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Abstract— In this paper we describe a novel approach to
autonomous dirt road following. The algorithm is able to
recognize highly curved roads in cluttered color images quite
often appearing in offroad scenarios. To cope with large
curvatures we apply gaze control and model the road using
two different clothoid segments. A Particle Filter incorporating
edge and color intensity information is used to simultaneously
detect and track the road farther away from the ego vehicle. In
addition the particles are used to generate static road segment
estimations in a given look ahead distance. These estimations
are predicted with respect to ego motion and fused utilizing
Kalman filter techniques to generate a smooth local clothoid
segment for lateral control of the vehicle.

I. INTRODUCTION

Visual road recognition has a long research history and

is one of the key capabilities needed by autonomous vehi-

cles. For this reason numerous autonomous road following

systems have been developed worldwide by different groups,

using many different image features and tracking algorithms

[1]. Even more than ten years ago road following algo-

rithms like GOLD (General Obstacle and Lane Detection)

[2], RALPH (Rapidly Adapting Lateral Position Handler)

[3], SCARF (Supervised Classification Applied to Road

Following) [4], YARF (Yet Another Road Follower) [5],

LOIS (Likelihood Of Image Shape) [6] and EMS-Vision

(Expectation-based Multi-focal Saccadic Vision) [7] showed

impressive results. Although all of them proved their strength

in difficult road scenarios, they all have some kind of

weakness.

For instance, Luetzeler [8] developed an algorithm based

on the well known EMS-Vision system which enabled a

tracked vehicle to autonomously drive up to 50 km/h on a

dirt road. However, errors arose if the road boundary edges

were of low contrast or heavily cluttered.

In order to develop more robust road tracking algorithms

and with the enhancement of computational power, particle

filters [9] have gained more and more interest within the

area of road recognition in recent years. They are able to

cope with heavily cluttered image data within the estimation

scheme and to reduce the image processing complexity to a

rating of particular hypotheses. Furthermore particle filters

ease the fusion of different road features which further

increase the robustness of the overall estimator.

A first approach using a particle filter framework for road

recognition was presented by Southall [10], who used a

clothoid model and extracted road markings on highway road

All authors are with the Institute for Autonomous Systems Technology

(TAS), University of the Bundeswehr Munich, 85577 Neubiberg, Germany.

Contact author email: michael.manz@unibw.de

(a) (b)

Fig. 1. (a) typical color image of a dirt road (b) displacement error ε(y)
at the vehicle center occurring even by an optimal fit of a single clothoid
segment (red line) on a road (gray) within the visible area

scenes to estimate the location of the road relative to the

vehicle. Since then several particle filter based road trackers

have been proposed. Apostoloff and Zelinsky [11] developed

the so called distillation algorithm which combines a particle

filter with a cue fusion engine to track marked roads, fusing

edge, color and road marking information. To detect marked

roads up to 100m during night time driving, Smuda et

al. [12] fused texture, edge and map information. Further

work extended the use of particle filter based methods to

country roads using some combination of edge, color and

intensity information [13] and improved the lane recognition

capabilities during night time driving utilizing a digital map

as well as image gradient information and an imaging radar

system [14]. In order to improve the robustness of road

tracking in difficult road scenarios Danescu et al. [15] fused

edge and lane marking information with 3D cues gathered

by a stereo vision system. Recently, Lose et al. [16] further

improved the estimation quality on country roads by fusing

stereo and edge information using a Kalman particle filter.

Summarizing, a lot of problems have been solved since

the introduction of particle filters within the area of road

recognition. However, all of the mentioned particle filter

based road tracking algorithms have one common limitation.

They all work with a single road segment and use image

features extracted some meters in front of the vehicle to

estimate the road location relative to the vehicle center. Thus

problems arise in highly curved roads as a single clothoid

segment can not always accurately model the road within a

given look ahead distance (see figure 1(b)). This can lead

to faulty estimations of the road location with reference to

the vehicle center of gravity and thus to bad road following

behavior. Using map information (e.g. as in [12], [14]) can

partly solve this problem but accurate maps and an adequate

localization in the map are often not available, especially

in offroad scenarios. In addition the mentioned particle filter
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based road tracking algorithms are not designed to cope with

dirt road scenarios. A color image of a typical dirt road in a

forest scene can be seen in figure 1(a).

