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Abstract— In this paper five different optimization strategies
for kinematically redundant mechanisms, i.e. mechanisms hav-
ing additional actuator(s) in at least one kinematic chain, are
presented. They are based on two main approaches, a discrete
optimization and a classical continuous optimization.

Exemplarily, a planar, kinematically redundant 3RRR-based
mechanism is introduced. The position of its redundant ac-
tuator, i.e. the robot geometry, is optimized according to
an optimization criterion that is denoted as the gain of the
maximal homogenized pose error. Several analysis examples
demonstrate the effectiveness of kinematic redundancy with
respect to the introduced optimization procedures. It is shown
that in comparison to discrete approaches, classical continuous-
based optimization strategies do not necessarily lead to more
appropriate results in terms of performance improvement.

I. INTRODUCTION

In comparison to classical serial mechanisms parallel kine-

matic machines (PKM) provide a higher accuracy, a higher

stiffness, and higher dynamic properties. However, parallel

robots suffer from the presence of singularities within their

workspace (type-two singularities) [1]. In the vicinity of

such configurations actuation forces could tend to infinity.

As a result, the kinematic structure can be damaged or

even destroyed. Additionally, several performance indices

are directly related to the singularity loci [2], e.g. the closer

the endeffector (EE) is ’located’ to a singularity the higher

the pose error is resulting from the influence of active joint

errors.

In order to minimize the singularity loci of parallel

mechanisms and to increase their performance redundancy

can be used [3]. Basically, two redundancy approaches are

established for PKM, actuation redundancy and kinematic

redundancy [4], [5]. Actuation redundancy can be realized

whether by adding a kinematic chain to the mechanism

or by actuating a passive joint. Amongst others, it reduces

singular configurations and leads to internal preload that can

be controlled in order to prevent backlash [6]. However,

the control of such mechanisms is a challenging task [7].

Therefore, kinematic redundancy is proposed, obtained by

adding at least one actuated joint to one kinematic chain [8],

[9]. Thanks to the additional actuator(s), the inverse dis-

placement problem has an infinite number of solutions [10].

Hence, reconfigurations of the mechanism can be performed

selectively in order to avoid singularities and to affect its

performance directly [11], [12]. It is important to note that
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with respect to the work of Arakelian et al. [13], kinematic

redundancy can be used to rather change the geometrical

parameters of a mechanism than its basic structure. This can

be done at the task planning stage or while operating the

manipulator.

In order to achieve and to maximize the mentioned poten-

tials of kinematic redundancy, an appropriate optimization

of the position of the additional actuator(s) is required.

Therefore, in this paper, different optimization strategies

are presented. They are based on two main approaches: a

selective discrete optimization and a classical continuous

optimization. These basic approaches can be combined and

modified in several ways leading to a single, a discrete,

a discrete in case of necessity, a continuous, and a semi-

continuous optimization (cp. Section III-A). In each case,

the positions/trajectories (depending on the chosen approach)

of the redundant actuator(s) are achieved according to a

performance index denoted as the gain of the maximal

homogenized pose error [14]. It is important to note that

the most reasonable way of using the additional actuator(s)

highly depends on the application of the mechanism as well

as on its properties, e.g. on the resolution and compliance

of the redundant actuator(s). The question to be answered in

this paper is: does a challenging continuous optimization,

i.e. robot control, necessarily outperform simple discrete

approaches.

As example, a kinematically redundant version of the well

known planar 3RRR mechanism [15] is presented. An addi-

tional prismatic actuator is added to an arbitrary base joint.

The introduced mechanism is denoted as 3(P)RRR [16].

Several analysis examples demonstrate the efficiency (in

terms of an increasing performance) of kinematic redundancy

with respect to the introduced optimization procedures. Ad-

ditionally, the possibility of using ’unnecessary’ DOF of the

mechanism’s EE, i.e. DOF not belonging to the taskspace,

to further improve the performance of a PKM is briefly

discussed.

The paper is organized as follows. In Section II the

geometric model of the exemplarily proposed mechanism

is given as well as fundamental definitions related to its

Jacobian analysis. Section III clarifies the idea of kinematic

redundancy in order to avoid singularities and to increase

the performance of a PKM. It gives an overview of different

optimization strategies for kinematically redundant mecha-

nisms and introduces the basic optimization procedure. In

Section IV several analysis examples are presented in order

to demonstrate the effectiveness (in terms of singularity

avoidance and, therefore, in terms of accuracy and preci-
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sion) of kinematic redundancy with respect to the individual

optimization strategies. It is shown that classical continuous

optimization strategies are not necessarily able to outperform

discrete approaches. Section V concludes this paper.

