi, q̇i)
(7)

where fci denotes the Coulomb friction related parameter;

fsi denotes the static friction related parameter; fτ i is a
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positive parameter corresponding to the Stribeck effect; bi

denotes the viscous friction coefficient; fqi(qi, q̇i) reflects the

position dependency of friction and other friction modeling

errors; and sgn(q̇i) is the sign function.

Let Fi = [bi fci fsi fτi]
T , Θijk = zT

i (zk × zj) and

θij = zT
i zj , according to the model uncertainty decompo-

sition scheme proposed by Liu, [13], θij , Θijk and Fi can

be decomposed into a constant part plus a variable part, i.e.,

θij = θc
ij + θv

ij

Θijk = Θc
ijk + Θv

ijk

Fi = F c
i + F v

i

(8)

where the superscripts ‘c’ and ‘v’ denote the constant and

variable parts, respectively.

Let b̂c
i , f̂ c

ci, f̂ c
si and f̂ c

τi represent estimates of constant

friction parameters, using the linearization scheme proposed

by Liu in [14], the friction model shown in (7) can be

approximated by:

fi (qi, q̇i) ≈ f̂ c
i (q̇i) + Y (q̇i)

(

F̃ c
i + F v

i

)

+ fqi (qi, q̇i) + f̌i (q̇i)
(9)

where F̃ c
i = F c

i − F̂ c
i with F̂ c

i = [b̂c
i f̂ c

ci f̂ c
si f̂ c

τi]
T ; f̂ c

i (q̇i),
f̌i (q̇i) and Y (q̇i) can be detailed as follows:

f̂ c
i (q̇i) =

[

f̂ c
ci + f̂ c

si exp
(

− f̂ c
τiq̇

2
i

)]

sat (q̇i, ǫq̇i
) + b̂c

i q̇i

f̌i (q̇i) =
[

fci + fsi exp
(

−fτiq̇
2
i

)]

[sgn (q̇i) − sat (q̇i, ǫq̇i
)]

Y (q̇i) =
[

0 1 exp(−f̂ c
τiq̇

2
i ) −f̂ c

siq̇
2
i exp(−f̂ c

τiq̇
2
i )

]

·sat(q̇i, ǫq̇i
) +

[

q̇i 0 0 0
]

(10)

where the saturation function is defined as follows:

sat (q̇i, ǫq̇i
) =

{

q̇i

|q̇i|
, |q̇i| > ǫq̇i

q̇i

ǫq̇i

, |q̇i| ≤ ǫq̇i

(11)

where ǫq̇i
is a positive constant.

Property 1:

|θv
ij | < ρθij , |Θ

v
ijk| < ρΘijk, |F v

ij | < ρFij(j = 1 · · · 4) (12)

where ρθij , ρΘijk
and ρFij are known constant bounds.

Property 2:

|fqi(qi, q̇i)| < ρfqi (13)

where ρfqi is a known constant bound for any position qi

and velocity q̇i.

Property 3:

|τsi − τ̂si| < ρτsi (14)

where τ̂si denotes the measured coupling torque at the torque

sensor location, and ρτsi is a known constant bound.

Property 4:

|ëi| ≤ ρeai, |ėi| ≤ ρevi (15)

where ρeai and ρevi are known constant bounds.

Property 5:

|θij | = |zT
i zj | ≤ 1, |Θijk| = |zT

i (zk × zj) | ≤ 1 (16)

Property 6:

|f̌i (q̇i) | < ρfi (17)

B. Control Design

According to the torque sensing based distributed MRR

control algorithm developed in [5], the control input τi can

be designed joint by joint; and the model uncertainties are

all bounded. The system errors are defined as:

ei : = qi − qid

ri : = ėi + λiei

ai : = q̈id − 2λiėi − λ2
i ei

(18)

where qid and q̈id represent the desired joint positions and

joint accelerations, respectively; and λi is a positive constant.

