
Evaluation of a probabilistic approach to learn and reproduce gestures
by imitation

Sylvain Calinon†, Eric L. Sauser‡, Aude G. Billard‡ and Darwin G. Caldwell†

Abstract— We present an approach based on Hidden Markov
Model (HMM) and Gaussian Mixture Regression (GMR) to
learning robust models of human motion through imitation.
The proposed approach allows us to extract redundancies across
multiple demonstrations and build time-independent models to
reproduce the dynamics of the demonstrated movements. The
approach is systematically evaluated by using automatically
generated trajectories sharing similarities with human gestures.
The proposed approach is contrasted with four state-of-the-art
methods previously proposed in robotics to learn and reproduce
new skills by imitation. An experiment with a 7 DOFs robotic
arm learning and reproducing the motion of hitting a ball with
a table tennis racket is then presented to illustrate the approach.

I. INTRODUCTION

Robot Programming by Demonstration (PbD) covers
methods by which a robot learns new skills through human
guidance [1], [2]. It requires control strategies that can adapt
in real time to perturbations, such as changes of position and
orientation of objects. The present work addresses this chal-
lenge in investigating and comparing methods by which PbD
is used to learn the dynamics of demonstrated movements,
and, hence, provides the robot with a generic and adaptive
model of control.

Most approaches to trajectory modeling estimate a time-
dependent model of the trajectories, by either exploiting
variants along the concept of spline decomposition [3], [4] or
through statistical encoding of the time-space dependencies
[5], [6]. Such modeling methods are very effective and
precise in the description of the actual trajectory, and benefit
from an explicit time-precedence across the motion segments
to ensure precise reproduction of the task. However, the
explicit time-dependency of these models require the use of
other methods for realigning and scaling the trajectories to
handle perturbation. As an alternative, other approaches have
considered modeling the intrinsic dynamics of motion [7]–
[9]. Such approaches are advantageous in that the system
does not depend on an explicit time variable and can be
modulated to produce trajectories with similar dynamics in
areas of the workspace not covered during training.

Hidden Markov Model (HMM) has previously been re-
ported as a robust probabilistic method to deal with the
spatial and temporal variabilities of human motion across
various demonstrations [9]. The approach that we propose

†Advanced Robotics Department, Italian Insti-
tute of Technology (IIT), 16163 Genova, Italy.
{sylvain.calinon,darwin.caldwell}@iit.it.

‡Learning Algorithms and Systems Laboratory (LASA), Ecole Poly-
technique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
{eric.sauser,aude.billard}@epfl.ch.

relies on HMM to encode the motion and on Gaussian Mix-
ture Regression (GMR) [10] to generalize the motion during
reproduction. In comparison to other statistical regression
methods such as Locally Weighted Regression (LWR) [11]
or Gaussian Process Regression (GPR) [7], [12], GMR does
not model the regression function directly, but models a joint
probability density function of the data, and then derives the
regression function from the density model [1]. This may be
an advantage in some robotic applications since the input and
output components are only specified in the very last step of
the algorithm, and can be interchanged during reproduction
(e.g., this can be used as a fast retrieval process with
different sources of missing data, allowing us to consider
simultaneously any input/output mappings). Vijayakumar et
al suggested to improve the LWR approach so that it can
operate efficiently in high dimensional space through Locally
Weighted Projection Regression (LWPR) [13].

II. PROPOSED PROBABILISTIC APPROACH

M examples of a skill are demonstrated to the robot
in slightly different situations. Each demonstration m ∈
{1, . . . , M} consists of a set of Tm D-dimensional positions
x = {xt}Tm

t=1 and velocities ẋ = {ẋt}Tm
t=1. The dataset is thus

composed of a set of datapoints {x, ẋ}, where the joint dis-
tribution P(x, ẋ) is encoded in a continuous Hidden Markov
Model (HMM) of K states. The output distribution of each
state is represented by a Gaussian locally encoding variation
and correlation information. The parameters of the HMM
are defined by {Π, a, μ,Σ} and learned through Baum-
Welch algorithm [14], which is a variant of Expectation-
Maximization (EM) algorithm. Πi is the initial probability of
being in state i, aij is the transitional probability from state i
to state j. μi and Σi represent the center and the covariance
matrix of the i-th Gaussian distribution of the HMM. Input
and output components in each state of the HMM are defined
as

μi =
[

μx
i

μẋ
i

]
and Σi =

[
Σx

i Σxẋ
i

Σẋx
i Σẋ

i

]
,

with i ∈ {1, . . . , K}, and where the indices x and ẋ refer
respectively to position and velocity components.