II. KINEMATICALLY REDUNDANT 3(P)RRR MECHANISM

In the following, the geometrical model of the exemplarily

analyzed planar, kinematically redundant mechanism is pre-

sented. An additional prismatic actuator is proposed allowing

one base joint to move linearly. Hence, reconfigurations of

the mechanism can be performed selectively while operating

the manipulator.

In [16] the kinematically redundant 3(P)RRR planar mech-

anism (see Fig. 1) is introduced. It is similar to the non-

redundant 3RRR mechanism studied amongst others in [15].

Three kinematic chains GiMiPi (i = 1, 2, 3) connect the

moving platform P1P2P3 to the base G1G2G3. Each kine-

matic chain consists of two links li,1 and li,2. The base-

fixed revolute joints are active while the remaining ones

are passive. The orientation of the redundant actuator with

respect to the x-axis of the inertial coordinate frame (CF)0
is denoted by α. Positions referenced with respect to the

platform fixed coordinate frame (CF)E are marked with (′).

Fig. 1. Kinematically redundant 3(P)RRR mechanism

The configuration of the moving platform is given by

x = (xE, yE, φE)
T
, (1)

where xE and yE represent the point of origin of (CF)E with

respect to (CF)0 and φE is its orientation about the z-axis.

The mechanism is driven by four actuators. Therefore, the

system input is given by the according actuator coordinates

θ = (θ1, θ2, θ3, δ)
T
. (2)

Several performance criteria and indices [17], being pos-

sible to optimize the redundant actuator position, can be

calculated based on the Jacobian matrices of a PKM, i.e.

the Jacobians of the direct A and of the inverse kinematics

B (see Section III):

∂f

∂x
ẋ +

∂f

∂θ
θ̇ = 0 ⇔ A ẋ + B θ̇ = 0, (3)

where, in this case, f is a 3-dimensional vector including

the geometric constraints of each kinematic chain i after

elimination of ψi for i = 1, 2, 3. As long as the Jacobian

A is nonsingular, its inverse A−1 and, therefore, the overall

Jacobian J can be determined analytically:

−B θ̇ = A ẋ ⇒ ẋ = −A−1 B θ̇ = J θ̇. (4)

Due to space limitations, the inverse kinematic model as well

as a detailed definition of the Jacobians of the mechanism

are not presented here. A complete description can be found

in [18].

III. SINGULARITY AVOIDANCE AND ACCURACY

IMPROVEMENT USING KINEMATIC REDUNDANCY

Thanks to the kinematic redundancy the elements of the

Jacobians can be directly affected. As a result, the singularity

loci and, therefore, the performance of the mechanism can

be modified while operating the system. The effect as well as

the use of kinematic redundancy is demonstrated in Fig. 2.

The given path would cross a singularity and, therefore, a

region suffering from high pose errors for the symmetric,

i.e. the ’classical’, configuration. By moving the redundant

actuator towards the left, the singularity loci change and the

manipulator is able to follow the desired path.

  

Fig. 2. Trajectory (solid gray) going through a singular configuration (solid
red), i.e. through a region where a certain accuracy in one or more DOF is
not given (yellow)

A. Optimization strategies of the redundant actuator

In order to exploit the mentioned potentials of kinematic

redundancy, an appropriate optimization of the position of

the additional actuator is required. This optimization can be

performed based on two main strategies: a selective discrete

optimization and a classical continuous optimization. These

two approaches can be combined and modified in several

ways as discussed in the following.

1) Single optimization: The easiest way to use the redun-

dant actuator is to change its position δ only once before

starting the desired movement. As a result, the number of

reconfigurations is minimized. In case of simple trajecto-

ries and repetitive tasks, this approach leads to satisfactory

results (in terms of singularity avoidance and performance

augmentation). Basically, the idea using a single optimization

is to obtain a classical non-redundant mechanism that can

be adopted automatically depending on the desired task and,

therefore, can be used efficiently for several different appli-

cations. The main advantage is that the additional prismatic
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actuator remains locked while moving the EE. Hence, energy

demand, compliance, e.g. resulting from joint clearance, as

well as the control error corresponding to the redundant

actuator are minimized. Furthermore, there is no need for

any modifications concerning the robot control.