In order to overcome the model limitations of a single

clothoid segment and simultaneously be able to detect, track

and autonomously follow highly horizontal curved dirt roads

we introduce a three-stage tracking algorithm utilizing two

clothoid segments and two different filter techniques.

Section II describes the first stage of the algorithm where

a particle filter fusing three different image cues is utilized

to detect and track a dirt road several meters ahead of the

vehicle.

In the second stage (see Section III), the particles of

the filter are used to provide short static road segment

estimations relative to the ego vehicle. These static segments

are then predicted wrt. ego motion to produce a chain of

static road segments. A somewhat similar idea was proposed

by Kluge and Thorpe within the YARF [5] system. They

accumulate image measurement from multiple images within

a local map to produce dense road edge measurements next

to the vehicle.

The third stage of the algorithm, explained in section IV,

fuses the predicted static road segments in the vicinity of the

vehicle using an Extended Kalman Filter (EKF) to generate

a smooth clothoidal road segment estimation for the lateral

control unit, even in highly curved roads. The last two stages

can be seen as an enhancement and an adaption of our

vehicle following approach presented in [17] to the problem

of autonomous road following.

Some experimental results are presented in section V.

II. ROAD RECOGNITION

In order to detect and track the dirt road within the color

image we utilize the 4D-approach [18]. We model the 3D ge-

ometry of the road as well as the vehicle and road curvature

dynamics and use a particle filter framework to recursively

estimate the road geometry and position relative to the

vehicle’s center. To rate a particle i and the road hypothesis

x
(i)
pf it represents, we fuse color saturation information with

color gradient measures. In order to enable the tracker to

recover from any loss of lock that may occur, we introduce

in each time step a small percentage of initialization particles

drawn from a distribution of reasonable road hypotheses.

Camera gaze direction is controlled in order to keep the

mean road position in a given look ahead distance within

the visible area of the camera, even in sharp turns.

A. Road Model

The road model used within the particle filter is a clothoid

segment with start curvature c0pf , change of curvature c1pf
and road width wpf . 1 The start point xpf , ypf of the segment

is defined to have a constant distance to the ego coordinate

system center rcam (see figure 2). To allow a good fit even

for highly curved roads we do not, like other approaches (e.g.

[8], [13]), approximate the clothoid equations by a polygon

1Here the subscript ’pf’ indicates that the values are estimated with the
proposed particle filter (far range road estimation, first algorithm stage)

(xpf, ypf) pf

Fig. 2. Road model used within the particle filter

of order three, but use the exact clothoid equations to get the

road azimuth angle χroad,

χroad(l) = Ψpf +

(
c0pf +

c1pf l

2

)
l (1)

where l is a control variable along the clothoid arc length and

Ψpf is the road yaw angle at the start position of the road

model. The coordinates xroad(l), yroad(l) of the clothoid

segment result from the integration of the road azimuth angle

over the segment arc length and can be approximated by the

sum

xroad(lj) ≈ xpf +

j∑
i=0

cos(χroad(li))Δl (2)

yroad(lj) ≈ ypf +

j∑
i=0

sin(χroad(li))Δl (3)

where lj and li are arc length samples with distance Δl along

the clothoid segment.

To get a representation of the road model within

the image coordinate system we project all road points

xroad(lj), yroad(lj) onto the image plane, incorporating in-

formation from the calibrated camera system as well as gaze

direction and measurements of an on board IMU.

B. Dynamic Model

The road is modeled as a static object. However, as the

vehicle moves, the road’s position changes according to

inverse ego motion. Given the road’s state vector at time

index k,

xpfk = [xpf , ypf ,Ψpf , c0pf , c1pf , wpf ]
T (4)

the first temporal transition of the state vector can be

calculated by

x∗−
pfk+1

= Φpfk
x̂pfk

+

⎛
⎜⎜⎝
−cos(Ψ̇Δt− β)vΔt

sin(Ψ̇Δt− β)vΔt

−Ψ̇Δt
03×1

⎞
⎟⎟⎠+wpfk

(5)

where Δt is the time between two successive images, v
represents vehicle velocity and β is the slip angle of the

vehicle. Given the yaw rate Ψ̇ of the vehicle we can derive

the discrete transition matrix Φpfk
:

Φpfk
=

(
Rzk 0
0 I4×4

)
;Rzk =

(
cos(Ψ̇Δt) sin(Ψ̇Δt)

−sin(Ψ̇Δt) cos(Ψ̇Δt)

)
(6)
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All ego motion parameters (Ψ̇, β, v) are provided by an

on-line ego motion estimation process based on the bicycle

model for lateral vehicle dynamics using an EKF. In order to

consider uncertainty within the dynamic model a Gaussian

random vector wpfk
is added to equation 5.