To stabilize the base joint, the control is designed as:

τ1 = Im1γ1a1 + τ̂s1

γ1
− τ̂k1

+f̂ c
1 (q̇1) − kI1

∫ t

0 r1 (t) dt + τr1

(19)

where kI1 > 0 is a constant and τr1 is the decomposition-

based robust control term [13], which is defined as:

τr1 = −
(

ρf1 + ρfq1 + ρτs1

γ1

)

· sat (r1, ǫr1)

−
4
∑

j=1

{

ρF1j Yj (q̇1) sat
(

r1 Yj (q̇1) , ǫF1j

)

} (20)

where Yj (q̇1) is the jth element of Y (q̇1); ǫr1 and ǫF1j are

positive control parameters.

The stabilization of the first joint results in boundedness

of the magnitudes of q̇1 and q̈1. Then, the control torque for

the second joint, i = 2 can be designed as follows:

τ2 = Im2γ2a2 + τ̂s2

γ2
− τ̂k2 − kI2

∫ t

0
r2 (t) dt

+f̂ c
2 (q̇2) + Im2θ̂

c
21q̈1d + τr2

(21)

where kI2 > 0 and τr2 is defined as follows

τr2 = −
(

ρf2 + ρfq2 + ρτs2

γ2
+ Im1ρea1

)

sat (r2, ǫr2)

−
4

∑

j=1

{

ρF2jYj(q̇2) sat
(

r2Yj(q̇2), ǫF2j

)

}

−Im1ρθ21q̈1d · sat
(

r2q̈1d, ǫθ21

)

(22)

where ǫr2, ǫθ21 and ǫF2j are positive control parameters.

Similarly, the control torque for the ith joint can be

designed as follows:

τi = Imiγiai + τ̂si

γi
− τ̂ki − kIi

∫ t

0 ri (t) dt + f̂ c
i (q̇i)

+Imi

{ i−1
∑

j=1

θ̂c
ij q̈jd +

i−1
∑

j=2

j−1
∑

k=1

Θ̂c
ijk q̇k q̇j

}

+ τri

(23)

where kIi > 0; and τri is designed as follows:

τri = −
(

ρfi + ρfqi + ρτsi

γi
+ Imi

i−1
∑

j=1

ρeaj

)

sat (ri, ǫri)

−
4
∑

j=1

{

ρFij Yj(q̇i) sat
(

riYj(q̇i), ǫFij

)

}

−Imi

i−1
∑

j=1

{

ρθij q̈jd sat (riq̈jd, ǫθij)
}

−Imi

i−1
∑

j=2

j−1
∑

k=1

{

ρΘijk q̇k q̇j sat (riq̇k q̇j , ǫΘijk)
}

(24)
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where ǫri, ǫFij , ǫθij , ǫΘijk are positive control parameters;

the estimated SGM τ̂ki can be achieved by replacing ki1, ki2

with their estimates k̂i1, k̂i2 in (6).

The adaption law is given as follows:

˙̂
ki1 =

{

µki1γi (qli − qi) ri, brake engaged

0, brake released

˙̂
ki2 =

{

µki2γ
2
i (qli − qi)

2
ri, brake engaged

0, brake released

˙̂
F

c

i = −µFic [Y (q̇i)]
T

ri

˙̂
θ

c

ij = −µθij q̈jdri

˙̂
Θ

c

ijk = −µΘijk q̇k q̇jri

(25)

where µki1, µki2, µFic, µθij and µΘijk are positive constants.

Theorem: Given an n-DOF modular robot, with the joint

dynamics as given in (3)–(5), and model uncertainty defined

by (8), the tracking error of each joint is uniformly ultimately

bounded under the control law given by (23) and the adaption

law shown in (25).

Proof: Consider the Lyapunov function candidate

V = 1
2Imiγir

2
i + 1

2kIi

[ ∫ t

0 ri (t) dt
]2

+ 1
2

(F̃ c
i )

T
F̃ c

i

µF ic
+ 1

2
k̃2

i1

µki1

+ 1
2

k̃2
i2

µki2
+ Imi

2

i−1
∑

j=1

(θ̃c
ij)

2

µθij
+ Imi

2

i−1
∑

j=2

j−1
∑

k=1

(Θ̃c
ijk)

2

µΘijk

(26)