2) Discrete optimization: The discrete optimization is

based on the adaption of δ in a discrete manner while

operating the system. Therefore, the trajectory is divided into

segments. The starting and final points of the segments are

certain poses, e.g. shifts in direction (ẋ = 0). Appropriate

constant values of the actuator position δ corresponding to

the different segments of the desired trajectory are deter-

mined. The resulting set of discrete actuator positions is

called the optimized switching pattern. While moving along

the desired trajectory, the position of the redundant actuator

is changed according to the switching pattern. This allows

for the reconfiguration of the mechanism to influence its

performance for a given path segment. While performing

a reconfiguration the pose of the moving platform is kept

constant (in theory). After each switching operation, e.g.

while moving along a trajectory segment, the additional

prismatic actuator is supposed to remain locked leading to

the advantages already mentioned in Section III-A.1.

3) Discrete optimization in case of necessity: In order to

minimize the switching operations and to guarantee a cer-

tain desired performance the latter mentioned optimization

strategy can be additionally modified. The main idea of the

discrete optimization in case of necessity is to perform a

reconfiguration only if the mechanism is unable to execute

the desired operation, e.g. following a singularity-free tra-

jectory and providing a certain performance, in its current

configuration [12]. Therefore, before moving the EE, for

the upcoming trajectory segment the required performance

criteria have to be calculated. If any criteria is less than its

corresponding threshold a reconfiguration of the mechanism

has to be performed. The optimization procedures and, there-

fore, the resulting switching operations of the mechanism can

be affected directly by an appropriate choice of the required

thresholds.

4) Continuous optimization: This optimization strategy

leads to a continuously influenceable performance. In con-

trast to a discrete optimization, the position of the redundant

actuator is changed while moving the EE along the desired

path. Hence, there is no need to keep the pose of the moving

platform constant while performing a reconfiguration, i.e.

no additional time is needed to execute the desired task.

However, it results in a more challenging robot control

and usually in a higher energy demand. Furthermore, the

movement of δ is bounded depending on its dynamics and

on the system’s work cycle time.

5) Semi-continuous optimization: Due to its limited dy-

namics there might be the case, if using the continuous

optimization, that the redundant actuator cannot be moved

towards an appropriate configuration sufficiently fast. To

overcome this problem, the two strategies mentioned in Sec-

tion III-A.2 and III-A.4 can be combined. While moving the

EE, the position δ is changed continuously (cp. Section III-

A.4). At certain poses, e.g. at shifts in direction, an additional

discrete optimization is performed while keeping the position

and orientation of the EE constant (cp. Section III-A.2).

6) Further Modifications: In some cases there might be

the possibility to use certain DOF of the EE to further im-

prove the performance of a mechanism. Regarding a milling

process using a PKM, e.g. a Stewart-based mechanism. The

orientation around the drill axis can be treated as a redundant

degree of freedom. In such cases the additional, i.e. not

required, DOF of the EE can be used to further improve the

performance of a PKM. Similar to Section III-A.1 - III-A.5

an optimization of the corresponding DOF can be performed

and, therefore, combined with the redundant actuator(s) in

several ways.

It is important to note that the most reasonable way of

using the additional actuator(s) (and DOF of the EE) highly

depends on the desired application of the mechanism and on

the mechanism itself, e.g. on the resolution and compliance

of its redundant actuator(s).

B. Optimization procedure

The optimization can be implemented with respect to

several criteria and performance indices [17]. A popular

criterion is the condition number of the Jacobian J , e.g. the

two-norm condition number. However, this does not neces-

sarily exhibit a complete consistent behavior with respect to

the performance of a robot (doubtful physical meaning) [17].

Furthermore, it cannot be calculated analytically, i.e. time

efficient.

The choice of an appropriate criterion should always

depend on the property of the mechanism to be optimized.

In this paper the authors focus on two properties, singularity

avoidance and improvement of the achievable accuracy.

These two properties are directly related. The closer the EE

is ’located’ to a singular configuration, i.e. to a most relevant

type-two singularity [1], the higher is the resulting EE pose

error, e.g. due to a limited encoder resolution. Hence, by

maximizing the achievable accuracy, i.e. minimizing the

pose error, using an appropriate criterion the mechanism’s

performance can be increased and singularities are avoided at

the same time. An approximation of the achievable accuracy,

i.e. the pose error Δx = (ΔxE, ΔyE, ΔφE)T and the

maximal pose error Δx, respectively, can be determined by

rewriting the velocity equation (3) in incremental form [19]:

Δx = |J |Δθ ≥ |Δx|, (5)

where |J | := (|ji,k|) ∀i, k is the modified mechanism’s

Jacobian and Δθ = (Δθ1, Δθ2, Δθ3, Δδ)T is the active

joint error vector. In general, its elements, i.e. the limited

actuator resolutions, are well known from the data sheets.