With the vehicle moving, successive prediction steps

would cause the static road segment to leave the visual

range of the used camera. Thus, after the first prediction

(equation 5), we further adjust the calculated state vector

x∗−
pf in order to maintain a constant distance (rcam) of the

clothoid start position (x∗
pf , y

∗
pf ) to the ego vehicle center.

This is archieved by calculation the intersection point of the

predicted clothoid with a circle of radius rcam. Knowing

the arc length lp along the static clothoid segment up to the

intersection point one can further predict Ψ∗−
pf and c∗−0pf :

Ψ∗
pf = Ψ∗−

pf +

(
c∗−0pf +

c∗−1pf lp
2

)
lp (7)

c∗0pf = c∗−0pf + c∗−1pf lp (8)

The road width w∗
pf and the change of curvature c∗1pf are

taken to be constant.

C. Measurement Model

The key point of the measurement update equation is to

get the probability density function p(xk|Yk) of the state

xk at time index k conditioned on all measurements Yk =
y1,y2, ...yk. This can be formulated as a recursive Bayesian

estimation problem

p(xk|Yk) ∝ p(yk|xk)p(xk|Yk−1) (9)

where p(yk|xk) is the likelihood function of the current

measurement yk given xk.

The purpose of the likelihood function is to assign each

predicted particle x
∗(i)
pfk

a specific weight, reflecting the

likelihood of the hypothesis according to all available current

measurements yk. In our algorithm we introduce three dif-

ferent image based measurements (saturation yks , color edge

intensity ykI
and color edge direction ykd

) and one heuristic

cue based on the overall knowledge of the road width ykw
.

Thus yk has four components and we have to evaluate the

joint probability p(yks ,ykI
,ykd

,ykw |x∗(i)
pfk

). Using the sum

rule of probability, this joint probability factors into,

p(yks
,ykI

,ykd
,ykw

|x∗(i)
pfk

) = p(ykI
|x∗(i)

pfk
)p(ykd

|x∗(i)
pfk

,ykI
)

p(yks |x∗(i)
pfk

)p(ykw |x∗(i)
pfk

) (10)

where we do not, like several other approaches (e.g. [16],

[13]), treat the measurements as statistically independent

from each other, but introduce one additional conditional de-

pendency p(ykd
|x∗(i)

pfk
,ykI

), i.e. we state that the likelihood

of the color edge given x
∗(i)
pfk

depends on the edge gradient

intensity. We discuss this in more detail in II-C.3. After the

description of the cue fusion concept we now specify the

single likelihood functions.

(a) (b)

Fig. 3. (a) Color image of a dirt road scene with projected road model
(blue line is the road skeleton line, outer green lines are the road boundaries
RB(i), light blue area reflect the support road area for the saturation
feature RA(i)). (b) Weighted image due to transformation function for the
saturation channel (bright pixels encode non-road areas)

1) Saturation: As proposed in [19] we utilize the satura-

tion channel of the HSI color space to efficiently segment

non-road pixels in dirt road images. The feature makes use

of the knowledge we gained in numerous experiments – that

the road surface may show all kinds of colors but there will

be only a vanishing amount of brightly colored pixels on a

road’s surface. In the opposite, this means that almost all

brightly colored image areas will most likely correspond to

non-road areas. This is especially true on dirt road where the

road is typically surrounded by some kind of vegetation.

To further enhance this effect we weight the value of each

saturation pixel s(y, z) according to the dynamic function,

Is(y, z) =

⎧⎨
⎩

0, s(y, z) ≤ μs
255(s(y,z)−μs)

soff
, μs < s(y, z) < (μs + soff )

255, s(y, z) ≥ (μs + soff )
(11)

where μs represents the temporally low-pass filtered mean

saturation value in the lower image parts and soff is a

parameter to adapt the weighting transition. To speed up

the process we use look up tables to evaluate equation (11).