Differentiating (26) yields

V̇ = ri

{

Imiγiṙi + kIi

∫ t

0
ri (t) dt

}

+

(

˙̃
F

c

i

)T
F̃ c

i

µF ic
+ k̃i1

˙̃
ki1

µki1

+ k̃i2
˙̃
ki2

µki2
+ Imi

i−1
∑

j=1

θ̃c
ij

˙̃
θ

c

ij

µθij
+ Imi

i−1
∑

j=2

j−1
∑

k=1

Θ̃c
ijk

˙̃Θ
c

ijk

µΘijk

(27)

For the ith joint, from Properties 2–6, if |ri| > ǫri,

ri {ρeaj sat (ri, ǫri) + θij ëj} > 0

ri {ρfqi sat (ri, ǫri) + fqi (qi, q̇i)} > 0

ri

{

ρfi sat (ri, ǫri) + f̌i (q̇i)
}

> 0

ri {ρτsi sat (ri, ǫri) + τ̃si} > 0

(28)

If |ri| ≤ ǫri,

ri {ρeajsat (ri, ǫri) + θij ëj} ≥ ρeajri

{

ri

ǫri
− ri

|ri|

}

ri {ρfqi sat (ri, ǫri) + fqi (qi, q̇i)} ≥ ρfqiri

{

ri

ǫri
− ri

|ri|

}

ri

{

ρfi sat (ri, ǫri) + f̌i (q̇i)
}

≥ ρfiri

{

ri

ǫri
− ri

|ri|

}

ri {ρτsisat (ri, ǫri) + τ̃si} ≥ ρτsiri

{

ri

ǫri
− ri

|ri|

}

(29)

For the ith joint, with j = 1, · · · , 4, if |riYj (q̇i) | > ǫFij ,

from Property 1 and (11), we can obtain

riYj (q̇i)
{

ρFijsat
(

riYj (q̇i) , ǫFij

)

+ F v
ij

}

> 0 (30)

If |riYj (q̇i) | ≤ ǫFij ,

riYj (q̇i)
{

ρFijsat
(

riYj (q̇i) , ǫFij

)

+ F v
ij

}

≥ ρFijriYj (q̇i)
{

riYj(q̇i)
ǫF ij

−
riYj(q̇i)
|riYj(q̇i)|

} (31)

For the ith joint, with j = 1, · · · , i − 1, if |riq̈jd| > ǫθij ,

riq̈jd

{

ρθijsat (riq̈jd, ǫθij) + θv
ij

}

> 0 (32)

If |riq̈jd| ≤ ǫθij ,

riq̈jd

{

ρθijsat (riq̈jd, ǫθij) + θv
ij

}

≥ ρθijriq̈jd

{

riq̈jd

ǫθij
−

ri q̈jd

|riq̈jd|

} (33)

For the ith joint, with j = 2, · · · , i−1 and k = 1, · · · , j−1,

if |riq̇k q̇j | > ǫΘijk,

riq̇k q̇j

{

ρΘijksat (riq̇k q̇j , ǫΘijk) + Θv
ijk

}

> 0 (34)

If |riq̇kq̇j | ≤ ǫΘijk ,

riq̇kq̇j

{

ρΘijksat (riq̇k q̇j , ǫΘijk) + Θv
ijk

}

≥ ρΘijkriq̇k q̇j

{

riq̇kq̇j

ǫΘijk
−

riq̇k q̇j

|riq̇k q̇j |

} (35)

The right-side terms of (29), (31), (33) and (35) achieve

the minimum values at |ri| = ǫri

2 , |riYj (q̇i) | =
ǫF ij

2 ,

|riq̈jd| =
ǫθij

2 and |riq̇k q̇j | =
ǫΘijk

2 , respectively. With

consideration that
˙̃
ki1 = −

˙̂
ki1,

˙̃
ki2 = −

˙̂
ki2,

˙̃
F c

i = −
˙̂

F c
i ,

˙̃
θc

ij = −
˙̂

θc
ij and

˙̃Θ
c

ijk = −
˙̂
Θ

c

ijk , we have

V̇ ≤ −Imiγiλir
2
i + Imi

{ i−1
∑

j=1

ρθijǫθij

4 +
i−1
∑

j=2

j−1
∑

k=1

ρΘijkǫΘijk

4

}

+
4
∑

j=1

{

ρF ijǫF ij

4

}

+ ǫri

4

{

Imi

i−1
∑

j=1

ρeaj + ρfqi + ρfi + ρτsi

γi

}

(36)