With this representation, an unstable estimate of the mo-
tion dynamics can be estimated through Gaussian Mixture
Regression (GMR). At each iteration a desired velocity
command is estimated as

ˆ̇x =
K∑

i=1

hi(x)
[
μẋ

i + Σẋx
i (Σx

i)−1(x − μx
i)

]
. (1)

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2671

Given the current position, a velocity command is esti-
mated iteratively to control the system, see [15] for details.
In the original GMR framework [10], the influence of the
different Gaussians is represented by weights hi ∈ R[0,1],
defined as the probability of an observed input belonging
to each of the Gaussians. We propose to extend this esti-
mation by recursively computing a likelihood through the
HMM representation, thus taking into consideration not only
the spatial information but also the sequential information
probabilistically encapsulated in the HMM1

hi(xt) =

(∑K
j=1 hj(xt−1) aji

)
N (xt; μx

i ,Σx
i)∑K

k=1

[(∑K
j=1 hj(xt−1) ajk

)
N (xt; μx

k,Σx
k)

] .

Here, hi(xt) represents the HMM forward variable [14],
initialized with hi(x1) = πiN (x1; μx

i ,Σx
i)∑ K

k=1[πkN (x1; μx
k,Σx

k)] , and corre-

sponding to the probability of observing the partial sequence
{x1, x2, . . . , xt} and of being in state i at time t.

To tackle the inherent instabilities of the model in Eq.
(1), we add a secondary term that acts as a stabilizer on the
proposed dynamical system. The stabilizer takes the form of
a mass-spring-damper system that brings back the trajectories
toward the centers of the Gaussians. Each of these centers
acts as a ”transient attractor” to this secondary system, hence
driving the motion along the way. At each time step, a target
velocity and target position are retrieved from our estimate of
the dynamics of motion, following ˆ̇x =

∑K
i=1 hi(x)P (ẋ|x, i)

as in (1) and x̂ =
∑K

i=1 hi(x)P (x|ẋ, i).
Tracking of the desired velocity ˆ̇x and desired position x̂

is then insured by the proportional-derivative controller

ẍ =

ẍV︷ ︸︸ ︷
(ˆ̇x − ẋ)κV +

ẍP︷ ︸︸ ︷
(x̂ − x)κP , (2)

where κV and κP are gain parameters similar to damping
and stiffness factors.

Note that the stabilizer may distort the original estimate
of the dynamics (oscillations around the original demon-
strations). Avoiding such oscillations and minimizing the
distortions depends on choosing carefully the gains parame-
ters. Finally, note that the addition of the stabilizing system
above does not ensure stability of the complete system.
However, in practice, for the experiments reported here (and
for well chosen gains), the behavior of the system followed
the desired dynamics. Analysis and solutions to the problem
of stabilizing the first order system can be found in [16].

To avoid the distortion of the demonstrated dynamics, we
define in further experiments the velocity gain κV in (2) such
that, when κP ∼ 0, the system follows, after integration, the
same velocity commands as for the simple version of the
model. On the one hand, the proportional gain κP should be
modulated such that the secondary system takes over in the
face of a large perturbation, sending back the system toward
the originally planned trajectory. On the other hand, this gain
should not be too high to avoid that the system comes back

1We will omit the index t in further equations.

to the trajectory and stops moving, instead of following the
remainder of the motion. We thus define κP ∈ R[0,κP

max] as an
adaptive gain that rapidly grows as the system departs from
the area covered by the demonstrations, and remains null
when the system is close to the demonstrations. We define
κV and κP as

κV =
1
τ

, κP = κP
max

Lmax − L(x)
Lmax − Lmin

, (3)

where Lmax = max
i∈{1,K}

log
(N (μx

i ;μx
i ,Σx

i)
)
,

Lmin = min
x∈W,i∈{1,K}

log
(N (x;μx

i ,Σx
i)

)
.