Regarding the properties to be improved, an optimization

of the actuator position δ based on minimizing the two-

norm of the maximal homogenized pose error Δxh is

proposed [14]:

γ(Δxh) =
∣∣∣∣Δxh

∣∣∣∣
2

= ||(|Jh|Δθ)||2 . (6)
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This index is called the gain γ(Δxh). It is important to note

that the Jacobian matrix J is not homogeneous in terms of

physical units. Therefore, a homogenization is performed by

transforming the moving platform velocity ẋ into the linear

velocity of two appropriately chosen points, e.g. P1 and

P2 (see Fig. 1) [20], [14]. This leads to the homogenized

Jacobian Jh:

Jh =

⎛
⎝ cosβ sinβ 0

− sinβ cosβ 0

− sinβ cosβ ‖P2 − P1‖2

⎞
⎠ J , (7)

where the angle β gives the orientation of (CF)0 to a coor-

dinate frame (CF)E,h which is located at P1 and attached to

the moving platform such that its x-axis passes through P2.

Finally, the cost function to be minimized results to:

δopt = arg

(
min

δ
γ(Δxh)

)
. (8)

Depending on the optimization strategy, δopt can either be a

vector or a single scalar.

The optimization method is based on the golden section

search and a parabolic interpolation [21]. The algorithm finds

the minimum of a defined cost function within a bounded

interval. It does not guarantee to find the global solution of

the optimization problem. However, performed tests showed

the robustness and efficiency of this approach.

IV. NUMERICAL RESULTS

For different trajectories the effect of the additional pris-

matic actuator in terms of singularity avoidance and accuracy

improvement is demonstrated. It is shown that the achievable

performance of the mechanism highly depends on the chosen

optimization strategy.

A. Simulation conditions

The geometrical parameters of the exemplarily analyzed

kinematically redundant mechanism and its non-redundant

counterpart are given in Table I. In the redundant case, one

TABLE I

DESIGN PARAMETERS OF THE ANALYZED 3(P)RRR MECHANISM

(−0.5 m ≤ δ ≤ 0.5 m)

i = 1 i = 2 i = 3

xGi
[m] 0.6 0 1.2

yGi
[m]

√
27/5 0 0

x′

Pi
[m] 0 −0.1 0.1

y′

Pi
[m]

√
0.12/3 −√0.03/3 −√0.03/3

li,1[m] 0.6 0.6 0.6
li,2[m] 0.6 0.6 0.6

prismatic actuator is attached to G1 of the basic structure.

Keeping the design space in mind the orientation of the

redundant actuator was set to α = 0◦. It is important to note

that the parameters of the additional prismatic actuator, i.e.

its stroke as well as its orientation, were chosen intuitively.

Future work will deal with an optimization of the parameters

of redundant actuator(s). The active joint errors were set

based on data sheets of commercially available standard

actuators to Δθ = (0.025◦, 0.025◦, 0.025◦, 40μm)T. In

the non-redundant case the last element of Δθ vanishes. The

maximal force and velocity of the prismatic actuator were

set to Fδ,max = 500 N and vδ,max = 3 m
s

. Considering the

mass the additional actuator has to move (in case of the

experimental test bed existing at the Institute of Mechatronic

Systems) the maximal acceleration results to aδ,max = 15 m
s2

.

These values were taken from data sheets as well.

Exemplarily, simulations along the three triangular trajec-

tories (tI, tII, tIII) shown in Fig. 3 were performed. The

trajectories were chosen within the workspace of the mecha-

nism in order to clarify the effectiveness of the proposed con-

cept as well as the differences of the individual optimization

strategies. The EE was moved clockwise along the depicted

trajectories with a constant orientation. The overall trajectory

time was set to ttr = 1.5 s (not including any extra time

necessary to reconfigure the redundant mechanism). Without

loss of generality, the considered 3(P)RRR mechanism is in

the following assumed to remain in the same working mode

shown in Fig. 1.