An exemplary segmentation result obtained by applying this

saturation feature to real data is shown in figure 3(b).

To get a weighting function representing the likelihood

p(yks
|x∗(i)

pfk
) of a particle i needed in the cue fusion concept,

we use the sum of all weighted saturation values Is(y, z)
corresponding to the projected support area RA(i) (see the

two bands in figure 3(a)) defined by the particle x
∗(i)
pfk

,

p(yks
|x∗(i)

pfk
) =

1

zs
e
− 1

2σ2
s

⎛
⎝ 1

N
(i)
RA

∑
(y,z)∈RA(i)

Is(y,z)

⎞
⎠

2

(12)

where N
(i)
RA is the number of all road area pixels, zs is

a normalizing constant and σ2
s is the saturation features

predefined variance.

2) Color Edge Intensity: One of the most important image

cues concerning road recognition, used in many former lane

tracking systems as the main feature (e.g. [7], [2]), is the rise

in image gradient intensities near road borders. Even in dirt

road scenarios where image edges are severely cluttered, it is

still advantageous to use image gradient information. In order

to evaluate the image gradients we correlate each channel of

the RGB-intensity images in horizontal and vertical direction
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(a) (b)

Fig. 4. (a) gradient intensity of a dirt road image (b) intensity encoded
image of the gradient phase

with a large ternary correlation mask similar to [7], resulting

in heavily low pass filtered gradient images. Out of these,

the overall color intensity gradient image II is set to be the

maximum norm of the normalized gradients computed for

each color channel (see figure 4(a)).

To get a weighting function representing the likelihood

p(ykI
|x∗(i)

pfk
) of a particle i needed in the cue fusion con-

cept, we use the sum of gradient intensity values II(y, z)
corresponding to the projected road boundaries RB(i) (see

figure 3(a)) defined by each x
∗(i)
pfk

,

p(ykI
|x∗(i)

pfk
) =

1

zI

⎛
⎝ 1

N i
RB

∑
(y,z)∈RB(i)

II(y, z)

⎞
⎠

n

(13)

where N i
RB is the number of all road boundary pixels, zI is

a normalizing constant and n > 1 can be used to emphasize

hypotheses with strong road boundary gradients.
3) Color Edge Direction: The overall phase of the RGB-

gradient Id(y, z) is set to be the direction of the strongest

gradient found in II-C.2. As can be seen in figure 4(b) the

gradient phase is a heavily cluttered measurement and can

not be accurately determined for low image gradients, i.e. the

stronger the gradient intensity the higher the meaningfulness

of the phase information. Thus, we have to evaluate the

likelihood of the measurement ykd
given both the particle

x
∗(i)
pfk

and the gradient intensity measure ykI
. We do so with

the aid of a weighted mean of the difference between the

expected phase d(i)(y, z) gained from the i-th particle and the

gradient phase Id(y, z) along the hypothetical road boundary

RB(i),

p(ykd
|x∗(i)

pfk
, ykI

) =
1

zd
e

− 1

2σ2
d

∑
(y,z)∈RB(i)

(Id(y,z)−d(i)(y,z))2II (y,z)

∑
(y,z)∈RB(i)

II (y,z)

(14)

where zd is a normalization constant and σ2
d is a predefined

variance of the phase measurement.
4) Heuristic Road Width: In order to keep the particles in

a meaningful state space region based on prior knowledge of

the mean dirt road width W and width variance σ2
w, we incor-

porate a fourth particle likelihood function p(ykw
|x∗(i)

pfk
) into

the estimation process. This function is based on the likeli-

hood of correspondence of the current particle road width

w
∗(i)
pf given a predefined Gaussian distribution N(W,σ2

w)
(see [11]).

xego

yego

�
.

kk-1k-2k-3
k-n

k-4

Fig. 5. Generation of successive static road segments (brown areas)
with predicted error covariances (blue ellipses) and estimation of the local
clothoid segment (red line)

III. STATIC ROAD SEGMENTS

We define a static road segment to be a small fraction

of the road with specific length Lrs. The segment can

be described by a state vector x(t)rs = [xrs, yrs,Ψrs]
where xrs, yrs are the x and y coordinates within the ego-

coordinate system and Ψrs is the yaw angle of the road

segment relative to the vehicle’s longitudinal axis. In the

proposed algorithm, static road segments are successively

generated and later used to estimate a second clothoid

segment more closer to the vehicle (Section IV)

A. Generation of Road Segments

In order to generate successive static road segments (see

figure 5) we use the 50 best particles gained from the particle

filter estimation of the first clothoid segment and calculate

their mean x̂pf and their error-covariance P̂pf .