From (36), V is a Lyapunov function only when

|ri| >

√

√

√

√

√

√

√

√

√

Imi

i−1
∑

j=1

{

ρθij ǫθij+ρeajǫri

4

}

+
ǫri

{

ρfqi+ρfi+
ρτsi

γi

}

4

+Imi

i−1
∑

j=2

j−1
∑

k=1

{

ρΘijkǫΘijk

4

}

+
4
∑

j=1

{

ρF ijǫF ij

4

}

Imiγiλi

(37)

Let Γ represents the right-side term of (37), and define

S =
{

ri ∈ ℜ|r2
i ≤ 2Γ2

}

. On the surface of S, ∂S, we have

V̇ ≤ −ImiγiλiΓ
2 (38)

Denote ts as the time for the solution trajectory to intersect

the surface ∂S, then

V
(

ri (ts)
)

− V
(

ri (0)
)

ts
≤ −ImiγiλiΓ

2 (39)

Furthermore,

ts ≤
V

(

ri (0)
)

− V
(

ri (ts)
)

ImiγiλiΓ2
(40)

Therefore, ri is bounded, which indicates that ei and ėi are

bounded as per the proof developed by Slotine and Li [15].

Furthermore, as ǫri, ǫFij , ǫθij, ǫΘijk → 0, S → 0, which

means |ri| → 0, as followed by ei, ėi → 0.
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IV. EXPERIMENTS

A. Experimental Setup

The experimental setup consists of two MRR modules

developed in our laboratory, as shown in Fig. 3(b). The

upper module contains embedded power spring, as shown

in Fig. 1. The design parameters for the MRR modules,

the control parameters, as well as the parametric uncertainty

bounds adopted in the experiments are listed in Tab. I.

Experiments are conducted with one MRR module and two

MRR modules, respectively.

(a) (b)

Fig. 3. Experimental setup: (a) spring assisted motion; (b) tracking control.

TABLE I

DESIGN PARAMETERS AND CONTROL PARAMETERS

Design and control parameters Uncertainty bounds

Im1 0.2472 ǫF i1 10−4 ρF i1 10−3 (Nms/rad)

Im2 0.0346 ǫF i2 10−3 ρF i2 10−2 (Nm)

kIi 10.0 ǫF i3 10−3 ρF i3 10−2 (Nm)

γi 101 ǫF i4 0.10 ρF i4 1.0 (s2/rad2)

λi 160 ǫq̇i
0.01 ρfqi 0.5 (N m)

µθij 0.01 ǫθij 0.10 ρθij 1.0

µΘijk 0.01 ǫΘijk 0.10 ρΘijk 1.0

µki 1.00 ǫri 0.10 ρτsi 1.0 (N m)

µF ic 0.10 ρeai 0.01 (rad/s2)

(⋆): the unit of inertial moment is g m2.

B. Experimental Results

1) Spring Assisted Motion: To investigate how the spring

can assist the actuator to achieve better performance with

less power consumption, experiments are conducted with one

MRR module (Joint 2), so as to keep such influential factors

as coupling and interactions between different joints out of

the loop, as shown in Fig. 3(a). The equilibrium position for

Joint 2 is set at qe2 = 0◦ (as seen from the link side), where

the gravity generated moment reaches its maximum. Joint 2
is controlled to track a cosinusoidal position trajectory started

from the equilibrium position qe2 = 0◦ for two different

cases: one is with the brake engaged and the other is with

the brake released. In these experiments, a 10 − N weight

is attached to the end of the link through a cable, and the

distance between the attaching point and the axis of Joint 2
is 0.30 m, as shown in Fig. 3(a).