(a) φ = −40◦ (b) φ = 0◦

tI tII

tIII

(c) φ = 40◦

Fig. 3. Exemplarily chosen trajectories tI, tII, tIII (solid gray) for the
3RRR-based mechanisms, the solid red lines represent the singularity loci
within the workspace (solid black)

In the following, a comparative study on the achievable

performance with respect to the optimization procedure is

given. In each case, the optimization was performed based

on the introduced cost function (8).

B. Optimization strategies - comparison

For the discrete and semi-continuous optimization ap-

proaches (Section III-A.2, III-A.3, and III-A.5), the trajecto-

ries were divided such that each side of a triangular repre-

sents a segment. Hence, at every corner the position of the

redundant actuator δ is switched according to the optimized

switching pattern. Regarding approach 3, a reconfiguration

is only performed if any of the thresholds λ1,min = 0.01
corresponding to the absolute value of the Jacobian deter-

minant |det(A)| and λ2,max = 0.75 corresponding to the

two-norm of the maximal homogenized pose error γ(Δxh)
fall below and are exceeded, respectively. During the discrete

switching operations the moving platform pose is supposed

to be constant. In case of the continuous optimization, the

movement of δ is bounded with respect to the prismatic

actuator dynamics given in Section IV-A.

Fig. 4 exemplarily shows the results obtained when mov-

ing the EE along trajectory tI with a constant orientation

φE = 0◦. The gray marked areas represent the time when

the mechanism performs a reconfiguration while keeping the
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EE pose constant (in theory). In the non-redundant case these

extra trajectory times vanish (for simplification reasons con-

cerning the illustration, the EE pose of the 3RRR mechanism

is kept constant in such areas). A significant increase of
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4: continuous optimization
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5: semi-continuous optimization
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Fig. 4. Simulation results while moving along tI with a constant φE = 0◦;
left: optimized actuator position δopt, right: maximal positioning error Δxy
(thick black: 3RRR, thick red: 3(P)RRR) and orientational error ΔφE (thin
gray: 3RRR, thin light red: 3(P)RRR); gray marked areas indicate a discrete
reconfiguration

the pose accuracy due to the kinematic redundancy is well

noticeable. The maximum pose error (t ≈ 1.2 s) occurring

close to the lower left corner of the triangular trajectory tI
(cp. Fig. 3) is more or less minimized by a reconfiguration

according to δopt. It can be seen that the number of switching

operations as well as the values of δopt and, therefore, the

trajectory time highly depend on the optimization approach.

Furthermore, it is demonstrated that an additional continuous

movement of the actuator position δ does not necessarily lead

to further improvements concerning the achievable accuracy.

This is due to two facts. Firstly, the limited dynamics of

the prismatic actuator not allowing for an optimal actuator

position without decreasing the EE dynamics. Secondly,

in most cases, i.e. for common trajectories going through

certain parts of the workspace, a single optimization is

sufficient to move the part of the workspace providing a high

performance such that the desired trajectory lies within this

appropriate area (cp. Fig. 2). Additionally, the latter indicates

what the authors noticed while performing several simula-

tions: unrealistic high dynamics, e.g. unlimited dynamics, of

the additional prismatic actuator do not significantly further

improve the moving platform’s maximal pose error over a

trajectory. Therefore, the advantage of an implementation of

the inconvenient continuous optimization is questionable.

In Table II an overview of the maximal errors of the three

triangular trajectories shown in Fig. 3 are given with respect

to the optimization strategies 1, 2, 3, 4, and 5 (see Section III-

A). In order to quantify the accuracy improvement the max-

TABLE II

MAXIMAL TRANSLATIONAL Δxym AND ROTATIONAL ERROR ΔφEm

WITH RESPECT TO THE OPTIMIZATION STRATEGY WHILE MOVING

ALONG TRAJECTORY tI (TOP), tII (CENTER), AND tIII (BOTTOM)

φE Value
3RRR 3(P)RRR ( η [%] )

[mm/◦] 1 2 3 4 5

−40◦
Δxym 1.70 -47.7 -47.7 -47.7 -47.6 -47.9

ΔφEm 0.52 -56.8 -56.8 -56.8 -51.0 -49.4

0◦
Δxym 0.77 -4.7 -7.1 -7.1 -3.6 -6.8

ΔφEm 0.36 -19.0 -30.9 -30.9 -13.9 -27.8

40◦
Δxym 1.05 +7.0 +7.0 +7.0 +5.2 +6.0

ΔφEm 0.56 -6.8 -6.8 -6.8 -6.5 -7.2

−40◦
Δxym ∞ (0.47) (0.47) (0.47) (∞) (0.47)