To get the start error-covariance P̂rs and mean state vector

x̂rs of the static road segment only the first three states of

the particle filter estimate x̂pf , which are equal to the state

vector of a single static road segment xrs, are considered.

In order to get a good spreading of the generated road

segments, resulting in a better clothoid estimation in the next

section IV, new static road segments are only generated if the

ego vehicle has approximately driven a distance Lrs since

the generation of the last static road segment.

B. Prediction of Road Segments

Figure 5 pictures the prediction of successively generated

segments used to generate a chain of small sized local

road segments. The deterministic part of the prediction

x∗
rsk+1

= f(x̂rsk ,Ψ, β, v,Δt) is given by the first temporal

transition equations of the first three states of the particle

filter estimation in section II-B (equation 5). To predict the

uncertainty of a road segment we use the UDU-factorized

form of the standard Kalman filter prediction equation,

P∗
rsk+1

= ΦpfsubkP̂rskΦ
T
pfsubk

(t) +Qrsk (15)

where Φpfsub is again a sub matrix of Φpf (see section II-B)

corresponding to the states of xrs. Because the uncertainty

in the ego motion parameters depend on the vehicle’s cur-

rent dynamic state, we choose Qrsk to be a time varying

covariance matrix.

IV. LOCAL ROAD ESTIMATION

In order to get smooth feedback quantities for the lateral

control unit we utilize a UDU-factorized EKF. The filter is

used to estimate the position and geometry of a local clothoid
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segment based on the chain of predicted static road segments

x∗
rs(k, ..., k−n) generated in the previous step (section III).

Figure 5 shows an exemplary estimation result of the local

clothoid segment.

A. Road Model
For the use within the EKF we stick to the standard

clothoidal approximation presented in [20],

yroad(lj) =
1

2
c0kf

l2j +
1

6
c1kf

l3j ; xroad(lj) = lj (16)

where c0kf
1 is the curvature of the road at the vehicle

center of gravity, c1kf
is the change of curvature and lj sam-

ples over the segment length. The clothoidal road segment

is placed in a specific lateral distance ykf to the vehicle’s

longitudinal axis and is rotated according to the road yaw

angle ψkf . These transformations are all performed using

homogeneous transformation matrices.

B. Dynamic Model
Based on the road model description IV-A and the so

called average clothoid model [18] we define the state to

be estimated:

xkf =
[
ykf , tan(ψkf ), c0mkf

, c1mkf
, c1kf

]
(17)

Like [10] we are using the state variable tan(ψkf ) to account

for large road yaw angles ψkf which can appear during

dirt road driving. With the state vector xkf and the variable

Δx = vΔtcos(ψkf ) we can derive the dynamic model,

x∗
kfk+1

= Φkfk x̂kfk +

⎛
⎜⎜⎜⎜⎝

0
−Δt
0
0
0

⎞
⎟⎟⎟⎟⎠ Ψ̇ +wkfk (18)

where

Φkfk =

⎛
⎜⎜⎜⎜⎜⎝

1 Δx Δx2

2
Δx3

6 0

0 1 Δx Δx2

2 0

0 0 1 Lv(1−ρ)
3

Lv(1−ρ)
3 + vΔt

0 0 0 ρ 1− ρ
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠
(19)

and

ρ = exp

(
−3vΔt

Lv

)
(20)

Here, Lv is the length of the clothoid segment in positive

x-direction and wkfk specifies a Gaussian random process

with known covariance matrix.

C. Measurement Model
The measurement is given by the set of N static road

segments x∗
rs(k, ..., k− n) (see figure 5). Because the static

road segments are taken to be uncorrelated, a block wise se-

quential innovation step is performed. The covariance matrix

Rrs(k − n) representing the uncertainty of a measurement

n is set to be equal to the corresponding error covariance

matrix P∗
rs(k − n) of the considered static road segment.