Fig. 4(a) shows the desired and the controlled trajectories

with and without brake activation, respectively. The tracking

position errors and the corresponding control inputs for the

tests with and without activating the spring are compared in

Figs. 4(b)–(c). To confirm the effectiveness of the proposed
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Fig. 4. Experimental results for spring-assisted motion.
TABLE II

EXPERIMENTAL RESULTS FOR SPRING ASSISTED MOTION

Brake max{|e2(i)|}

√

N
∑

i=1

e2
2
(i)

N
max {|τ2 (i) |}

√

N
∑

i=1

τ2
2
(i)

N

Engaged 0.079◦ 0.023◦ 0.09 Nm 0.03 Nm

Released 0.099◦ 0.031◦ 0.11 Nm 0.05 Nm

spring assisted robot control approach, a comparison of the

control performance and the control inputs is made between

the cases with and without activating the spring, and the

results are shown in Tab. II. In Tab. II, N = 6000 is the

total number of sampling points, e2(i) and τ2(i) represent the

tracking error and control torques for the second joint at the

time instant of the ith sampling point, as seen from the motor

side. When the brake is activated, with the assistance of the

spring, the actuator torque is 40% smaller, yet the tracking

error is 25.81% smaller while all the control parameters are

kept the same. Furthermore, the maximum position error and

the required peak control torque have also been reduced, as

shown in Tab. II.

2) Handling Heavy Payload: To study how the spring

can help the actuator lift a heavy payload without actually

reaching the physical limits of the joint modules, the actuator

maximum output torque of Joint 2 is artificially limited to

20% of its ratings, i.e., τmax = 0.1 Nm. A 20−N weight is

carried to follow the aforementioned cosinusoidal trajectory.

The actuator torques are compared for the tests with and

without the spring assistance in Fig. 4(d). The robot failed

to follow the desired trajectory without spring assistance be-

cause the motor was saturated. However, the case with brake

activation finished the trajectory tracking task successfully.

Comparing the actuator torques required with and without

spring assistance, one can see that the actuator torque is

significantly reduced with the assistance of the spring. When

the attached weight is increased to 50 N , the robot fails to

lift the weight without the spring assistance.
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3) Tracking Control: To verify the distributed control

method developed in this paper, experiments are conducted

with two MRR modules, as shown in Fig. 3(b). The brake

of Joint 2 engaged and a 20 − N weight is attached. The

equilibrium position for Joint 2 is selected to be qe2 = 90◦,

as seen from the link side. The same control parameters are

selected for all the cases, as shown in Tab. I.
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Fig. 5. Experimental results for tracking control.

The experimental results for tracking control are shown

in Fig. 5: the desired trajectories are shown in Fig. 5(a).

Fig. 5(b) presents the corresponding tracking position errors.

The tracking velocities are given by Fig. 5(c). And Fig. 5(d)

shows the corresponding control inputs.

From the experimental results for spring-assisted motion

and tracking control, we can see that the developed dis-

tributed algorithm can control MRRs to follow desired tra-

jectories without adjusting the control parameters or deriving

the dynamics models; and the control performance will not

be affected by adding new modules or changing the configu-

rations. And the uncertainties caused by reconfiguration can

be suppressed effectively.

V. CONCLUSIONS AND DISCUSSIONS

This paper presents the design of a spring assisted MRR,

which is equipped with a brake and an embedded spring at

each module joint. This compact design does not introduce

any sophisticated mechanism, and the overall working enve-

lope will not be affected. A distributed control framework

is developed to facilitate control of the spring assisted

MRR. The spring can be activated or deactivated, so as to

reinforce sophisticated manipulation in the neighborhood of a

balanced configuration. With the assistance of the spring, the

control performance can be improved with much less power

consumption. The developed control method does not rely on

a priori dynamic model and can suppress uncertainties due to

reconfigurations and that caused by sensor inaccuracies and

noises. With the developed control method, it is not necessary

to adjust the control parameters when modules are added to

or removed from an MRR, or when the configurations of the

MRR are changed. The effectiveness of the proposed design

and control are verified by some preliminary experiments on

prototype modules developed in our laboratory.

In the proposed design, a power spring is inserted between

the motor shaft and brake armature, so that the spring

generated moment can be enlarged by the gear. However,

this characteristic also limits the workspace of the joint upon

spring activation, which is the maximum spring deformation

divided by the gear ratio. Though the brake can be engaged

at any configuration of the robot, it might still constrain

some applications. To further verify the effectiveness of the

proposed design, more MRR modules will be developed and

further experiments will be conducted in our future research.
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