In the above equation, L represents a log-likelihood.2 κP
max

is the maximum gain allowed to attain a target position.3 W
defines the robot’s workspace or a predetermined range of
situations fixed a priori for the reproduction attempts. τ is
the duration of an iteration step. At each iteration, κP is thus
close to zero if x is close to the Gaussian distributions. In this
situation, the controller reproduces a motion with velocities
similar to those in the demonstration sequences. On the other
hand, if x is far from the areas of demonstrations, the system
comes back towards the closest Gaussians (in a likelihood
sense) with a maximum gain of κP

max, still following the
pattern of motion determined by ˆ̇x in this region. By using
ẍV and ẍP concurrently, the movement is thus distorted only
very slightly, as ẍP disappears when the system gets close
to the demonstrated trajectories.

Parts of the movement where the variations across the
demonstrations are high indicate that the position does not
need to be tracked very precisely. This allows the controller
to focus on the other constraints of the task, such as following
a desired velocity. On the other hand, parts of the movement
exhibiting strong invariance across the demonstrations will
be tracked more precisely, i.e. the gain controlling the error
on position will automatically be increased.

III. EVALUATION THROUGH GENERATED DATA

To analyze systematically the proposed system, several
sets of trajectories are randomly generated. First, a set of
of D-dimensional keypoints X is created (each variable
{Xi}D

i=1 is generated with a uniform random distribution
U(0, 1)). A Vector Integration To Endpoint (VITE) system,
which has been suggested as a biologically plausible model
of human reaching movement [17], is then used to generate
trajectories by starting from a first keypoint and recursively
defining the next keypoint as the target. It is defined here
as a critically damped mass-spring-damper controller ẍ =
(X −x)κP − ẋκV with parameters κV = 25, κP = (κV)2/4,
and time step τ = 0.003 sec. Every 50 iterations, the target
is switched to the next keypoint. For the last keypoint, 50
additional iterations are used to let the system converge to
the last keypoint. To simulate motion variability, each dataset
consists of 3 trajectories produced by slightly varying, with

2Note that the log-likelihood measures correspond here to weighted
distance measures.

3κP
max = 2000 has been fixed empirically in the experiments presented

here.

2672

a Gaussian noise N (0, 0.1), the positions of the keypoints.
The resulting trajectories present natural looking motions
that share similarities with those of humans. The automation
of the generation process allows us to flexibly evaluate
the imitation performance of our algorithm with respect to
several datasets of different dimensionalities. An extensive
description of this evaluation can also be found in [18].

A. Comparison with other approaches

The approach that we propose in this paper will be further
denoted as HMM, as its core representation is based on
Hidden Markov Model. We compare this approach with four
state-of-the-art methods that have proved good performance
in robotics applications.

TGMR: Time-dependent Gaussian Mixture Regression [5]
is based on our previous work, where time is used as an
explicit input variable. The demonstrations are first aligned
in time through Dynamic Time Warping (DTW), see [5]
for details. Then, the distribution of temporal and spatial
variables {t, x, ẋ} is encoded in a Gaussian Mixture Model
(GMM). At each time step during the reproduction process, a
desired position x̂ and a desired velocity ˆ̇x are then retrieved
through GMR by estimating P (x, ẋ|t). The controller used
by the robot to reproduce the skill is the mass-spring damper
system defined in Eq. (2).

LWR: Locally Weighted Regression [11] is a memory-
based probabilistic approach. It is used here to estimate at
each time step a desired position x̂ and a desired velocity ˆ̇x.
Each datapoint of the dataset participates in the estimation of
the solution by using a Gaussian kernel with fixed diagonal
covariance matrix centered at the current position to weight
the influence of each datapoint. The controller used by the
robot is the mass-spring damper system defined in Eq. (2).