1The subscript ’kf’ represents EKF estimations (third algorithm stage)

Fig. 6. On the left side common failure modes of a EKF based road
tracker are shown whereas the tracking result with the proposed particle
filter framework can be seen on the right

V. EXPERIMENTAL RESULTS

Because the image of a dirt road is heavily cluttered

and the road boundaries can not precisely be located it

is beneficial for both the road detection as well as the

computation time to work with a quarter of the original wide

VGA image resolution. We have implemented the proposed

tracking algorithm on a multi processor system (Intel Xeon

L5420 Dual CPU Quad Core) on board our test vehicle

MuCAR-3 (Munich Cognitive Autonomous Robot Car 3rd

Generation). Using two cores and 400 particles and utilizing

the Intel performance primitives2 the algorithm takes 35ms
of CPU time. With an overall system cycle of 50ms it easily

fulfills real time requirements.

To evaluate the robustness of the proposed road recog-

nition method we first compared it’s tracking results to

those of an EKF based road tracker using only image edge

informations similar to those used in [8]. Figure 6 shows

common failure modes of the EKF based tracker arising

because of complex shadows and weak road corners and the

successful tracking of the particle filter in the same sequence.

Furthermore, the proposed particle filter for road de-

tection has proved its robustness in several kilometers of

autonomous dirt road driving at speeds up to 50 km/h limitid

mainly because of rough road condition. An accompanying

video file (ICRA10 0922 VI i.mp4) shows autonomous driv-

ing (v ≈ 4m
s ) through dense wood where the algorithm has

to cope with complex lighting conditions, heavily cluttered

road image, crossings and curved roads. Note that varying

Δt values up to 200ms occur caused by varying integration

times of the camera sensor.

An exemplary estimation of the lateral road displacement

y recorded during that autonomous drive is pictured in Figure

7. It can clearly be seen that, because of the discretization of

the state space by a low number of particles, the estimated

displacement gained from the particle filter ypf (blue line)

is noisy. But thanks to the multi stage tracking approach a

really smooth estimate of the displacement at the vehicle

center ykf (green line) is achieved. The difference between

2http://software.intel.com/en-us/intel-ipp/
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ypf ykf

Fig. 7. Displacement gained from both clothoid segment estimations of
the proposed hybrid estimation approach during autonomous driving

0
10,023c
m

�

Fig. 8. Estimation of the road curvature (left) as MuCar-3 is driving through
a left turn with known clothoid segments (right). Blue indicates a straight
segment followed by a transition curve (red) and a circular arc (green)

amplitude and phase of both estimates is mainly because

of the diverse longitudinal positions the displacements are

estimated at. The low pass effect of the used EKF is marginal

due to good prediction models.

In order to evaluate the abilities of the proposed tracking of

two different clothoid segments we compared the estimation

result of the curvature c0m at the vehicles center of gravity.

Figure 8 shows an estimation of the curvature obtained from

the proposed multi stage tracking algorithm (c0mkf
) and from

a standard EKF based road tracker (c0mEKF
see [7]) using

only a single segment while MuCAR-3 is driving through

three marked clothoidal road segments. Within the straight

segment both algorithms perform well. However, coming

close to the transition curve the road course can no longer be

approximated by a single road segment and thus the tracker

using a single road segment estimates a erroneous horizontal

curvature to the right and additionally overestimates the road

curvature at the beginning of the circular arc segment. In

contrast, thanks to the usage of two clothoid segments, the

proposed algorithm significantly reduces such errors.

A further advantage of the proposed algorithm we dis-

covered during test drives is, that short-term detection errors

of the particle filter in curvature and curvature change do

not influence autonomous road following. This is because

the clothoid path generation used for lateral vehicle control

only depends on the detected road position (xpf , ypf , Ψ0pf )

but not on c0pf and c1pf . This can significantly increase

the robustness of the autonomous road following in difficult

situations.

VI. CONCLUSION

We have presented a vision based multi stage estimation

scheme utilizing a particle filter to detect and track a dirt road

within a color image and Kalman filter techniques to generate

a smooth estimate of the local road position. The algorithm

uses two different clothoid segments, fuses saturation and

color edge information and is able to cope with complex

lighting conditions. Extensive tests have shown, that - with

the proposed algorithm - our robot car MuCAR-3 is able

to autonomously drive on significantly more dirt roads and

forest tracks than before. The algorithm performs in real

time. We currently are working on a procedure to evaluate

the tracking results with respect to ground truth data of a

test track gained from DGPS measures.
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