ΔφEm ∞ (0.12) (0.12) (0.12) (∞) (0.12)

0◦
Δxym 2.24 -78.1 -77.7 -78.1 +2.5 -78.9

ΔφEm 1.50 -84.4 -84.4 -84.4 +2.8 -84.3

40◦
Δxym 0.87 -5.9 -5.9 -5.9 -6.3 -6.3

ΔφEm 0.54 -13.4 -13.4 -13.4 -13.4 -13.4

−40◦
Δxym 1.93 -15.5 -15.5 -15.5 -13.5 -13.9

ΔφEm 0.63 -11.5 -11.5 -11.5 -10.2 -10.2

0◦
Δxym 0.81 -3.1 -3.1 +9.4 -2.4 -2.4

ΔφEm 0.41 -15.9 -19.4 -29.3 -12.8 -12.8

40◦
Δxym 0.88 +19.0 +18.7 +18.7 +3.3 +15.8

ΔφEm 0.53 +16.2 +11.7 +11.7 +2.4 +10.9

imal translational Δxym and rotational error ΔφEm of the

moving platform over a complete trajectory was determined.

Due to its lack of relevance, the initial reconfiguration was

not taken into account (it can be performed before starting the

desired task). The values represent the achievable accuracy of

the associated mechanism. The percentage increase/decrease

η of the kinematically redundant PKM in comparison to its

non-redundant counterpart is given with respect to the opti-

mization strategy. Significant improvements of the achievable

accuracy are well noticeable in most cases. It can be seen that

the non-redundant mechanism passes a singular configuration

while moving along tII with φE = 40◦ (note: in Table II the

values of the pose error [mm/◦] are given instead of the

percentage improvement). Thanks to the kinematic redun-

dancy and a performed reconfiguration the singularity could

be avoided.

Sometimes, e.g. regarding tIII for φE = 40◦, the pose

error increases. The reason is that the optimal configuration

is close to the symmetrical, i.e. the ’classical’ non-redundant

configuration. As a result, the additional active joint error Δδ
leads to a decreased performance. However, this is not critical

since in such cases the pose error of the non-redundant as

well as of the redundant mechanism are comparatively low.

Summarizing the results given in Table II and taking the
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complexity of the individual optimization strategies into ac-

count, e.g. in terms of the robot control, the authors propose

an exclusively discrete-based optimization of δ. In most cases

it led to appropriate δopt in terms of singularity avoidance

and accuracy improvement. An (additional) continuous re-

configuration was not able to significantly outperform the

comparatively simple discrete approaches. This is due to the

already mentioned reason(s).

C. Further Modifications

As mentioned in Section III-A.6, DOF of the EE not

being a part of the taskspace can be used to further improve

the performance of a PKM. Fig. 5 shows the results when

moving along tI. The actuator position δ as well as the

EE orientation φE were optimized based on the introduced

discrete approach (Section III-A.2). The results give an idea
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Fig. 5. Simulation results while moving along tI; left: δopt (thick red)

and φE,opt (thin light red), right: Δxy (thick black: 3RRR (φE = 0◦),

thick red: 3(P)RRR) and ΔφE (thin gray: 3RRR (φE = 0◦), thin light red:
3(P)RRR); gray marked areas indicate a discrete reconfiguration

about the further potential when additionally using one or

more redundant DOF of a mechanism’s EE.

V. CONCLUSION

In this paper, a kinematically redundant 3(P)RRR mech-

anism is presented. After a description of some fundamen-

tals, several optimization strategies for the position of the

redundant actuator(s) are introduced: a single optimization,

a discrete optimization, a discrete optimization in case of

necessity, a continuous optimization, and a semi-continuous

optimization. They are based on minimizing a criterion

denoted the gain of the maximal homogenized pose error.

Several analysis examples demonstrate the efficiency (in

terms of an increasing performance) of kinematic redundancy

with respect to the introduced optimization procedures. It

is shown that an (additional) continuous reconfiguration

of the mechanism is not able to significantly outperform

the comparatively simple discrete optimization strategies.

Concluding, the possibility of using ’unnecessary’ DOF of

a mechanism’s EE is briefly discussed. It is demonstrated

that such redundant DOF might further improve a PKM’s

performance.

Future work will deal with the design optimization of the

prismatic actuator, e.g. its orientation with respect to the x-

axis of (CF)0 as well as its stroke (’length’). In addition,

an experimental validation of the obtained numerical results

will be performed.
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