LWPR: Locally Weighted Projection Regression is an
incremental regression algorithm that performs piecewise
linear function approximation [13]. The algorithm does not
require storage of the training data and has been proved to
be efficient in a variety of robot learning tasks including high
dimensional data. We use here an implementation of LWPR
with the input space defined by a set of receptive fields with
full covariance matrices. By detecting locally redundant or
irrelevant input dimensions, the method locally reduces the
dimensionality of the input data by finding local projections
through Partial Least Squares (PLS) regression. The learning
parameters have been set based on the recommendations
provided in [13]. During reproduction, LWPR is used at each
iteration to estimate a desired velocity ˆ̇x, given the current
position x. The receptive fields are then used to determine a
desired position x̂ in a similar manner to the methods above.
The controller used by the robot is the mass-spring damper
system defined in Eq. (2).

DMP: The Dynamic Movement Primitives approach was
originally proposed by Ijspeert et al [8]. The method allows
a target to be reached by modulating a set of mass-spring-
damper systems. This allows a particular path to be followed
with the guarantee that the velocity vanishes at the end of the
movement. A phase variable acts as a decay term to ensure

HMM TGMR LWR DMPLWPR

3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

K

[m
]

M1 (RMS error)

3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

K

[m
]

M2 (RMS error after DTW)

3 4 5 6 7
0

1000

2000

3000

4000

5000

6000

K

[m
/s

ec
3]

M3 (Norm of jerk)

3 4 5 6 7
0

0.5

1

1.5

K

[s
ec

]

M4 (Total learning time)

3 4 5 6 7
0

1

2

3

4

5

6

x 10
−4

K

[s
ec

]

M5(Retrieval time step)

Fig. 1. Influence of the number of states K on the metrics, for D = 7
dimensions. The dashed line in M3 represents the mean RMS jerk of the
demonstrations.

that the system asymptotically converges to a reaching point.
A reformulation of DMP similar to the one described in [19]
is used in the experiment, see [20] for details.

B. Metrics of imitation performance

Five metrics are used to evaluate a reproduction attempt
x′ ∈ R

(D×T) with respect to the set of demonstrations x ∈
R

(D×M×T), rescaled in time with T =
∑ M

m=1 Tm

M .
RMS error M1: This metric evaluates the accuracy of

the reproduction in terms of spatial and temporal infor-
mation, where a root-mean-square (RMS) error on posi-
tion (with respect to the M = 3 demonstrations of the
dataset) is computed along the reproduced motion M1 =

1
MT

∑M
m=1

∑T
t=1 ||x′

t − xm,t||.
RMS error after DTW M2: For this metric, the repro-

duced motion is first temporally aligned with the demon-
strations through Dynamic Time Warping (DTW) [5], and a
RMS error on position similar to M1 is then computed.

Norm of jerk M3: This metric evaluates the smoothness
of the reproduction, based on RMS jerk quantification M3 =
1
T

∑T
t=1 ||

...
x ′

t||.
Learning time M4: Computation time of the learning

process.
Retrieval duration M5: Computation time of the retrieval

process for one iteration. 4

C. Evaluation results

Three different sets of movements are generated with the
approach presented above. For each set of movements, three
reproduction attempts are performed. This process is then

4M4 and M5 are evaluated through non-optimized Matlab implemen-
tations of the algorithms running on a 2.5GHz Pentium processor. The aim
here is to provide information on the range of values and scaling properties
that one can expect from the various learning and reproduction processes.
The standard versions of the algorithms have been used, but it would be
possible to adapt each algorithm to make it run faster.

2673

3 5 7 9 11
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

D

[m
]

M1 (RMS error)

3 5 7 9 11
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

D
[m

]

M2 (RMS error after DTW)

3 5 7 9 11
0

2000

4000

6000

8000

D

[m
/s

ec
3]

M3 (Norm of jerk)

3 5 7 9 11
0

1

2

3

4

D

[s
ec

]

M4 (Total learning time)

3 5 7 9 11
0

1

2

3

4

5

x 10
−4

D

[s
ec

]

M5(Retrieval time step)

Fig. 2. Influence of the dimensionality D of the dataset on the metrics,
for K = 4 states (see Fig. 1 for legend).

repeated for various number of states, dimensionalities and
ranges of perturbation.

Fig. 1 shows the influence of the number of states K
in the model (or basis functions), for the different methods
(see Sec. III-A) and metrics (see Sec. III-B). As LWPR is
an online incremental learning method, the parameter that
determines when new basis functions are created (parameter
wgen in [13]) has been gradually increased until the number
of receptive fields matches the desired number of states.5

We see with M1 and M2 in Fig. 1 that all methods perform
very well, accurately following the demonstrated movements
in terms of RMS errors. By encapsulating correlation infor-
mation across input and output variables, HMM performs
well with a very small number of states.

We see with M3 in Fig. 1 that DMP reproduces the
smoothest movement (it actually smoothes the original
demonstrations, see RMS jerk depicted in dashed line). It
is noticeable that smoothness is not much affected by the
number of states in general. For M4, DMP and LWR
show the best performance in terms of the computation time
used by the learning process (LWR is zero as it is a data-
driven approach without learning), while HMM and TGMR
(both trained by Expectation-Maximization) show a slightly
worse performance. For a better comparison with the online
learning nature of LWPR, 10 passes have been performed
with the dataset shuffled randomly. It should thus be noted
that by using a single pass, the computation time can be
reduced by an order of magnitude. For M4, the computation
time used by LWR for reproduction is not competitive and
is thus not depicted here (it goes over 7×10−2 sec. as in the
proposed implementation, each datapoint contributes to the
estimation). The other approaches show a linear dependency
on the number of states and are suitable for online application
in robotics (less than 1 millisecond per iteration for the
considered number of states).

5M4 computation time is evaluated by taking the last learning session
into consideration.

Fig. 3. Left: Experimental setup for the experiment of teaching the Barrett
WAM robotic arm to hit a ball. Center: Reproduction of a drive stroke.
Right: Reproduction of a topspin stroke.

Fig. 2 shows the influence of the dimensionality D on
the metrics for the different approaches (see legend in Fig.
1), when considering K = 4 states in the model. We
see with M1 and M2 that the methods perform equally
well in terms of RMS errors. When the dimensionality is
low, the difficulty is to correctly handle the crossing points
that can appear when randomly generating trajectories (i.e.,
when passing through the same point several times during
a demonstration). When the dimensionality is high, these
crossings are less likely to occur. However, the difficulty is in
this case to efficiently handle the sparsity of the data (curse
of dimensionality). This fact is reflected by the data, and is
especially noticeable for LWR. The comparison with LWPR
is not very informative here, as the lower performance is
related to the online nature of the learning process. Indeed, an
online algorithm cannot determine in advance whether loops
in the motion will be encountered, while a batch learning
process can cluster the crossing points more easily.

For M4 in Fig. 2, we see that the computation time of
Expectation-Maximization (EM) used by HMM and TGMR
produces very variable results. Indeed, EM is a local search
procedure that starts randomly (with k-means initialization),
and stops, for example, once a local maximum likelihood is
reached (other stopping criterions can be defined). Depend-
ing on the initialization, a very different number of iterations
may be required to reach a local optimum. For example, in
low dimensions, the local optimum may not be trivial to find,
as crossings are more likely to occur in the motion. Here,
a single initialization for the search has been fixed, and no
constraint has been fixed on the number of iterations, which
may explain the high computation time of nearly 5 sec.6

required by EM to learn the dataset generated for D = 5. For
reproduction, M5 shows that the different methods remain
competitive in terms of online retrieval of data (less than 1
millisecond, and nearly linear increase for dimensions below
D = 12).

IV. EXPERIMENT WITH ROBOTIC ARM

A. Experimental setup

The experiment consists of learning and reproducing the
motion of hitting a ball with a table tennis racket by using

6In practice, a maximum number of iterations can be set (which was not
the case in this experiment) to guarantee that the learning time remains
short.

2674

−0.8−0.6−0.4−0.20 −0.4−0.20
0.20.4

0

0.2

0.4

0.6

0.8

x2
x1

x
3

2
3

1

7

4
6

5

8

−0.8−0.6−0.4−0.20 −0.4−0.20
0.20.4

0

0.2

0.4

0.6

0.8

x2
x1

x
3

Fig. 4. Encoding and reproduction results of the table tennis experiment.
Left: Demonstrated movements and associated Hidden Markov Model,
where 8 Gaussians are used to encode the two categories of movements.
The position of the ball is depicted by a plus sign, and the initial points
of the trajectories are depicted by points. The trajectories corresponding
to topspin and drive strokes have been represented in different colors for
visualization purpose, but the robot does not have this information and is
also not aware of the number of categories that has been demonstrated.
Right: 10 reproduction attempts by starting from new random positions in
the areas where either topspin and drive strokes have been demonstrated.

a Barrett WAM 7 DOFs robotic arm, see Fig. 3 left. One
objective is to demonstrate that such movements can be
transferred using the proposed approach, where the skill
requires that the target be reached with a given velocity,
direction and amplitude. In the experiment presented here,
we extend the difficulty of the tennis task described in [8]
by assuming that the robot must hit the ball with a desired
velocity set by the demonstrations. The robot thus hits the
ball, continues its motion and stops, instead of reaching it
with zero velocity.

In table tennis, topspin occurs when the top of the ball is
going in the same direction as the ball is moving. Topspin
causes the ball to drop faster than by gravity alone, and is
used by players to allow the ball to be hit harder but still
land on the table. The stroke with no spin is referred to
as drive. The motion and orientation of the racket at the
impact thus differ when performing a topspin or a drive
stroke. Training was done by an intermediate-level player
demonstrating several topspin and drive strokes to the robot
by putting it in an active gravity compensation control mode,
which allows the user to move the robot manually. Through
this kinesthetic teaching process, the user molds the robot
behavior by putting it through the task of hitting the ball
with a desired spin. The ball is fixed on a stick during
demonstration, and its initial position is tracked by a color-
based stereoscopic vision tracking system.

The recordings are performed in Cartesian space by con-
sidering the position x and orientation q of the racket with
respect to the ball, with associated velocities ẋ and q̇. A
quaternion representation of the orientation is used, where
three of the four quaternion components are used (the fourth
quaternion component is reconstructed afterwards). The user
demonstrates in total 4 topspin strokes and 4 drive strokes in
random order. The categories of strokes are not provided to
the robot, and the number of states in the HMM is selected
through Bayesian Information Criterion (BIC), see [5] for
details.

B. Experimental results

Fig. 4 presents the encoding and reproduction results
for the positions x in Cartesian space. We see that the

1

2

3

4

5

6

7

8

−3−2−10 −1 0 1−1

0

1

2

x2x1

x
3

−3−2−10 −1 0 1−1

0

1

2

x2x1

x
3

Fig. 5. Left: HMM representation of the transitions and initial state
probabilities (the corresponding state output distributions are represented
in Fig. 4). Probabilities above 0.1 are represented by black lines (self-
transitions are not represented here), showing two different sequences,
defined by states transitions 2-3-1-7 and 4-6-5-8. Right: Position and
velocity of the racket at the time of the impact with the ball for the 8
demonstrations (top) and for the 10 reproduction attempts (bottom).

HMM model reproduces an appropriate motion in the two
situations. Fig. 5 left, presents the states transitions learned
by the HMM. We see that the model has correctly learned
that two different dynamics can be achieved here, depending
on the initial position of the robot, thus correctly generalizing
the skill. Fig. 5 right presents the results at the time of
the impact. We see that the system correctly strikes the ball
at a velocity similar to the ones demonstrated (in terms of
both amplitude and directions). The video of this experiment
and the sourcecodes of the proposed approach are available
online [21].

V. DISCUSSION

The evaluation presented in Sec. III showed that HMM
is competitive with respect to state-of-the-art approaches
in robot learning by observation. However, the evaluation
remains valid only for the specific context presented here,
i.e., by determining an acceleration command recursively
after having observed a set of position and velocity data.
It does not necessary reflect the efficiency of the algorithms
in other contexts.

The proposed HMM approach shares many characteristics
with the DMP approach, but has some advantages for the
subset of tasks that we considered. First, it is able to
encode several motion alternatives in the same model. Partial
demonstrations can be provided, which is a very important
advantage for the teaching interaction (e.g., to refine one part
of the movement without having to demonstrate the whole
task again). Compared to DMP that must explicitly embed
the cyclic or discrete form of the motion, the HMM approach
allows periodic and reaching movements to be handled in a
unified way (and simultaneously), without having to specify
the representation beforehand.

For some tasks, DMP requires a heuristic to be defined
to recompute the value of the canonical variable s (re-
parametrization of time through a decay term), see [19], [20]
for details. Indeed, DMP is robust to spatial perturbation,
but requires an external mechanism to handle temporal
perturbations such as delay and pauses in the motion. Thus,

2675

the perturbation needs to be detected in order to re-estimate
the value of the decay term s. For example, if the robot needs
to reproduce only one part of the motion, or if the target
is moving, s must be re-evaluated in consequence. Handling
this type of perturbation is in contrast inherently encapsulated
in the proposed model, without parametrization of a temporal
decay (spatial and temporal distortions are handled through
the HMM representation).

As demonstrated in the robotic application, the proposed
HMM approach is not constrained to movements with a
unique zero-velocity attractor point. A single model is used
to encode multivariate data, which allows automatic learning
of the correlations between the different variables, and the
use of this information for reproduction. To handle multivari-
ate data, DMP considers the different variables as separate
processes synchronized by the phase variable, while HMM
encapsulates the complete correlation information, which
may be an advantage for some tasks. The covariance matrices
given by GMR provide local information on the spread of
each center μi. This therefore allows building a regression
estimate even if a low number of Gaussians is considered.

These appealing properties however comes with a draw-
back that requires further investigation. In DMP, the weights
are determined through a decay term, which allows the
system to guarantee convergence to the last target point.
In contrast, the HMM method has the disadvantage that
its stability relies on the proper choice of the gains in Eq.
(2). These gains must be set by estimating in advance the
perturbations that one can expect during reproduction and/or
the range of novel initial positions that the system is expected
to handle. Moreover, even if each subsystem is stable, the
stability of the complete system is not necessary guaranteed,
and it remains difficult to find criterions that are valid for
both discrete and periodic motion. Analyzing the stability of
such systems, and deriving the associated learning algorithms
are part of future work [16].

VI. CONCLUSION

We presented and evaluated a method based on Hidden
Markov Model (HMM) and Gaussian Mixture Regression
(GMR) to allow robots to acquire new movements by
imitation. The use of GMR was extended to a dynamical
system approach in order to get rid of the explicit time
dependency that was considered in our previous work [5]. We
also extended the regression process by taking advantages
of the HMM capability to represent robustly sequential
motion. For the context of separate learning and reproduction
processes, this novel formulation was systematically evalu-
ated with respect to our previous approach, as well as to
Locally Weighted Regression (LWR) [11], Locally Weighted
Projection Regression (LWPR) [13], and Dynamic Move-
ment Primitives (DMP) [8], [19]. The approach was finally
illustrated through an experiment where a robot learned
new skills through kinesthetic teaching, where we showed
that the proposed framework can be efficiently used in an
unsupervised learning mode.

REFERENCES

[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Secaucus, NJ, USA: Springer, 2008, pp. 1371–1394.

[2] S. Calinon, Robot Programming by Demonstration: A Probabilistic
Approach. EPFL/CRC Press, 2009, EPFL Press ISBN 978-2-940222-
31-5, CRC Press ISBN 978-1-4398-0867-2.

[3] J. Aleotti and S. Caselli, “Robust trajectory learning and approximation
for robot programming by demonstration,” Robotics and Autonomous
Systems, vol. 54, no. 5, pp. 409–413, 2006.

[4] A. Ude, “Trajectory generation from noisy positions of object features
for teaching robot paths,” Robotics and Autonomous Systems, vol. 11,
no. 2, pp. 113–127, 1993.

[5] S. Calinon and A. Billard, “Statistical learning by imitation of com-
peting constraints in joint space and task space,” Advanced Robotics,
vol. 23, no. 15, pp. 2059–2076, 2009.

[6] M. Muehlig, M. Gienger, S. Hellbach, J. Steil, and C. Goerick, “Task-
level imitation learning using variance-based movement optimization,”
in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), 2009.

[7] D. Grimes, R. Chalodhorn, and R. Rao, “Dynamic imitation in a
humanoid robot through nonparametric probabilistic inference,” in
Proc. Robotics: Science and Systems (RSS), 2006, pp. 1–8.

[8] A. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation for
imitation with nonlinear dynamical systems,” in Proc. IEEE Intl Conf.
on Intelligent Robots and Systems (IROS), 2001, pp. 752–757.

[9] D. Kulic, W. Takano, and Y. Nakamura, “Incremental learning, clus-
tering and hierarchy formation of whole body motion patterns using
adaptive hidden markov chains,” Intl Journal of Robotics Research,
vol. 27, no. 7, pp. 761–784, 2008.

[10] Z. Ghahramani and M. Jordan, “Supervised learning from incomplete
data via an EM approach,” in Advances in Neural Information Process-
ing Systems, J. D. Cowan, G. Tesauro, and J. Alspector, Eds., vol. 6.
Morgan Kaufmann Publishers, Inc., 1994, pp. 120–127.

[11] S. Schaal and C. Atkeson, “Constructive incremental learning from
only local information,” Neural Computation, vol. 10, no. 8, pp. 2047–
2084, 1998.

[12] D. Nguyen-Tuong and J. Peters, “Local gaussian process regression
for real-time model-based robot control,” in IEEE/RSJ Intl Conf. on
Intelligent Robots and Systems (IROS), 2008, pp. 380–385.

[13] S. Vijayakumar, A. D’souza, and S. Schaal, “Incremental online
learning in high dimensions,” Neural Computation, vol. 17, no. 12,
pp. 2602–2634, 2005.

[14] L. Rabiner, “A tutorial on hidden Markov models and selected appli-
cations in speech recognition,” Proc. IEEE, vol. 77:2, pp. 257–285,
February 1989.

[15] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system
modulation for robot learning via kinesthetic demonstrations,” IEEE
Trans. on Robotics, vol. 24, no. 6, pp. 1463–1467, 2008.

[16] M. Khansari and A. Billard, “Learning stable non-linear dynamical
systems with gaussian mixture models,” in Proc. IEEE Intl Conf.
on Robotics and Automation (ICRA), Anchorage, Alaska, USA, May
2010.

[17] D. Bullock and S. Grossberg, “Neural dynamics of planned arm
movements: Emergent invariants and speed-accuracy properties during
trajectory formation,” Psychological Review, vol. 95, no. 1, pp. 49–90,
1988.

[18] S. Calinon, F. D’halluin, E. Sauser, D. Caldwell, and A. Billard,
“A probabilistic approach based on dynamical systems to learn and
reproduce gestures by imitation,” IEEE Robotics and Automation
Magazine, 2010, submitted.

[19] H. Hoffmann, P. Pastor, D. Park, and S. Schaal, “Biologically-inspired
dynamical systems for movement generation: automatic real-time goal
adaptation and obstacle avoidance,” in Proc. IEEE Intl Conf. on
Robotics and Automation (ICRA), 2009, pp. 2587–2592.

[20] S. Calinon, F. D’halluin, D. Caldwell, and A. Billard, “Handling of
multiple constraints and motion alternatives in a robot programming
by demonstration framework,” in Proc. IEEE-RAS Intl Conf. on
Humanoid Robots (Humanoids), Paris, France, December 2009, pp.
582–588.

[21] S. Calinon, “Robot programming by demonstration: A probabilistic
approach,” http://programming-by-demonstration.org,
February 2010.

2676

